Home | History | Annotate | Download | only in operations
      1 /*
      2  * Copyright (C) 2017 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "CpuOperationUtils.h"
     18 #include "OperationResolver.h"
     19 #include "Operations.h"
     20 
     21 #include "Utils.h"
     22 #include "tensorflow/lite/kernels/internal/optimized/legacy_optimized_ops.h"
     23 
     24 #include "Tracing.h"
     25 
     26 namespace android {
     27 namespace nn {
     28 namespace conv_2d {
     29 
     30 constexpr char kOperationName[] = "CONV_2D";
     31 
     32 constexpr uint32_t kInputTensor = 0;
     33 constexpr uint32_t kFilterTensor = 1;
     34 constexpr uint32_t kBiasTensor = 2;
     35 
     36 constexpr uint32_t kNumOutputs = 1;
     37 constexpr uint32_t kOutputTensor = 0;
     38 
     39 namespace {
     40 
     41 // If possible we will use this static buffer for the tensor.
     42 constexpr size_t kStaticBufferSize = 1605632;
     43 char static_scratch_buffer[kStaticBufferSize];
     44 
     45 // executionMutex is used to protect concurrent access of the static_scratch_buffer
     46 // and other non-threadsafe resources like gemmlowp::GemmContext.
     47 // std::mutex is safe for pthreads on Android.
     48 std::mutex executionMutex;
     49 
     50 struct Conv2dParam {
     51     int32_t padding_left, padding_right;
     52     int32_t padding_top, padding_bottom;
     53     int32_t stride_width, stride_height;
     54     int32_t dilation_width_factor = 1, dilation_height_factor = 1;
     55     int32_t activation;
     56     bool useNchw = false;
     57 
     58     bool initialize(const IOperationExecutionContext* context) {
     59         uint32_t inCount = context->getNumInputs();
     60         int32_t padding_implicit = 0;
     61         bool useImplicitPadding = false;
     62         if ((inCount >= 8 && context->getInputType(7) == OperandType::BOOL) || inCount == 7) {
     63             padding_implicit = context->getInputValue<int32_t>(3);
     64             stride_width = context->getInputValue<int32_t>(4);
     65             stride_height = context->getInputValue<int32_t>(5);
     66             activation = context->getInputValue<int32_t>(6);
     67             if (inCount >= 8) {
     68                 useNchw = context->getInputValue<bool>(7);
     69             }
     70             if (inCount == 10) {
     71                 dilation_width_factor = context->getInputValue<int32_t>(8);
     72                 dilation_height_factor = context->getInputValue<int32_t>(9);
     73             }
     74             useImplicitPadding = true;
     75         } else if (inCount >= 10 && context->getInputType(7) == OperandType::INT32) {
     76             padding_left = context->getInputValue<int32_t>(3);
     77             padding_right = context->getInputValue<int32_t>(4);
     78             padding_top = context->getInputValue<int32_t>(5);
     79             padding_bottom = context->getInputValue<int32_t>(6);
     80             stride_width = context->getInputValue<int32_t>(7);
     81             stride_height = context->getInputValue<int32_t>(8);
     82             activation = context->getInputValue<int32_t>(9);
     83             if (inCount >= 11) {
     84                 useNchw = context->getInputValue<bool>(10);
     85             }
     86             if (inCount == 13) {
     87                 dilation_width_factor = context->getInputValue<int32_t>(11);
     88                 dilation_height_factor = context->getInputValue<int32_t>(12);
     89             }
     90         } else {
     91             NN_RET_CHECK_FAIL() << "Unsupported input spec for operation " << kOperationName;
     92         }
     93         if (useImplicitPadding) {
     94             Shape inputShape = context->getInputShape(kInputTensor);
     95             Shape filterShape = context->getInputShape(kFilterTensor);
     96             int32_t input_width = getSizeOfDimension(inputShape, useNchw ? 3 : 2);
     97             int32_t input_height = getSizeOfDimension(inputShape, useNchw ? 2 : 1);
     98             int32_t filter_width = getSizeOfDimension(filterShape, 2);
     99             int32_t filter_height = getSizeOfDimension(filterShape, 1);
    100             calculateExplicitPadding(input_width, stride_width, dilation_width_factor, filter_width,
    101                                      padding_implicit, &padding_left, &padding_right);
    102             calculateExplicitPadding(input_height, stride_height, dilation_height_factor,
    103                                      filter_height, padding_implicit, &padding_top,
    104                                      &padding_bottom);
    105         }
    106         NN_RET_CHECK_GE(padding_left, 0);
    107         NN_RET_CHECK_GE(padding_right, 0);
    108         NN_RET_CHECK_GE(padding_top, 0);
    109         NN_RET_CHECK_GE(padding_bottom, 0);
    110         NN_RET_CHECK_GT(stride_width, 0);
    111         NN_RET_CHECK_GT(stride_height, 0);
    112         NN_RET_CHECK_GT(dilation_width_factor, 0);
    113         NN_RET_CHECK_GT(dilation_height_factor, 0);
    114         NN_RET_CHECK_GE(activation, 0);
    115         return true;
    116     }
    117 };
    118 
    119 #define ANDROID_NN_CONV_PARAMETERS(Type)                                        \
    120     uint32_t height       = getSizeOfDimension(inputShape, 1);                  \
    121     uint32_t width        = getSizeOfDimension(inputShape, 2);                  \
    122     uint32_t filterHeight = getSizeOfDimension(filterShape, 1);                 \
    123     uint32_t filterWidth  = getSizeOfDimension(filterShape, 2);                 \
    124     uint32_t outHeight    = getSizeOfDimension(outputShape, 1);                 \
    125     uint32_t outWidth     = getSizeOfDimension(outputShape, 2);                 \
    126     uint32_t inDepth      = getSizeOfDimension(inputShape, 3);                  \
    127                                                                                 \
    128     uint32_t paddingHeight = (uint32_t)padding_top;                             \
    129     uint32_t paddingWidth = (uint32_t)padding_left;                             \
    130                                                                                 \
    131     tflite::Dims<4> im2colDim;                                                  \
    132     im2colDim.sizes[3] = (int)getSizeOfDimension(outputShape, 0);               \
    133     im2colDim.sizes[2] = (int)getSizeOfDimension(outputShape, 1);               \
    134     im2colDim.sizes[1] = (int)getSizeOfDimension(outputShape, 2);               \
    135     im2colDim.sizes[0] = (int)inDepth * filterHeight * filterWidth;             \
    136                                                                                 \
    137     im2colDim.strides[0] = 1;                                                   \
    138     for (int i=1; i<4; i++) {                                                   \
    139         im2colDim.strides[i] = im2colDim.strides[i-1] * im2colDim.sizes[i-1];   \
    140     }                                                                           \
    141                                                                                 \
    142     Type* im2colData = nullptr;                                                 \
    143     uint64_t im2colByteSize = sizeof(Type);                                     \
    144     std::unique_ptr<Type[]> im2colGuard;                                        \
    145     for (int i=0; i<4; i++) {                                                   \
    146         im2colByteSize *= im2colDim.sizes[i];                                   \
    147     }                                                                           \
    148     /* http://b/77982879, tflite::optimized_ops::Conv uses int for offsets */   \
    149     if (im2colByteSize >= 0x7fffffff)  {                                        \
    150         LOG(ERROR) << "Conv size is too large, not enough memory";              \
    151         return false;                                                           \
    152     }                                                                           \
    153     if (im2colByteSize <= kStaticBufferSize) {                                  \
    154         im2colData = reinterpret_cast<Type *>(static_scratch_buffer);           \
    155     } else {                                                                    \
    156         im2colData = new (std::nothrow) Type[im2colByteSize / sizeof(Type)];    \
    157         if (im2colData == nullptr) {                                            \
    158             LOG(ERROR) << "Conv size is too large, not enough memory";          \
    159             return false;                                                       \
    160         }                                                                       \
    161         im2colGuard.reset(im2colData);                                          \
    162     }
    163 
    164 bool convNhwc(const float* inputData, const Shape& inputShape, const float* filterData,
    165               const Shape& filterShape, const float* biasData, const Shape& biasShape,
    166               int32_t padding_left, int32_t padding_right, int32_t padding_top,
    167               int32_t padding_bottom, int32_t stride_width, int32_t stride_height,
    168               int32_t dilation_width_factor, int32_t dilation_height_factor, int32_t activation,
    169               float* outputData, const Shape& outputShape) {
    170     NNTRACE_TRANS("convFloat32");
    171 
    172     ANDROID_NN_CONV_PARAMETERS(float)
    173 
    174     float output_activation_min, output_activation_max;
    175     CalculateActivationRangeFloat(activation, &output_activation_min, &output_activation_max);
    176 
    177     // Prevent concurrent executions that may access the scratch buffer.
    178     std::unique_lock<std::mutex> lock(executionMutex);
    179     NNTRACE_COMP_SWITCH("optimized_ops::Conv");
    180     tflite::optimized_ops::Conv(inputData, convertShapeToDims(inputShape), filterData,
    181                                 convertShapeToDims(filterShape), biasData,
    182                                 convertShapeToDims(biasShape), stride_width, stride_height,
    183                                 dilation_width_factor, dilation_height_factor, paddingWidth,
    184                                 paddingHeight, output_activation_min, output_activation_max,
    185                                 outputData, convertShapeToDims(outputShape), im2colData, im2colDim);
    186     return true;
    187 }
    188 
    189 bool convNhwc(const uint8_t* inputData, const Shape& inputShape, const uint8_t* filterData,
    190               const Shape& filterShape, const int32_t* biasData, const Shape& biasShape,
    191               int32_t padding_left, int32_t padding_right, int32_t padding_top,
    192               int32_t padding_bottom, int32_t stride_width, int32_t stride_height,
    193               int32_t dilation_width_factor, int32_t dilation_height_factor, int32_t activation,
    194               uint8_t* outputData, const Shape& outputShape) {
    195     NNTRACE_TRANS("convQuant8");
    196 
    197     ANDROID_NN_CONV_PARAMETERS(uint8_t)
    198 
    199     int32_t inputOffset = -inputShape.offset;
    200     int32_t filterOffset = -filterShape.offset;
    201     int32_t outputOffset = outputShape.offset;
    202 
    203     double real_multiplier = 0.0;
    204     int32_t output_multiplier = 0;
    205     int32_t output_shift = 0;
    206     int32_t output_activation_min = 0;
    207     int32_t output_activation_max = 0;
    208 
    209     NN_RET_CHECK(GetQuantizedConvolutionMultipler(inputShape, filterShape, biasShape, outputShape,
    210                                                   &real_multiplier));
    211     int exponent;
    212     NN_RET_CHECK(QuantizeMultiplier(real_multiplier, &output_multiplier, &exponent));
    213     output_shift = -exponent;
    214     CalculateActivationRangeUint8(activation, outputShape, &output_activation_min,
    215                                   &output_activation_max);
    216 
    217     static gemmlowp::GemmContext gemm_context;
    218 
    219     // Prevent concurrent executions that may access the scratch buffer and
    220     // gemm_context.
    221     std::unique_lock<std::mutex> lock(executionMutex);
    222     // Alow gemmlowp automatically decide how many threads to use.
    223     gemm_context.set_max_num_threads(0);
    224 
    225     NNTRACE_COMP_SWITCH("optimized_ops::Conv");
    226     tflite::optimized_ops::Conv(
    227             inputData, convertShapeToDims(inputShape), inputOffset, filterData,
    228             convertShapeToDims(filterShape), filterOffset, biasData, convertShapeToDims(biasShape),
    229             stride_width, stride_height, dilation_width_factor, dilation_height_factor,
    230             paddingWidth, paddingHeight, outputOffset, output_multiplier, output_shift,
    231             output_activation_min, output_activation_max, outputData,
    232             convertShapeToDims(outputShape), im2colData, im2colDim, &gemm_context);
    233     return true;
    234 }
    235 
    236 bool convNhwc(const _Float16* inputData, const Shape& inputShape, const _Float16* filterData,
    237               const Shape& filterShape, const _Float16* biasData, const Shape& biasShape,
    238               int32_t padding_left, int32_t padding_right, int32_t padding_top,
    239               int32_t padding_bottom, int32_t stride_width, int32_t stride_height,
    240               int32_t dilation_width_factor, int32_t dilation_height_factor, int32_t activation,
    241               _Float16* outputData, const Shape& outputShape) {
    242     NNTRACE_TRANS("convFloat16");
    243 
    244     std::vector<float> inputData_float32(getNumberOfElements(inputShape));
    245     std::vector<float> filterData_float32(getNumberOfElements(filterShape));
    246     std::vector<float> biasData_float32(getNumberOfElements(biasShape));
    247     std::vector<float> outputData_float32(getNumberOfElements(outputShape));
    248 
    249     convertFloat16ToFloat32(inputData, &inputData_float32);
    250     convertFloat16ToFloat32(filterData, &filterData_float32);
    251     convertFloat16ToFloat32(biasData, &biasData_float32);
    252 
    253     convNhwc(inputData_float32.data(), inputShape, filterData_float32.data(), filterShape,
    254              biasData_float32.data(), biasShape, padding_left, padding_right, padding_top,
    255              padding_bottom, stride_width, stride_height, dilation_width_factor,
    256              dilation_height_factor, activation, outputData_float32.data(), outputShape);
    257     convertFloat32ToFloat16(outputData_float32, outputData);
    258 
    259     return true;
    260 }
    261 
    262 template <typename T_Input, typename T_Filter, typename T_Bias>
    263 bool conv(const T_Input* inputData, const Shape& inputShape, const T_Filter* filterData,
    264           const Shape& filterShape, const T_Bias* biasData, const Shape& biasShape,
    265           int32_t padding_left, int32_t padding_right, int32_t padding_top, int32_t padding_bottom,
    266           int32_t stride_width, int32_t stride_height, int32_t dilation_width_factor,
    267           int32_t dilation_height_factor, int32_t activation, bool useNchw, T_Input* outputData,
    268           const Shape& outputShape) {
    269     InputWithLayout<T_Input> input(useNchw);
    270     OutputWithLayout<T_Input> output(useNchw);
    271     NN_RET_CHECK(input.initialize(inputData, inputShape));
    272     NN_RET_CHECK(output.initialize(outputData, outputShape));
    273     NN_RET_CHECK(convNhwc(input.getNhwcBuffer(), input.getNhwcShape(), filterData, filterShape,
    274                           biasData, biasShape, padding_left, padding_right, padding_top,
    275                           padding_bottom, stride_width, stride_height, dilation_width_factor,
    276                           dilation_height_factor, activation, output.getNhwcBuffer(),
    277                           output.getNhwcShape()));
    278     NN_RET_CHECK(output.commit());
    279     return true;
    280 }
    281 
    282 bool convQuant8PerChannelNhwc(const uint8_t* inputData, const Shape& inputShape,
    283                               const int8_t* filterData, const Shape& filterShape,
    284                               const float* filterScales, const int32_t* biasData,
    285                               const Shape& biasShape, int32_t paddingLeft, int32_t paddingRight,
    286                               int32_t paddingTop, int32_t paddingBottom, int32_t strideWidth,
    287                               int32_t strideHeight, int32_t dilationWidthFactor,
    288                               int32_t dilationHeightFactor, int32_t activation, uint8_t* outputData,
    289                               const Shape& outputShape) {
    290     NNTRACE_TRANS("convQuant8PerChannel");
    291 
    292     uint32_t numBatches = getSizeOfDimension(inputShape, 0);
    293     uint32_t inputHeight = getSizeOfDimension(inputShape, 1);
    294     uint32_t inputWidth = getSizeOfDimension(inputShape, 2);
    295     uint32_t inputDepth = getSizeOfDimension(inputShape, 3);
    296     uint32_t filterHeight = getSizeOfDimension(filterShape, 1);
    297     uint32_t filterWidth = getSizeOfDimension(filterShape, 2);
    298     uint32_t filterDepth = getSizeOfDimension(filterShape, 3);
    299     uint32_t outputHeight = getSizeOfDimension(outputShape, 1);
    300     uint32_t outputWidth = getSizeOfDimension(outputShape, 2);
    301     uint32_t outputDepth = getSizeOfDimension(outputShape, 3);
    302 
    303     int32_t inputOffset = -inputShape.offset;
    304     int32_t outputOffset = outputShape.offset;
    305 
    306     auto realMultiplier = std::vector<double>(outputDepth, .0f);
    307     auto outputMultiplier = std::vector<int32_t>(outputDepth, 0);
    308     auto outputShift = std::vector<int32_t>(outputDepth, .0f);
    309 
    310     for (int i = 0; i < outputDepth; ++i) {
    311         Shape filterChannelShape = filterShape;
    312         filterChannelShape.scale = filterScales[i];
    313         Shape biasChannelShape = biasShape;
    314         biasChannelShape.scale = filterScales[i] * inputShape.scale;
    315         NN_RET_CHECK(GetQuantizedConvolutionMultipler(
    316                 inputShape, filterChannelShape, biasChannelShape, outputShape, &realMultiplier[i]));
    317         int exponent;
    318         NN_RET_CHECK(QuantizeMultiplier(realMultiplier[i], &outputMultiplier[i], &exponent));
    319         outputShift[i] = -exponent;
    320     }
    321 
    322     int32_t output_activation_min = 0, output_activation_max = 0;
    323     CalculateActivationRangeUint8(activation, outputShape, &output_activation_min,
    324                                   &output_activation_max);
    325     const uint8_t* inputBase = inputData;
    326     uint8_t* outPtr = outputData;
    327     for (uint32_t b = 0; b < numBatches; b++) {
    328         for (uint32_t h = 0; h < outputHeight; h++) {
    329             for (uint32_t w = 0; w < outputWidth; w++) {
    330                 const int8_t* filterBase = filterData;
    331 
    332                 for (uint32_t d = 0; d < outputDepth; d++) {
    333                     int32_t wInputOrigin = static_cast<int32_t>(w) * strideWidth - paddingLeft;
    334                     int32_t hInputOrigin = static_cast<int32_t>(h) * strideHeight - paddingTop;
    335                     int32_t sum = 0.0f;
    336 
    337                     for (uint32_t i = 0; i < filterHeight; i++) {
    338                         for (uint32_t j = 0; j < filterWidth; j++) {
    339                             for (uint32_t k = 0; k < filterDepth; k++) {
    340                                 int32_t hInput = hInputOrigin +
    341                                                  dilationHeightFactor * static_cast<int32_t>(i);
    342                                 int32_t wInput = wInputOrigin +
    343                                                  dilationWidthFactor * static_cast<int32_t>(j);
    344                                 uint32_t dInput = k;
    345                                 if (hInput >= 0 && hInput < static_cast<int32_t>(inputHeight) &&
    346                                     wInput >= 0 && wInput < static_cast<int32_t>(inputWidth)) {
    347                                     uint32_t filterIndex =
    348                                             i * filterWidth * filterDepth + j * filterDepth + k;
    349                                     uint32_t inputIndex = hInput * inputWidth * inputDepth +
    350                                                           wInput * inputDepth + dInput;
    351                                     sum += (static_cast<int32_t>(filterBase[filterIndex])) *
    352                                            (static_cast<int32_t>(inputBase[inputIndex]) +
    353                                             inputOffset);
    354                                 }
    355                             }
    356                         }
    357                     }
    358                     sum += biasData[d];
    359                     sum = tflite::MultiplyByQuantizedMultiplier(sum, outputMultiplier[d],
    360                                                                 -outputShift[d]);
    361                     sum += outputOffset;
    362                     sum = std::max(std::min(sum, output_activation_max), output_activation_min);
    363                     outPtr[d] = static_cast<uint8_t>(sum);
    364                     filterBase += filterHeight * filterWidth * filterDepth;
    365                 }
    366                 outPtr += outputDepth;
    367             }
    368         }
    369         inputBase += inputHeight * inputWidth * inputDepth;
    370     }
    371 
    372     return true;
    373 }
    374 
    375 bool convQuant8PerChannel(const uint8_t* inputData, const Shape& inputShape,
    376                           const int8_t* filterData, const Shape& filterShape,
    377                           const float* filterScales, const int32_t* biasData,
    378                           const Shape& biasShape, int32_t paddingLeft, int32_t paddingRight,
    379                           int32_t paddingTop, int32_t paddingBottom, int32_t strideWidth,
    380                           int32_t strideHeight, int32_t dilationWidthFactor,
    381                           int32_t dilationHeightFactor, int32_t activation, bool useNchw,
    382                           uint8_t* outputData, const Shape& outputShape) {
    383     InputWithLayout<uint8_t> input(useNchw);
    384     OutputWithLayout<uint8_t> output(useNchw);
    385     NN_RET_CHECK(input.initialize(inputData, inputShape));
    386     NN_RET_CHECK(output.initialize(outputData, outputShape));
    387     NN_RET_CHECK(convQuant8PerChannelNhwc(
    388             input.getNhwcBuffer(), input.getNhwcShape(), filterData, filterShape, filterScales,
    389             biasData, biasShape, paddingLeft, paddingRight, paddingTop, paddingBottom, strideWidth,
    390             strideHeight, dilationWidthFactor, dilationHeightFactor, activation,
    391             output.getNhwcBuffer(), output.getNhwcShape()));
    392     NN_RET_CHECK(output.commit());
    393     return true;
    394 }
    395 
    396 #undef ANDROID_NN_CONV_PARAMETERS
    397 
    398 }  // namespace
    399 
    400 bool validate(const IOperationValidationContext* context) {
    401     NN_RET_CHECK_EQ(context->getNumOutputs(), kNumOutputs);
    402     auto inputCount = context->getNumInputs();
    403     auto inputType = context->getInputType(kInputTensor);
    404     auto filterType = context->getInputType(kFilterTensor);
    405     std::vector<OperandType> inExpectedTypes;
    406     if (inputType == OperandType::TENSOR_FLOAT32) {
    407         inExpectedTypes = {OperandType::TENSOR_FLOAT32, OperandType::TENSOR_FLOAT32,
    408                            OperandType::TENSOR_FLOAT32, OperandType::INT32,
    409                            OperandType::INT32,          OperandType::INT32,
    410                            OperandType::INT32};
    411     } else if (inputType == OperandType::TENSOR_FLOAT16) {
    412         inExpectedTypes = {OperandType::TENSOR_FLOAT16, OperandType::TENSOR_FLOAT16,
    413                            OperandType::TENSOR_FLOAT16, OperandType::INT32,
    414                            OperandType::INT32,          OperandType::INT32,
    415                            OperandType::INT32};
    416     } else if (inputType == OperandType::TENSOR_QUANT8_ASYMM) {
    417         if (filterType == OperandType::TENSOR_QUANT8_ASYMM ||
    418             filterType == OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL) {
    419             inExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM,
    420                                filterType,
    421                                OperandType::TENSOR_INT32,
    422                                OperandType::INT32,
    423                                OperandType::INT32,
    424                                OperandType::INT32,
    425                                OperandType::INT32};
    426 
    427             if (filterType == OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL) {
    428                 NN_RET_CHECK_EQ(
    429                         context->getInputExtraParams(kFilterTensor).channelQuant().channelDim, 0)
    430                         << "Unsupported filter tensor channel dimension for operation "
    431                         << kOperationName;
    432             }
    433         } else {
    434             NN_RET_CHECK_FAIL() << "Unsupported filter tensor type for operation "
    435                                 << kOperationName;
    436         }
    437     } else {
    438         NN_RET_CHECK_FAIL() << "Unsupported input tensor type for operation " << kOperationName;
    439     }
    440 
    441     // NeuralNetworks.h specifies that ANEURALNETWORKS_CONV_2D's output must
    442     // meet "outputScale > inputScale * filterScale" for the operand type
    443     // ANEURALNETWORKS_TENSOR_QUANT8_ASYMM before API level 29. For other
    444     // operand types (e.g., ANEURALNETWORKS_TENSOR_FLOAT32), this constraint
    445     // does not apply, so by default the constraint is met.
    446     bool meetsQuantizedScaleConstraintBeforeV1_2 = true;
    447     if (inputType == OperandType::TENSOR_QUANT8_ASYMM) {
    448         const float inputScale = context->getInputShape(kInputTensor).scale;
    449         const float filterScale = context->getInputShape(kFilterTensor).scale;
    450         const float outputScale = context->getInputShape(kOutputTensor).scale;
    451         meetsQuantizedScaleConstraintBeforeV1_2 = (outputScale > inputScale * filterScale);
    452     }
    453 
    454     bool withExplicitPadding = false;
    455     bool withLayout = false;
    456     bool withDilation = false;
    457     if (inputCount >= 8) {
    458         if (context->getInputType(7) == OperandType::INT32 && inputCount >= 10) {
    459             std::vector<OperandType> explicitScalarTypes(3, OperandType::INT32);
    460             inExpectedTypes.insert(inExpectedTypes.end(), explicitScalarTypes.begin(),
    461                                    explicitScalarTypes.end());
    462             withExplicitPadding = true;
    463         }
    464         int inputOffset = withExplicitPadding ? 3 : 0;
    465         if (inputCount >= 8 + inputOffset) {
    466             inExpectedTypes.push_back(OperandType::BOOL);
    467             withLayout = true;
    468         }
    469         NN_RET_CHECK_NE(inputCount, 9 + inputOffset)
    470                 << "Provided only one dilation factor value, two values are requred for operation "
    471                 << kOperationName;
    472         if (inputCount == 10 + inputOffset) {
    473             inExpectedTypes.push_back(OperandType::INT32);
    474             inExpectedTypes.push_back(OperandType::INT32);
    475             withDilation = true;
    476         }
    477     }
    478 
    479     if (filterType == OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL || withLayout || withDilation ||
    480         !meetsQuantizedScaleConstraintBeforeV1_2) {
    481         NN_RET_CHECK(validateHalVersion(context, HalVersion::V1_2));
    482     } else {
    483         NN_RET_CHECK(validateHalVersion(context, HalVersion::V1_0));
    484     }
    485     return validateInputTypes(context, inExpectedTypes) &&
    486            validateOutputTypes(context, {inputType});
    487 }
    488 
    489 bool prepare(IOperationExecutionContext* context) {
    490     Shape input = context->getInputShape(kInputTensor);
    491     Shape filter = context->getInputShape(kFilterTensor);
    492     Shape bias = context->getInputShape(kBiasTensor);
    493 
    494     if (filter.type == OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL) {
    495         NN_RET_CHECK(input.type == OperandType::TENSOR_QUANT8_ASYMM);
    496     } else {
    497         NN_RET_CHECK(input.type == filter.type);
    498     }
    499     if (input.type == OperandType::TENSOR_QUANT8_ASYMM) {
    500         NN_RET_CHECK(bias.type == OperandType::TENSOR_INT32);
    501     } else {
    502         NN_RET_CHECK(input.type == bias.type);
    503     }
    504     NN_RET_CHECK_EQ(getNumberOfDimensions(input), 4);
    505     NN_RET_CHECK_EQ(getNumberOfDimensions(filter), 4);
    506     NN_RET_CHECK_EQ(getNumberOfDimensions(bias), 1);
    507 
    508     Conv2dParam param;
    509     NN_RET_CHECK(param.initialize(context));
    510 
    511     uint32_t batches = getSizeOfDimension(input, 0);
    512     uint32_t height = getSizeOfDimension(input, param.useNchw ? 2 : 1);
    513     uint32_t width = getSizeOfDimension(input, param.useNchw ? 3 : 2);
    514     uint32_t channels_in = getSizeOfDimension(input, param.useNchw ? 1 : 3);
    515     uint32_t channels_out = getSizeOfDimension(filter, 0);
    516     uint32_t filterHeight = getSizeOfDimension(filter, 1);
    517     uint32_t filterWidth = getSizeOfDimension(filter, 2);
    518     // Only batches can be zero.
    519     NN_RET_CHECK_EQ(channels_in, getSizeOfDimension(filter, 3));
    520     NN_RET_CHECK_EQ(channels_out, getSizeOfDimension(bias, 0));
    521     NN_RET_CHECK_GT(height, 0);
    522     NN_RET_CHECK_GT(width, 0);
    523     NN_RET_CHECK_GT(channels_in, 0);
    524     NN_RET_CHECK_GT(channels_out, 0);
    525 
    526     int32_t effectiveFilterWidth = (filterWidth - 1) * param.dilation_width_factor + 1;
    527     int32_t effectiveFilterHeight = (filterHeight - 1) * param.dilation_height_factor + 1;
    528     NN_RET_CHECK_GT(effectiveFilterWidth, param.padding_left);
    529     NN_RET_CHECK_GT(effectiveFilterWidth, param.padding_right);
    530     NN_RET_CHECK_GT(effectiveFilterHeight, param.padding_top);
    531     NN_RET_CHECK_GT(effectiveFilterHeight, param.padding_bottom);
    532 
    533     uint32_t outWidth =
    534             computeOutSize(width, filterWidth, param.stride_width, param.dilation_width_factor,
    535                            param.padding_left, param.padding_right);
    536     uint32_t outHeight =
    537             computeOutSize(height, filterHeight, param.stride_height, param.dilation_height_factor,
    538                            param.padding_top, param.padding_bottom);
    539 
    540     Shape output = context->getOutputShape(kOutputTensor);
    541     output.type = input.type;
    542     if (param.useNchw) {
    543         output.dimensions = {batches, channels_out, outHeight, outWidth};
    544     } else {
    545         output.dimensions = {batches, outHeight, outWidth, channels_out};
    546     }
    547     return context->setOutputShape(kOutputTensor, output);
    548 }
    549 
    550 bool execute(IOperationExecutionContext* context) {
    551     // Bypass execution in the case of zero-sized input.
    552     if (getNumberOfElements(context->getOutputShape(kOutputTensor)) == 0) return true;
    553     Conv2dParam param;
    554     NN_RET_CHECK(param.initialize(context));
    555     switch (context->getInputType(kInputTensor)) {
    556         case OperandType::TENSOR_FLOAT32:
    557             return conv(context->getInputBuffer<float>(kInputTensor),
    558                         context->getInputShape(kInputTensor),
    559                         context->getInputBuffer<float>(kFilterTensor),
    560                         context->getInputShape(kFilterTensor),
    561                         context->getInputBuffer<float>(kBiasTensor),
    562                         context->getInputShape(kBiasTensor), param.padding_left,
    563                         param.padding_right, param.padding_top, param.padding_bottom,
    564                         param.stride_width, param.stride_height, param.dilation_width_factor,
    565                         param.dilation_height_factor, param.activation, param.useNchw,
    566                         context->getOutputBuffer<float>(kOutputTensor),
    567                         context->getOutputShape(kOutputTensor));
    568         case OperandType::TENSOR_FLOAT16:
    569             return conv(context->getInputBuffer<_Float16>(kInputTensor),
    570                         context->getInputShape(kInputTensor),
    571                         context->getInputBuffer<_Float16>(kFilterTensor),
    572                         context->getInputShape(kFilterTensor),
    573                         context->getInputBuffer<_Float16>(kBiasTensor),
    574                         context->getInputShape(kBiasTensor), param.padding_left,
    575                         param.padding_right, param.padding_top, param.padding_bottom,
    576                         param.stride_width, param.stride_height, param.dilation_width_factor,
    577                         param.dilation_height_factor, param.activation, param.useNchw,
    578                         context->getOutputBuffer<_Float16>(kOutputTensor),
    579                         context->getOutputShape(kOutputTensor));
    580         case OperandType::TENSOR_QUANT8_ASYMM:
    581             if (context->getInputType(kFilterTensor) ==
    582                 OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL) {
    583                 return convQuant8PerChannel(
    584                         context->getInputBuffer<uint8_t>(kInputTensor),
    585                         context->getInputShape(kInputTensor),
    586                         context->getInputBuffer<int8_t>(kFilterTensor),
    587                         context->getInputShape(kFilterTensor),
    588                         context->getInputExtraParams(kFilterTensor).channelQuant().scales.data(),
    589                         context->getInputBuffer<int32_t>(kBiasTensor),
    590                         context->getInputShape(kBiasTensor), param.padding_left,
    591                         param.padding_right, param.padding_top, param.padding_bottom,
    592                         param.stride_width, param.stride_height, param.dilation_width_factor,
    593                         param.dilation_height_factor, param.activation, param.useNchw,
    594                         context->getOutputBuffer<uint8_t>(kOutputTensor),
    595                         context->getOutputShape(kOutputTensor));
    596             } else if (context->getInputType(kFilterTensor) == OperandType::TENSOR_QUANT8_ASYMM) {
    597                 return conv(context->getInputBuffer<uint8_t>(kInputTensor),
    598                             context->getInputShape(kInputTensor),
    599                             context->getInputBuffer<uint8_t>(kFilterTensor),
    600                             context->getInputShape(kFilterTensor),
    601                             context->getInputBuffer<int32_t>(kBiasTensor),
    602                             context->getInputShape(kBiasTensor), param.padding_left,
    603                             param.padding_right, param.padding_top, param.padding_bottom,
    604                             param.stride_width, param.stride_height, param.dilation_width_factor,
    605                             param.dilation_height_factor, param.activation, param.useNchw,
    606                             context->getOutputBuffer<uint8_t>(kOutputTensor),
    607                             context->getOutputShape(kOutputTensor));
    608             } else {
    609                 NN_RET_CHECK_FAIL() << "Unsupported filter type for operation " << kOperationName;
    610             }
    611         default:
    612             NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << kOperationName;
    613     }
    614 }
    615 
    616 }  // namespace conv_2d
    617 
    618 NN_REGISTER_OPERATION(CONV_2D, conv_2d::kOperationName, conv_2d::validate, conv_2d::prepare,
    619                       conv_2d::execute, .allowZeroSizedInput = true);
    620 
    621 }  // namespace nn
    622 }  // namespace android
    623