Home | History | Annotate | Download | only in operations
      1 /*
      2  * Copyright (C) 2017 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "LSHProjection.h"
     18 
     19 #include "CpuExecutor.h"
     20 #include "Tracing.h"
     21 #include "Utils.h"
     22 
     23 #include "utils/hash/farmhash.h"
     24 
     25 namespace android {
     26 namespace nn {
     27 
     28 LSHProjection::LSHProjection(const Operation& operation,
     29                              std::vector<RunTimeOperandInfo>& operands) {
     30     input_ = GetInput(operation, operands, kInputTensor);
     31     weight_ = GetInput(operation, operands, kWeightTensor);
     32     hash_ = GetInput(operation, operands, kHashTensor);
     33 
     34     type_ = static_cast<LSHProjectionType>(
     35             getScalarData<int32_t>(*GetInput(operation, operands, kTypeParam)));
     36 
     37     output_ = GetOutput(operation, operands, kOutputTensor);
     38 }
     39 
     40 bool LSHProjection::Prepare(const Operation& operation, std::vector<RunTimeOperandInfo>& operands,
     41                             Shape* outputShape) {
     42     const int num_inputs = NumInputsWithValues(operation, operands);
     43     NN_CHECK(num_inputs == 3 || num_inputs == 4);
     44     NN_CHECK_EQ(NumOutputs(operation), 1);
     45 
     46     const RunTimeOperandInfo* hash = GetInput(operation, operands, kHashTensor);
     47     NN_CHECK_EQ(NumDimensions(hash), 2);
     48     // Support up to 32 bits.
     49     NN_CHECK(SizeOfDimension(hash, 1) <= 32);
     50 
     51     const RunTimeOperandInfo* input = GetInput(operation, operands, kInputTensor);
     52     NN_CHECK(NumDimensions(input) >= 1);
     53 
     54     auto type = static_cast<LSHProjectionType>(
     55             getScalarData<int32_t>(operands[operation.inputs[kTypeParam]]));
     56     switch (type) {
     57         case LSHProjectionType_SPARSE:
     58         case LSHProjectionType_SPARSE_DEPRECATED:
     59             NN_CHECK(NumInputsWithValues(operation, operands) == 3);
     60             outputShape->dimensions = {SizeOfDimension(hash, 0)};
     61             break;
     62         case LSHProjectionType_DENSE: {
     63             RunTimeOperandInfo* weight = GetInput(operation, operands, kWeightTensor);
     64             NN_CHECK_EQ(NumInputsWithValues(operation, operands), 4);
     65             NN_CHECK_EQ(NumDimensions(weight), 1);
     66             NN_CHECK_EQ(SizeOfDimension(weight, 0), SizeOfDimension(input, 0));
     67             outputShape->dimensions = {SizeOfDimension(hash, 0) * SizeOfDimension(hash, 1)};
     68             break;
     69         }
     70         default:
     71             return false;
     72     }
     73 
     74     outputShape->type = OperandType::TENSOR_INT32;
     75     outputShape->offset = 0;
     76     outputShape->scale = 0.f;
     77 
     78     return true;
     79 }
     80 
     81 // Compute sign bit of dot product of hash(seed, input) and weight.
     82 // NOTE: use float as seed, and convert it to double as a temporary solution
     83 //       to match the trained model. This is going to be changed once the new
     84 //       model is trained in an optimized method.
     85 //
     86 template <typename T>
     87 int runningSignBit(const RunTimeOperandInfo* input, const RunTimeOperandInfo* weight, float seed) {
     88     double score = 0.0;
     89     int input_item_bytes = nonExtensionOperandSizeOfData(input->type, input->dimensions) /
     90                            SizeOfDimension(input, 0);
     91     char* input_ptr = (char*)(input->buffer);
     92 
     93     const size_t seed_size = sizeof(seed);
     94     const size_t key_bytes = seed_size + input_item_bytes;
     95     std::unique_ptr<char[]> key(new char[key_bytes]);
     96 
     97     for (uint32_t i = 0; i < SizeOfDimension(input, 0); ++i) {
     98         // Create running hash id and value for current dimension.
     99         memcpy(key.get(), &seed, seed_size);
    100         memcpy(key.get() + seed_size, input_ptr, input_item_bytes);
    101 
    102         int64_t hash_signature = farmhash::Fingerprint64(key.get(), key_bytes);
    103         double running_value = static_cast<double>(hash_signature);
    104         input_ptr += input_item_bytes;
    105         if (weight->lifetime == OperandLifeTime::NO_VALUE) {
    106             score += running_value;
    107         } else {
    108             score += static_cast<double>(reinterpret_cast<T*>(weight->buffer)[i]) * running_value;
    109         }
    110     }
    111 
    112     return (score > 0) ? 1 : 0;
    113 }
    114 
    115 template <typename T>
    116 void SparseLshProjection(LSHProjectionType type, const RunTimeOperandInfo* hash,
    117                          const RunTimeOperandInfo* input, const RunTimeOperandInfo* weight,
    118                          int32_t* out_buf) {
    119     int num_hash = SizeOfDimension(hash, 0);
    120     int num_bits = SizeOfDimension(hash, 1);
    121     for (int i = 0; i < num_hash; i++) {
    122         int32_t hash_signature = 0;
    123         for (int j = 0; j < num_bits; j++) {
    124             T seed = reinterpret_cast<T*>(hash->buffer)[i * num_bits + j];
    125             int bit = runningSignBit<T>(input, weight, static_cast<float>(seed));
    126             hash_signature = (hash_signature << 1) | bit;
    127         }
    128         if (type == LSHProjectionType_SPARSE_DEPRECATED) {
    129             *out_buf++ = hash_signature;
    130         } else {
    131             *out_buf++ = hash_signature + i * (1 << num_bits);
    132         }
    133     }
    134 }
    135 
    136 template <typename T>
    137 void DenseLshProjection(const RunTimeOperandInfo* hash, const RunTimeOperandInfo* input,
    138                         const RunTimeOperandInfo* weight, int32_t* out_buf) {
    139     int num_hash = SizeOfDimension(hash, 0);
    140     int num_bits = SizeOfDimension(hash, 1);
    141     for (int i = 0; i < num_hash; i++) {
    142         for (int j = 0; j < num_bits; j++) {
    143             T seed = reinterpret_cast<T*>(hash->buffer)[i * num_bits + j];
    144             int bit = runningSignBit<T>(input, weight, static_cast<float>(seed));
    145             *out_buf++ = bit;
    146         }
    147     }
    148 }
    149 
    150 template <typename T>
    151 bool LSHProjection::Eval() {
    152     NNTRACE_COMP("LSHProjection::Eval");
    153 
    154     int32_t* out_buf = reinterpret_cast<int32_t*>(output_->buffer);
    155 
    156     switch (type_) {
    157         case LSHProjectionType_DENSE:
    158             DenseLshProjection<T>(hash_, input_, weight_, out_buf);
    159             break;
    160         case LSHProjectionType_SPARSE:
    161         case LSHProjectionType_SPARSE_DEPRECATED:
    162             SparseLshProjection<T>(type_, hash_, input_, weight_, out_buf);
    163             break;
    164         default:
    165             return false;
    166     }
    167     return true;
    168 }
    169 
    170 template bool LSHProjection::Eval<float>();
    171 template bool LSHProjection::Eval<_Float16>();
    172 
    173 template int runningSignBit<float>(const RunTimeOperandInfo* input,
    174                                    const RunTimeOperandInfo* weight, float seed);
    175 template int runningSignBit<_Float16>(const RunTimeOperandInfo* input,
    176                                       const RunTimeOperandInfo* weight, float seed);
    177 
    178 template void SparseLshProjection<float>(LSHProjectionType type, const RunTimeOperandInfo* hash,
    179                                          const RunTimeOperandInfo* input,
    180                                          const RunTimeOperandInfo* weight, int32_t* outBuffer);
    181 template void SparseLshProjection<_Float16>(LSHProjectionType type, const RunTimeOperandInfo* hash,
    182                                             const RunTimeOperandInfo* input,
    183                                             const RunTimeOperandInfo* weight, int32_t* outBuffer);
    184 
    185 template void DenseLshProjection<float>(const RunTimeOperandInfo* hash,
    186                                         const RunTimeOperandInfo* input,
    187                                         const RunTimeOperandInfo* weight, int32_t* outBuffer);
    188 template void DenseLshProjection<_Float16>(const RunTimeOperandInfo* hash,
    189                                            const RunTimeOperandInfo* input,
    190                                            const RunTimeOperandInfo* weight, int32_t* outBuffer);
    191 
    192 }  // namespace nn
    193 }  // namespace android
    194