Home | History | Annotate | Download | only in operations
      1 /*
      2  * Copyright (C) 2017 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "CpuOperationUtils.h"
     18 #include "OperationResolver.h"
     19 
     20 #include "tensorflow/lite/kernels/internal/optimized/legacy_optimized_ops.h"
     21 #include "tensorflow/lite/kernels/internal/reference/legacy_reference_ops.h"
     22 
     23 #include "Tracing.h"
     24 
     25 namespace android {
     26 namespace nn {
     27 namespace concatenation {
     28 
     29 constexpr char kOperationName[] = "CONCATENATION";
     30 
     31 constexpr uint32_t kNumOutputs = 1;
     32 constexpr uint32_t kOutputTensor = 0;
     33 
     34 namespace {
     35 
     36 template <typename T>
     37 bool concatenation(const std::vector<const T*>& inputDataPtrs,
     38                    const std::vector<Shape>& inputShapes, int32_t axis, T* outputData,
     39                    const Shape& outputShape) {
     40     NNTRACE_TRANS("concatenation");
     41     int num_inputs = inputShapes.size();
     42     std::vector<tflite::Dims<4>*> inputDimsPtr(num_inputs);
     43     std::vector<tflite::Dims<4> > inputDims(num_inputs);
     44     for (int i = 0; i < num_inputs; i++) {
     45         inputDims[i] = convertShapeToDims(inputShapes[i]);
     46         inputDimsPtr[i] = &inputDims[i];
     47     }
     48     NNTRACE_COMP_SWITCH("optimized_ops::Concatenation");
     49     tflite::optimized_ops::Concatenation<tflite::FusedActivationFunctionType::kNone, T>(
     50             getNumberOfDimensions(outputShape) - axis - 1, inputDataPtrs.data(),
     51             inputDimsPtr.data(), num_inputs, outputData, convertShapeToDims(outputShape));
     52 
     53     return true;
     54 }
     55 
     56 template <>
     57 bool concatenation<uint8_t>(const std::vector<const uint8_t*>& inputDataPtrs,
     58                             const std::vector<Shape>& inputShapes, int32_t axis,
     59                             uint8_t* outputData, const Shape& outputShape) {
     60     NNTRACE_TRANS("concatenationQuant8");
     61     int num_inputs = inputShapes.size();
     62     std::vector<float> inputScales(num_inputs);
     63     std::vector<int32> inputOffsets(num_inputs);
     64     std::vector<tflite::Dims<4>*> inputDimsPtr(num_inputs);
     65     std::vector<tflite::Dims<4> > inputDims(num_inputs);
     66     for (int i = 0; i < num_inputs; i++) {
     67         inputScales[i] = inputShapes[i].scale;
     68         inputOffsets[i] = inputShapes[i].offset;
     69         inputDims[i] = convertShapeToDims(inputShapes[i]);
     70         inputDimsPtr[i] = &inputDims[i];
     71     }
     72 
     73     NNTRACE_COMP_SWITCH("reference_ops::Concatenation");
     74     tflite::reference_ops::Concatenation(
     75             getNumberOfDimensions(outputShape) - axis - 1, inputDataPtrs.data(),
     76             inputDimsPtr.data(), inputOffsets.data(), inputScales.data(), num_inputs, outputData,
     77             convertShapeToDims(outputShape), outputShape.offset, outputShape.scale);
     78 
     79     return true;
     80 }
     81 
     82 template <typename T>
     83 inline bool concatenation(IOperationExecutionContext* context) {
     84     uint32_t inputCount = context->getNumInputs() - 1;
     85     std::vector<const T*> inputDatas;
     86     std::vector<Shape> inputShapes;
     87     for (uint32_t i = 0; i < inputCount; ++i) {
     88         const T* buffer = context->getInputBuffer<T>(i);
     89         if (buffer == nullptr) continue;
     90         inputDatas.push_back(buffer);
     91         inputShapes.push_back(context->getInputShape(i));
     92     }
     93     return concatenation(inputDatas, inputShapes, context->getInputValue<int32_t>(inputCount),
     94                          context->getOutputBuffer<T>(kOutputTensor),
     95                          context->getOutputShape(kOutputTensor));
     96 }
     97 
     98 }  // namespace
     99 
    100 bool validate(const IOperationValidationContext* context) {
    101     uint32_t inputCount = context->getNumInputs();
    102     NN_RET_CHECK_GE(inputCount, 2);
    103     NN_RET_CHECK_EQ(context->getNumOutputs(), kNumOutputs);
    104     const OperandType inputType = context->getInputType(0);
    105     if (inputType == OperandType::TENSOR_FLOAT32 || inputType == OperandType::TENSOR_QUANT8_ASYMM) {
    106         NN_RET_CHECK(validateHalVersion(context, HalVersion::V1_0));
    107     } else if (inputType == OperandType::TENSOR_FLOAT16) {
    108         NN_RET_CHECK(validateHalVersion(context, HalVersion::V1_2));
    109     } else {
    110         NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << kOperationName;
    111     }
    112     std::vector<OperandType> inExpectedTypes(inputCount - 1, inputType);
    113     inExpectedTypes.push_back(OperandType::INT32);
    114     if (context->getHalVersion() < HalVersion::V1_2 &&
    115         inputType == OperandType::TENSOR_QUANT8_ASYMM) {
    116         const Shape& output = context->getOutputShape(kOutputTensor);
    117         for (uint32_t i = 0; i < inputCount - 1; ++i) {
    118             const Shape& input = context->getInputShape(i);
    119             NN_RET_CHECK_EQ(input.scale, output.scale);
    120             NN_RET_CHECK_EQ(input.offset, output.offset);
    121         }
    122     }
    123     return validateInputTypes(context, inExpectedTypes) &&
    124            validateOutputTypes(context, {inputType});
    125 }
    126 
    127 bool prepare(IOperationExecutionContext* context) {
    128     uint32_t numInputs = context->getNumInputs();
    129     NN_RET_CHECK_GE(numInputs, 2);
    130     const Shape& input0 = context->getInputShape(0);
    131     uint32_t numDimensions = getNumberOfDimensions(input0);
    132     int32_t axis = context->getInputValue<int32_t>(numInputs - 1);
    133     NN_RET_CHECK_GE(axis, 0);
    134     NN_RET_CHECK_LT(axis, numDimensions);
    135 
    136     uint32_t sumAxis = getSizeOfDimension(input0, axis);
    137     for (uint32_t i = 1; i < numInputs - 1; ++i) {
    138         const Shape& input = context->getInputShape(i);
    139         NN_RET_CHECK_EQ(getNumberOfDimensions(input), numDimensions);
    140         NN_RET_CHECK(input.type == input0.type);
    141         for (uint32_t d = 0; d < numDimensions; ++d) {
    142             if (d == axis) {
    143                 sumAxis += getSizeOfDimension(input, axis);
    144             } else {
    145                 NN_RET_CHECK_EQ(getSizeOfDimension(input0, d), getSizeOfDimension(input, d));
    146             }
    147         }
    148     }
    149 
    150     Shape output = context->getOutputShape(kOutputTensor);
    151     output.type = input0.type;
    152     output.dimensions = input0.dimensions;
    153     output.dimensions[axis] = sumAxis;
    154     return context->setOutputShape(kOutputTensor, output);
    155 }
    156 
    157 bool execute(IOperationExecutionContext* context) {
    158     // Bypass execution in the case of zero-sized input.
    159     if (getNumberOfElements(context->getOutputShape(kOutputTensor)) == 0) return true;
    160     switch (context->getInputType(0)) {
    161         case OperandType::TENSOR_FLOAT16:
    162             return concatenation<_Float16>(context);
    163         case OperandType::TENSOR_FLOAT32:
    164             return concatenation<float>(context);
    165         case OperandType::TENSOR_QUANT8_ASYMM:
    166             return concatenation<uint8_t>(context);
    167         default:
    168             NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << kOperationName;
    169     }
    170 }
    171 
    172 }  // namespace concatenation
    173 
    174 NN_REGISTER_OPERATION(CONCATENATION, concatenation::kOperationName, concatenation::validate,
    175                       concatenation::prepare, concatenation::execute, .allowZeroSizedInput = true);
    176 
    177 }  // namespace nn
    178 }  // namespace android
    179