Home | History | Annotate | Download | only in operations
      1 /*
      2  * Copyright (C) 2018 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #define LOG_TAG "Operations"
     18 
     19 #include "HalInterfaces.h"
     20 #include "OperationResolver.h"
     21 #include "OperationsUtils.h"
     22 #include "Tracing.h"
     23 
     24 namespace android {
     25 namespace nn {
     26 namespace gather {
     27 
     28 constexpr char kOperationName[] = "GATHER";
     29 
     30 constexpr uint32_t kNumInputs = 3;
     31 constexpr uint32_t kInputTensor = 0;
     32 constexpr uint32_t kInputAxis = 1;
     33 constexpr uint32_t kInputIndices = 2;
     34 
     35 constexpr uint32_t kNumOutputs = 1;
     36 constexpr uint32_t kOutputTensor = 0;
     37 
     38 namespace {
     39 
     40 template <typename T>
     41 inline bool eval(const T* inputData, const Shape& inputShape, int32_t axis,
     42                  const int32_t* indicesData, const Shape& indicesShape, T* outputData) {
     43     const auto outerSize = getNumberOfElements(inputShape, 0, axis);
     44     const auto axisSize = getSizeOfDimension(inputShape, axis);
     45     const auto innerSize =
     46             getNumberOfElements(inputShape, axis + 1, getNumberOfDimensions(inputShape));
     47     const auto indicesCount = getNumberOfElements(indicesShape);
     48     for (uint32_t outer = 0; outer < outerSize; ++outer) {
     49         for (uint32_t outputIndex = 0; outputIndex < indicesCount; ++outputIndex) {
     50             const auto inputIndex = static_cast<uint32_t>(indicesData[outputIndex]);
     51             NN_RET_CHECK_LE(0u, inputIndex);
     52             NN_RET_CHECK_LT(inputIndex, axisSize);
     53             std::memcpy(outputData + (outer * indicesCount + outputIndex) * innerSize,
     54                         inputData + (outer * axisSize + inputIndex) * innerSize,
     55                         sizeof(T) * innerSize);
     56         }
     57     }
     58     return true;
     59 }
     60 
     61 }  // namespace
     62 
     63 bool validate(const IOperationValidationContext* context) {
     64     NN_RET_CHECK_EQ(context->getNumInputs(), kNumInputs);
     65     NN_RET_CHECK_EQ(context->getNumOutputs(), kNumOutputs);
     66     OperandType inputType = context->getInputType(kInputTensor);
     67     NN_RET_CHECK(
     68             inputType == OperandType::TENSOR_FLOAT16 || inputType == OperandType::TENSOR_FLOAT32 ||
     69             inputType == OperandType::TENSOR_INT32 || inputType == OperandType::TENSOR_QUANT8_ASYMM)
     70             << "Unsupported tensor type for operation " << kOperationName;
     71     NN_RET_CHECK(validateInputTypes(context,
     72                                     {inputType, OperandType::INT32, OperandType::TENSOR_INT32}));
     73     NN_RET_CHECK(validateOutputTypes(context, {inputType}));
     74     return validateHalVersion(context, HalVersion::V1_2);
     75 }
     76 
     77 bool prepare(IOperationExecutionContext* context) {
     78     Shape input = context->getInputShape(kInputTensor);
     79     int32_t axis = context->getInputValue<int32_t>(kInputAxis);
     80     NN_RET_CHECK(handleNegativeAxis(input, &axis));
     81     Shape indices = context->getInputShape(kInputIndices);
     82     Shape output = context->getOutputShape(kOutputTensor);
     83 
     84     output.dimensions.clear();
     85     output.dimensions.reserve(getNumberOfDimensions(input) + getNumberOfDimensions(indices) - 1);
     86     output.dimensions.insert(output.dimensions.end(), input.dimensions.begin(),
     87                              input.dimensions.begin() + axis);
     88     output.dimensions.insert(output.dimensions.end(), indices.dimensions.begin(),
     89                              indices.dimensions.end());
     90     output.dimensions.insert(output.dimensions.end(), input.dimensions.begin() + axis + 1,
     91                              input.dimensions.end());
     92 
     93     return context->setOutputShape(kOutputTensor, output);
     94 }
     95 
     96 bool execute(IOperationExecutionContext* context) {
     97     int32_t axis = context->getInputValue<int32_t>(kInputAxis);
     98     NN_RET_CHECK(handleNegativeAxis(context->getInputShape(kInputTensor), &axis));
     99     switch (context->getInputType(kInputTensor)) {
    100         case OperandType::TENSOR_FLOAT16:
    101             return eval(context->getInputBuffer<_Float16>(kInputTensor),
    102                         context->getInputShape(kInputTensor), axis,
    103                         context->getInputBuffer<int32_t>(kInputIndices),
    104                         context->getInputShape(kInputIndices),
    105                         context->getOutputBuffer<_Float16>(kOutputTensor));
    106         case OperandType::TENSOR_FLOAT32:
    107             return eval(context->getInputBuffer<float>(kInputTensor),
    108                         context->getInputShape(kInputTensor), axis,
    109                         context->getInputBuffer<int32_t>(kInputIndices),
    110                         context->getInputShape(kInputIndices),
    111                         context->getOutputBuffer<float>(kOutputTensor));
    112         case OperandType::TENSOR_INT32:
    113             return eval(context->getInputBuffer<int32_t>(kInputTensor),
    114                         context->getInputShape(kInputTensor), axis,
    115                         context->getInputBuffer<int32_t>(kInputIndices),
    116                         context->getInputShape(kInputIndices),
    117                         context->getOutputBuffer<int32_t>(kOutputTensor));
    118         case OperandType::TENSOR_QUANT8_ASYMM:
    119             return eval(context->getInputBuffer<uint8_t>(kInputTensor),
    120                         context->getInputShape(kInputTensor), axis,
    121                         context->getInputBuffer<int32_t>(kInputIndices),
    122                         context->getInputShape(kInputIndices),
    123                         context->getOutputBuffer<uint8_t>(kOutputTensor));
    124         default:
    125             NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << kOperationName;
    126     }
    127 }
    128 
    129 }  // namespace gather
    130 
    131 NN_REGISTER_OPERATION(GATHER, gather::kOperationName, gather::validate, gather::prepare,
    132                       gather::execute);
    133 
    134 }  // namespace nn
    135 }  // namespace android
    136