1 /* 2 * Copyright (C) 2018 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #define LOG_TAG "Operations" 18 19 #include "HalInterfaces.h" 20 #include "OperationResolver.h" 21 #include "OperationsUtils.h" 22 #include "Tracing.h" 23 24 #include <cmath> 25 26 namespace android { 27 namespace nn { 28 namespace log_softmax { 29 30 constexpr char kOperationName[] = "LOG_SOFTMAX"; 31 32 constexpr uint32_t kNumInputs = 3; 33 constexpr uint32_t kInputTensor = 0; 34 constexpr uint32_t kInputBeta = 1; 35 constexpr uint32_t kInputAxis = 2; 36 37 constexpr uint32_t kNumOutputs = 1; 38 constexpr uint32_t kOutputTensor = 0; 39 40 template <typename T> 41 inline bool compute(const T* input, const Shape& shape, T beta, uint32_t axis, T* output) { 42 const uint32_t outerSize = getNumberOfElements(shape, 0, axis); 43 const uint32_t axisSize = getSizeOfDimension(shape, axis); 44 const uint32_t innerSize = getNumberOfElements(shape, axis + 1, getNumberOfDimensions(shape)); 45 for (uint32_t outer = 0; outer < outerSize; ++outer) { 46 for (uint32_t inner = 0; inner < innerSize; ++inner) { 47 // We subtract the maximum value from each element to ensure 48 // numerical stability, taking advantage of the following equality: 49 // exp(x[i])/sum(exp(x[i])) == exp(x[i]+C)/sum(exp(x[i]+C)) 50 T maxValue = input[outer * axisSize * innerSize + inner]; 51 for (uint32_t i = 1; i < axisSize; ++i) { 52 maxValue = std::max(maxValue, input[(outer * axisSize + i) * innerSize + inner]); 53 } 54 55 T sum = 0; 56 for (uint32_t i = 0; i < axisSize; ++i) { 57 sum += std::exp(static_cast<double>( 58 (input[(outer * axisSize + i) * innerSize + inner] - maxValue) * beta)); 59 } 60 61 const T logSum = std::log(static_cast<double>(sum)); 62 for (uint32_t i = 0; i < axisSize; ++i) { 63 output[(outer * axisSize + i) * innerSize + inner] = 64 (input[(outer * axisSize + i) * innerSize + inner] - maxValue) * beta - 65 logSum; 66 } 67 } 68 } 69 return true; 70 } 71 72 bool validate(const IOperationValidationContext* context) { 73 NN_RET_CHECK_EQ(context->getNumInputs(), kNumInputs); 74 NN_RET_CHECK_EQ(context->getNumOutputs(), kNumOutputs); 75 OperandType inputType = context->getInputType(kInputTensor); 76 std::vector<OperandType> inExpectedTypes; 77 std::vector<OperandType> outExpectedTypes; 78 if (inputType == OperandType::TENSOR_FLOAT32) { 79 inExpectedTypes = {OperandType::TENSOR_FLOAT32, OperandType::FLOAT32, OperandType::INT32}; 80 outExpectedTypes = {OperandType::TENSOR_FLOAT32}; 81 } else if (inputType == OperandType::TENSOR_FLOAT16) { 82 inExpectedTypes = {OperandType::TENSOR_FLOAT16, OperandType::FLOAT16, OperandType::INT32}; 83 outExpectedTypes = {OperandType::TENSOR_FLOAT16}; 84 } else { 85 LOG(ERROR) << "Unsupported input tensor type for operation " << kOperationName; 86 return false; 87 } 88 NN_RET_CHECK(validateInputTypes(context, inExpectedTypes)); 89 NN_RET_CHECK(validateOutputTypes(context, outExpectedTypes)); 90 return validateHalVersion(context, HalVersion::V1_2); 91 } 92 93 bool prepare(IOperationExecutionContext* context) { 94 return context->setOutputShape(kOutputTensor, context->getInputShape(kInputTensor)); 95 } 96 97 bool execute(IOperationExecutionContext* context) { 98 int32_t axis = context->getInputValue<int32_t>(kInputAxis); 99 NN_RET_CHECK(handleNegativeAxis(context->getInputShape(kInputTensor), &axis)); 100 switch (context->getInputType(kInputTensor)) { 101 case OperandType::TENSOR_FLOAT16: 102 return compute(context->getInputBuffer<_Float16>(kInputTensor), 103 context->getInputShape(kInputTensor), 104 context->getInputValue<_Float16>(kInputBeta), axis, 105 context->getOutputBuffer<_Float16>(kOutputTensor)); 106 case OperandType::TENSOR_FLOAT32: 107 return compute(context->getInputBuffer<float>(kInputTensor), 108 context->getInputShape(kInputTensor), 109 context->getInputValue<float>(kInputBeta), axis, 110 context->getOutputBuffer<float>(kOutputTensor)); 111 default: 112 NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << kOperationName; 113 } 114 } 115 116 } // namespace log_softmax 117 118 NN_REGISTER_OPERATION(LOG_SOFTMAX, log_softmax::kOperationName, log_softmax::validate, 119 log_softmax::prepare, log_softmax::execute); 120 121 } // namespace nn 122 } // namespace android 123