1 /* 2 * Copyright (C) 2018 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #include "CpuOperationUtils.h" 18 #include "Operations.h" 19 20 #include <cfloat> 21 #include <cmath> 22 23 #include "Tracing.h" 24 #include "tensorflow/lite/kernels/internal/common.h" 25 26 namespace android { 27 namespace nn { 28 29 #define ANDROID_NN_GROUPED_CONV_PARAMETERS \ 30 uint32_t numBatches = getSizeOfDimension(inputShape, 0); \ 31 uint32_t inputHeight = getSizeOfDimension(inputShape, 1); \ 32 uint32_t inputWidth = getSizeOfDimension(inputShape, 2); \ 33 uint32_t inputDepth = getSizeOfDimension(inputShape, 3); \ 34 uint32_t filterHeight = getSizeOfDimension(filterShape, 1); \ 35 uint32_t filterWidth = getSizeOfDimension(filterShape, 2); \ 36 uint32_t filterDepth = getSizeOfDimension(filterShape, 3); \ 37 uint32_t outputHeight = getSizeOfDimension(outputShape, 1); \ 38 uint32_t outputWidth = getSizeOfDimension(outputShape, 2); \ 39 uint32_t outputDepth = getSizeOfDimension(outputShape, 3); \ 40 uint32_t outputGroupDepth = outputDepth / numGroups; 41 42 bool groupedConvFloat32(const float* inputData, const Shape& inputShape, const float* filterData, 43 const Shape& filterShape, const float* biasData, const Shape& biasShape, 44 int32_t padding_left, int32_t padding_right, int32_t padding_top, 45 int32_t padding_bottom, int32_t stride_width, int32_t stride_height, 46 int32_t numGroups, int32_t activation, float* outputData, 47 const Shape& outputShape) { 48 NNTRACE_TRANS("groupConvFloat32"); 49 ANDROID_NN_GROUPED_CONV_PARAMETERS 50 51 float output_activation_min = 0.0f, output_activation_max = 0.0f; 52 CalculateActivationRangeFloat(activation, &output_activation_min, &output_activation_max); 53 54 const float* inputBase = inputData; 55 float* outPtr = outputData; 56 for (uint32_t b = 0; b < numBatches; b++) { 57 for (uint32_t h = 0; h < outputHeight; h++) { 58 for (uint32_t w = 0; w < outputWidth; w++) { 59 const float* filterBase = filterData; 60 for (uint32_t g = 0; g < numGroups; g++) { 61 for (uint32_t d = 0; d < outputGroupDepth; d++) { 62 int32_t wInputOrigin = 63 static_cast<int32_t>(w) * stride_width - padding_left; 64 int32_t hInputOrigin = 65 static_cast<int32_t>(h) * stride_height - padding_top; 66 float sum = 0.0f; 67 for (uint32_t i = 0; i < filterHeight; i++) { 68 for (uint32_t j = 0; j < filterWidth; j++) { 69 for (uint32_t k = 0; k < filterDepth; k++) { 70 int32_t hInput = hInputOrigin + static_cast<int32_t>(i); 71 int32_t wInput = wInputOrigin + static_cast<int32_t>(j); 72 uint32_t dInput = filterDepth * g + k; 73 if (hInput >= 0 && hInput < static_cast<int32_t>(inputHeight) && 74 wInput >= 0 && wInput < static_cast<int32_t>(inputWidth)) { 75 uint32_t filterIndex = 76 i * filterWidth * filterDepth + j * filterDepth + k; 77 uint32_t inputIndex = hInput * inputWidth * inputDepth + 78 wInput * inputDepth + dInput; 79 sum += filterBase[filterIndex] * inputBase[inputIndex]; 80 } 81 } 82 } 83 } 84 sum += biasData[g * outputGroupDepth + d]; 85 sum = std::max(std::min(sum, output_activation_max), output_activation_min); 86 outPtr[d] = sum; 87 filterBase += filterHeight * filterWidth * filterDepth; 88 } 89 outPtr += outputGroupDepth; 90 } 91 } 92 } 93 inputBase += inputHeight * inputWidth * inputDepth; 94 } 95 96 return true; 97 } 98 99 bool groupedConvQuant8(const uint8_t* inputData, const Shape& inputShape, const uint8_t* filterData, 100 const Shape& filterShape, const int32_t* biasData, const Shape& biasShape, 101 int32_t padding_left, int32_t padding_right, int32_t padding_top, 102 int32_t padding_bottom, int32_t stride_width, int32_t stride_height, 103 int32_t numGroups, int32_t activation, uint8_t* outputData, 104 const Shape& outputShape) { 105 NNTRACE_TRANS("groupConvQuant8"); 106 ANDROID_NN_GROUPED_CONV_PARAMETERS 107 108 int32_t inputOffset = -inputShape.offset; 109 int32_t filterOffset = -filterShape.offset; 110 int32_t outputOffset = outputShape.offset; 111 112 double realMultiplier = 0.0; 113 int32_t outputMultiplier = 0; 114 int32_t outputShift = 0; 115 NN_RET_CHECK(GetQuantizedConvolutionMultipler(inputShape, filterShape, biasShape, outputShape, 116 &realMultiplier)); 117 int exponent; 118 NN_RET_CHECK(QuantizeMultiplier(realMultiplier, &outputMultiplier, &exponent)); 119 outputShift = -exponent; 120 121 int32_t output_activation_min = 0, output_activation_max = 0; 122 CalculateActivationRangeUint8(activation, outputShape, &output_activation_min, 123 &output_activation_max); 124 125 const uint8_t* inputBase = inputData; 126 uint8_t* outPtr = outputData; 127 for (uint32_t b = 0; b < numBatches; b++) { 128 for (uint32_t h = 0; h < outputHeight; h++) { 129 for (uint32_t w = 0; w < outputWidth; w++) { 130 const uint8_t* filterBase = filterData; 131 for (uint32_t g = 0; g < numGroups; g++) { 132 for (uint32_t d = 0; d < outputGroupDepth; d++) { 133 int32_t wInputOrigin = 134 static_cast<int32_t>(w) * stride_width - padding_left; 135 int32_t hInputOrigin = 136 static_cast<int32_t>(h) * stride_height - padding_top; 137 int32_t sum = 0.0f; 138 for (uint32_t i = 0; i < filterHeight; i++) { 139 for (uint32_t j = 0; j < filterWidth; j++) { 140 for (uint32_t k = 0; k < filterDepth; k++) { 141 int32_t hInput = hInputOrigin + static_cast<int32_t>(i); 142 int32_t wInput = wInputOrigin + static_cast<int32_t>(j); 143 uint32_t dInput = filterDepth * g + k; 144 if (hInput >= 0 && hInput < static_cast<int32_t>(inputHeight) && 145 wInput >= 0 && wInput < static_cast<int32_t>(inputWidth)) { 146 uint32_t filterIndex = 147 i * filterWidth * filterDepth + j * filterDepth + k; 148 uint32_t inputIndex = hInput * inputWidth * inputDepth + 149 wInput * inputDepth + dInput; 150 sum += (static_cast<int32_t>(filterBase[filterIndex]) + 151 filterOffset) * 152 (static_cast<int32_t>(inputBase[inputIndex]) + 153 inputOffset); 154 } 155 } 156 } 157 } 158 sum += biasData[g * outputGroupDepth + d]; 159 sum = tflite::MultiplyByQuantizedMultiplier(sum, outputMultiplier, 160 -outputShift); 161 sum += outputOffset; 162 sum = std::max(std::min(sum, output_activation_max), output_activation_min); 163 outPtr[d] = static_cast<uint8_t>(sum); 164 filterBase += filterHeight * filterWidth * filterDepth; 165 } 166 outPtr += outputGroupDepth; 167 } 168 } 169 } 170 inputBase += inputHeight * inputWidth * inputDepth; 171 } 172 173 return true; 174 } 175 176 bool groupedConvQuant8PerChannel(const uint8_t* inputData, const Shape& inputShape, 177 const int8_t* filterData, const Shape& filterShape, 178 const float* filterScales, const int32_t* biasData, 179 const Shape& biasShape, int32_t padding_left, 180 int32_t padding_right, int32_t padding_top, int32_t padding_bottom, 181 int32_t stride_width, int32_t stride_height, int32_t numGroups, 182 int32_t activation, uint8_t* outputData, 183 const Shape& outputShape) { 184 NNTRACE_TRANS("groupConvQuant8"); 185 ANDROID_NN_GROUPED_CONV_PARAMETERS 186 187 int32_t inputOffset = -inputShape.offset; 188 int32_t outputOffset = outputShape.offset; 189 190 auto realMultiplier = std::vector<double>(outputDepth, .0f); 191 auto outputMultiplier = std::vector<int32_t>(outputDepth, 0); 192 auto outputShift = std::vector<int32_t>(outputDepth, 0); 193 194 for (int i = 0; i < outputDepth; ++i) { 195 Shape filterChannelShape = filterShape; 196 filterChannelShape.scale = filterScales[i]; 197 Shape biasChannelShape = biasShape; 198 biasChannelShape.scale = filterScales[i] * inputShape.scale; 199 200 NN_RET_CHECK(GetQuantizedConvolutionMultipler( 201 inputShape, filterChannelShape, biasChannelShape, outputShape, &realMultiplier[i])); 202 int exponent; 203 NN_RET_CHECK(QuantizeMultiplier(realMultiplier[i], &outputMultiplier[i], &exponent)); 204 outputShift[i] = -exponent; 205 } 206 207 int32_t output_activation_min = 0, output_activation_max = 0; 208 CalculateActivationRangeUint8(activation, outputShape, &output_activation_min, 209 &output_activation_max); 210 211 const uint8_t* inputBase = inputData; 212 uint8_t* outPtr = outputData; 213 for (uint32_t b = 0; b < numBatches; b++) { 214 for (uint32_t h = 0; h < outputHeight; h++) { 215 for (uint32_t w = 0; w < outputWidth; w++) { 216 const int8_t* filterBase = filterData; 217 for (uint32_t g = 0; g < numGroups; g++) { 218 for (uint32_t d = 0; d < outputGroupDepth; d++) { 219 int32_t wInputOrigin = 220 static_cast<int32_t>(w) * stride_width - padding_left; 221 int32_t hInputOrigin = 222 static_cast<int32_t>(h) * stride_height - padding_top; 223 int32_t sum = 0.0f; 224 for (uint32_t i = 0; i < filterHeight; i++) { 225 for (uint32_t j = 0; j < filterWidth; j++) { 226 for (uint32_t k = 0; k < filterDepth; k++) { 227 int32_t hInput = hInputOrigin + static_cast<int32_t>(i); 228 int32_t wInput = wInputOrigin + static_cast<int32_t>(j); 229 uint32_t dInput = filterDepth * g + k; 230 if (hInput >= 0 && hInput < static_cast<int32_t>(inputHeight) && 231 wInput >= 0 && wInput < static_cast<int32_t>(inputWidth)) { 232 uint32_t filterIndex = 233 i * filterWidth * filterDepth + j * filterDepth + k; 234 uint32_t inputIndex = hInput * inputWidth * inputDepth + 235 wInput * inputDepth + dInput; 236 sum += (static_cast<int32_t>(filterBase[filterIndex])) * 237 (static_cast<int32_t>(inputBase[inputIndex]) + 238 inputOffset); 239 } 240 } 241 } 242 } 243 int channelIndex = g * outputGroupDepth + d; 244 sum += biasData[channelIndex]; 245 sum = tflite::MultiplyByQuantizedMultiplier( 246 sum, outputMultiplier[channelIndex], -outputShift[channelIndex]); 247 sum += outputOffset; 248 sum = std::max(std::min(sum, output_activation_max), output_activation_min); 249 outPtr[d] = static_cast<uint8_t>(sum); 250 filterBase += filterHeight * filterWidth * filterDepth; 251 } 252 outPtr += outputGroupDepth; 253 } 254 } 255 } 256 inputBase += inputHeight * inputWidth * inputDepth; 257 } 258 259 return true; 260 } 261 262 bool groupedConvFloat16(const _Float16* inputData, const Shape& inputShape, 263 const _Float16* filterData, const Shape& filterShape, 264 const _Float16* biasData, const Shape& biasShape, int32_t padding_left, 265 int32_t padding_right, int32_t padding_top, int32_t padding_bottom, 266 int32_t stride_width, int32_t stride_height, int32_t numGroups, 267 int32_t activation, _Float16* outputData, const Shape& outputShape) { 268 NNTRACE_TRANS("groupConvFloat16"); 269 270 std::vector<float> inputData_float32(getNumberOfElements(inputShape)); 271 std::vector<float> filterData_float32(getNumberOfElements(filterShape)); 272 std::vector<float> biasData_float32(getNumberOfElements(biasShape)); 273 std::vector<float> outputData_float32(getNumberOfElements(outputShape)); 274 275 convertFloat16ToFloat32(inputData, &inputData_float32); 276 convertFloat16ToFloat32(filterData, &filterData_float32); 277 convertFloat16ToFloat32(biasData, &biasData_float32); 278 279 groupedConvFloat32(inputData_float32.data(), inputShape, filterData_float32.data(), filterShape, 280 biasData_float32.data(), biasShape, padding_left, padding_right, padding_top, 281 padding_bottom, stride_width, stride_height, numGroups, activation, 282 outputData_float32.data(), outputShape); 283 convertFloat32ToFloat16(outputData_float32, outputData); 284 285 return true; 286 } 287 288 #undef ANDROID_NN_GROUPED_CONV_PARAMETERS 289 } // namespace nn 290 } // namespace android 291