1 /* 2 * Copyright (C) 2017 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #include "CpuOperationUtils.h" 18 #include "Operations.h" 19 20 #include "tensorflow/lite/kernels/internal/optimized/depthwiseconv_float.h" 21 #include "tensorflow/lite/kernels/internal/optimized/depthwiseconv_uint8.h" 22 23 #include "Tracing.h" 24 25 namespace android { 26 namespace nn { 27 28 bool depthwiseConvFloat16(const _Float16* inputData, const Shape& inputShape, 29 const _Float16* filterData, const Shape& filterShape, 30 const _Float16* biasData, const Shape& biasShape, int32_t paddingLeft, 31 int32_t paddingRight, int32_t paddingTop, int32_t paddingBottom, 32 int32_t strideWidth, int32_t strideHeight, int32_t dilationWidthFactor, 33 int32_t dilationHeightFactor, int32_t depthMultiplier, int32_t activation, 34 _Float16* outputData, const Shape& outputShape) { 35 NNTRACE_TRANS("depthwiseConvFloat16"); 36 std::vector<float> inputDataFloat32(getNumberOfElements(inputShape)); 37 convertFloat16ToFloat32(inputData, &inputDataFloat32); 38 std::vector<float> filterDataFloat32(getNumberOfElements(filterShape)); 39 convertFloat16ToFloat32(filterData, &filterDataFloat32); 40 std::vector<float> biasDataFloat32(getNumberOfElements(biasShape)); 41 convertFloat16ToFloat32(biasData, &biasDataFloat32); 42 43 std::vector<float> outputDataFloat32(getNumberOfElements(outputShape)); 44 depthwiseConvFloat32(inputDataFloat32.data(), inputShape, filterDataFloat32.data(), filterShape, 45 biasDataFloat32.data(), biasShape, paddingLeft, paddingRight, paddingTop, 46 paddingBottom, strideWidth, strideHeight, dilationWidthFactor, 47 dilationHeightFactor, depthMultiplier, activation, 48 outputDataFloat32.data(), outputShape); 49 50 convertFloat32ToFloat16(outputDataFloat32, outputData); 51 return true; 52 } 53 54 #define ANDROID_NN_DEPTHWISE_CONV_PARAMETERS \ 55 uint32_t height = getSizeOfDimension(inputShape, 1); \ 56 uint32_t width = getSizeOfDimension(inputShape, 2); \ 57 uint32_t filterHeight = getSizeOfDimension(filterShape, 1); \ 58 uint32_t filterWidth = getSizeOfDimension(filterShape, 2); \ 59 uint32_t outHeight = getSizeOfDimension(outputShape, 1); \ 60 uint32_t outWidth = getSizeOfDimension(outputShape, 2); \ 61 \ 62 uint32_t paddingHeight = (uint32_t)paddingTop; \ 63 uint32_t paddingWidth = (uint32_t)paddingLeft; 64 65 bool depthwiseConvFloat32(const float* inputData, const Shape& inputShape, const float* filterData, 66 const Shape& filterShape, const float* biasData, const Shape& biasShape, 67 int32_t paddingLeft, int32_t paddingRight, int32_t paddingTop, 68 int32_t paddingBottom, int32_t strideWidth, int32_t strideHeight, 69 int32_t dilationWidthFactor, int32_t dilationHeightFactor, 70 int32_t depthMultiplier, int32_t activation, float* outputData, 71 const Shape& outputShape) { 72 NNTRACE_TRANS("depthwiseConvFloat32"); 73 74 ANDROID_NN_DEPTHWISE_CONV_PARAMETERS 75 76 float output_activation_min, output_activation_max; 77 CalculateActivationRangeFloat(activation, &output_activation_min, &output_activation_max); 78 79 tflite::DepthwiseParams params{ 80 .padding_values = {static_cast<int16>(paddingWidth), static_cast<int16>(paddingHeight)}, 81 .stride_width = static_cast<int16>(strideWidth), 82 .stride_height = static_cast<int16>(strideHeight), 83 .depth_multiplier = static_cast<int16>(depthMultiplier), 84 .float_activation_min = output_activation_min, 85 .float_activation_max = output_activation_max, 86 .dilation_width_factor = static_cast<int16>(dilationWidthFactor), 87 .dilation_height_factor = static_cast<int16>(dilationHeightFactor), 88 }; 89 NNTRACE_COMP_SWITCH("optimized_ops::DepthwiseConv"); 90 tflite::optimized_ops::DepthwiseConv(params, convertShapeToTflshape(inputShape), inputData, 91 convertShapeToTflshape(filterShape), filterData, 92 convertShapeToTflshape(biasShape), biasData, 93 convertShapeToTflshape(outputShape), outputData); 94 95 return true; 96 } 97 98 bool depthwiseConvQuant8(const uint8_t* inputData, const Shape& inputShape, 99 const uint8_t* filterData, const Shape& filterShape, 100 const int32_t* biasData, const Shape& biasShape, int32_t paddingLeft, 101 int32_t paddingRight, int32_t paddingTop, int32_t paddingBottom, 102 int32_t strideWidth, int32_t strideHeight, int32_t dilationWidthFactor, 103 int32_t dilationHeightFactor, int32_t depthMultiplier, int32_t activation, 104 uint8_t* outputData, const Shape& outputShape) { 105 NNTRACE_TRANS("depthwiseConvQuant8"); 106 107 ANDROID_NN_DEPTHWISE_CONV_PARAMETERS 108 109 double real_multiplier = 0.0; 110 int32_t output_multiplier = 0; 111 int32_t output_shift = 0; 112 int32_t output_activation_min = 0; 113 int32_t output_activation_max = 0; 114 115 NN_RET_CHECK(GetQuantizedConvolutionMultipler(inputShape, filterShape, biasShape, outputShape, 116 &real_multiplier)); 117 int exponent; 118 NN_RET_CHECK(QuantizeMultiplier(real_multiplier, &output_multiplier, &exponent)); 119 output_shift = -exponent; 120 CalculateActivationRangeUint8(activation, outputShape, &output_activation_min, 121 &output_activation_max); 122 123 tflite::DepthwiseParams params{ 124 .padding_values = {static_cast<int16>(paddingWidth), static_cast<int16>(paddingHeight)}, 125 .stride_width = static_cast<int16>(strideWidth), 126 .stride_height = static_cast<int16>(strideHeight), 127 .depth_multiplier = static_cast<int16>(depthMultiplier), 128 .quantized_activation_min = output_activation_min, 129 .quantized_activation_max = output_activation_max, 130 .dilation_width_factor = static_cast<int16>(dilationWidthFactor), 131 .dilation_height_factor = static_cast<int16>(dilationHeightFactor), 132 .input_offset = -inputShape.offset, 133 .weights_offset = -filterShape.offset, 134 .output_offset = outputShape.offset, 135 .output_shift = -output_shift, 136 .output_multiplier = output_multiplier, 137 }; 138 NNTRACE_COMP_SWITCH("optimized_ops::DepthwiseConv"); 139 tflite::optimized_ops::DepthwiseConv(params, convertShapeToTflshape(inputShape), inputData, 140 convertShapeToTflshape(filterShape), filterData, 141 convertShapeToTflshape(biasShape), biasData, 142 convertShapeToTflshape(outputShape), outputData); 143 return true; 144 } 145 146 bool depthwiseConvQuant8PerChannel(const uint8_t* inputData, const Shape& inputShape, 147 const int8_t* filterData, const Shape& filterShape, 148 const float* filterScales, const int32_t* biasData, 149 const Shape& biasShape, int32_t paddingLeft, 150 int32_t paddingRight, int32_t paddingTop, int32_t paddingBottom, 151 int32_t strideWidth, int32_t strideHeight, 152 int32_t dilationWidthFactor, int32_t dilationHeightFactor, 153 154 int32_t depthMultiplier, int32_t activation, uint8_t* outputData, 155 const Shape& outputShape) { 156 NNTRACE_TRANS("depthwiseConvQuant8"); 157 158 uint32_t paddingHeight = (uint32_t)paddingTop; 159 uint32_t paddingWidth = (uint32_t)paddingLeft; 160 161 uint32_t numBatches = getSizeOfDimension(inputShape, 0); 162 uint32_t inputHeight = getSizeOfDimension(inputShape, 1); 163 uint32_t inputWidth = getSizeOfDimension(inputShape, 2); 164 uint32_t inputDepth = getSizeOfDimension(inputShape, 3); 165 uint32_t filterHeight = getSizeOfDimension(filterShape, 1); 166 uint32_t filterWidth = getSizeOfDimension(filterShape, 2); 167 uint32_t filterDepth = getSizeOfDimension(filterShape, 3); 168 uint32_t outputHeight = getSizeOfDimension(outputShape, 1); 169 uint32_t outputWidth = getSizeOfDimension(outputShape, 2); 170 uint32_t outputDepth = getSizeOfDimension(outputShape, 3); 171 172 int32_t inputOffset = -inputShape.offset; 173 int32_t outputOffset = outputShape.offset; 174 175 auto realMultiplier = std::vector<double>(outputDepth, .0f); 176 auto outputMultiplier = std::vector<int32_t>(outputDepth, 0); 177 auto outputShift = std::vector<int32_t>(outputDepth, .0f); 178 179 for (int i = 0; i < outputDepth; ++i) { 180 Shape filterChannelShape = filterShape; 181 filterChannelShape.scale = filterScales[i]; 182 Shape biasChannelShape = biasShape; 183 biasChannelShape.scale = filterScales[i] * inputShape.scale; 184 NN_RET_CHECK(GetQuantizedConvolutionMultipler( 185 inputShape, filterChannelShape, biasChannelShape, outputShape, &realMultiplier[i])); 186 int exponent; 187 NN_RET_CHECK(QuantizeMultiplier(realMultiplier[i], &outputMultiplier[i], &exponent)); 188 outputShift[i] = -exponent; 189 } 190 191 int32_t output_activation_min = 0, output_activation_max = 0; 192 CalculateActivationRangeUint8(activation, outputShape, &output_activation_min, 193 &output_activation_max); 194 195 const uint8_t* inputBase = inputData; 196 uint8_t* outPtr = outputData; 197 for (uint32_t b = 0; b < numBatches; b++) { 198 for (uint32_t h = 0; h < outputHeight; h++) { 199 for (uint32_t w = 0; w < outputWidth; w++) { 200 for (uint32_t ic = 0; ic < inputDepth; ic++) { 201 for (uint32_t m = 0; m < depthMultiplier; m++) { 202 int32_t wInputOrigin = static_cast<int32_t>(w) * strideWidth - paddingLeft; 203 int32_t hInputOrigin = static_cast<int32_t>(h) * strideHeight - paddingTop; 204 const int oc = m + ic * depthMultiplier; 205 206 int32_t sum = 0.0f; 207 for (uint32_t i = 0; i < filterHeight; i++) { 208 for (uint32_t j = 0; j < filterWidth; j++) { 209 int32_t hInput = hInputOrigin + 210 dilationHeightFactor * static_cast<int32_t>(i); 211 int32_t wInput = wInputOrigin + 212 dilationWidthFactor * static_cast<int32_t>(j); 213 214 if (hInput >= 0 && hInput < static_cast<int32_t>(inputHeight) && 215 wInput >= 0 && wInput < static_cast<int32_t>(inputWidth)) { 216 uint32_t filterIndex = 217 i * filterWidth * filterDepth + j * filterDepth + oc; 218 uint32_t inputIndex = hInput * inputWidth * inputDepth + 219 wInput * inputDepth + ic; 220 sum += (static_cast<int32_t>(filterData[filterIndex])) * 221 (static_cast<int32_t>(inputBase[inputIndex]) + 222 inputOffset); 223 } 224 } 225 } 226 227 sum += biasData[oc]; 228 sum = tflite::MultiplyByQuantizedMultiplier(sum, outputMultiplier[oc], 229 -outputShift[oc]); 230 sum += outputOffset; 231 sum = std::max(std::min(sum, output_activation_max), output_activation_min); 232 outPtr[m] = static_cast<uint8_t>(sum); 233 } 234 outPtr += depthMultiplier; 235 } 236 } 237 } 238 inputBase += inputHeight * inputWidth * inputDepth; 239 } 240 241 return true; 242 } 243 244 #undef ANDROID_NN_DEPTHWISE_CONV_PARAMETERS 245 } // namespace nn 246 } // namespace android 247