Home | History | Annotate | Download | only in operations
      1 /*
      2  * Copyright (C) 2017 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "CpuOperationUtils.h"
     18 #include "Operations.h"
     19 
     20 #include <algorithm>
     21 #include <cmath>
     22 #include "tensorflow/lite/kernels/internal/optimized/optimized_ops.h"
     23 
     24 #include "Tracing.h"
     25 
     26 namespace android {
     27 namespace nn {
     28 
     29 inline bool localResponseNormFloat32Impl(const float* inputData, const Shape& inputShape,
     30                                          int32_t radius, float bias, float alpha, float beta,
     31                                          int32_t axis, float* outputData,
     32                                          const Shape& outputShape) {
     33     NNTRACE_TRANS("localResponseNormFloat32");
     34     const uint32_t outerSize = getNumberOfElements(inputShape, 0, axis);
     35     const uint32_t axisSize = getSizeOfDimension(inputShape, axis);
     36     const uint32_t innerSize =
     37             getNumberOfElements(inputShape, axis + 1, getNumberOfDimensions(inputShape));
     38     for (uint32_t outer = 0; outer < outerSize; ++outer) {
     39         const float* inputBase = inputData + outer * axisSize * innerSize;
     40         float* outputBase = outputData + outer * axisSize * innerSize;
     41         for (uint32_t inner = 0; inner < innerSize; ++inner, ++inputBase, ++outputBase) {
     42             for (int32_t i = 0; i < axisSize; i++) {
     43                 const int32_t dBegin = std::max(0, i - radius);
     44                 // Add 1 on dEnd to comply with optimized_ops in TFLite
     45                 const int32_t dEnd = std::min(static_cast<int32_t>(axisSize), i + radius + 1);
     46                 float sum = 0.0f;
     47                 for (int32_t d = dBegin; d < dEnd; d++) {
     48                     float val = inputBase[d * innerSize];
     49                     sum += val * val;
     50                 }
     51                 float multiplier = std::pow(bias + alpha * sum, -beta);
     52                 outputBase[i * innerSize] = inputBase[i * innerSize] * multiplier;
     53             }
     54         }
     55     }
     56     return true;
     57 }
     58 
     59 bool localResponseNormFloat16(const _Float16* inputData, const Shape& inputShape, int32_t radius,
     60                               float bias, float alpha, float beta, int32_t axis,
     61                               _Float16* outputData, const Shape& outputShape) {
     62     NNTRACE_TRANS("localResponseNormFloat16");
     63     std::vector<float> inputDataFloat32(getNumberOfElements(inputShape));
     64     convertFloat16ToFloat32(inputData, &inputDataFloat32);
     65     std::vector<float> outputDataFloat32(getNumberOfElements(outputShape));
     66 
     67     localResponseNormFloat32(inputDataFloat32.data(), inputShape, radius, bias, alpha, beta, axis,
     68                              outputDataFloat32.data(), outputShape);
     69     convertFloat32ToFloat16(outputDataFloat32, outputData);
     70 
     71     return true;
     72 }
     73 
     74 bool localResponseNormFloat32(const float* inputData, const Shape& inputShape, int32_t radius,
     75                               float bias, float alpha, float beta, int32_t axis, float* outputData,
     76                               const Shape& outputShape) {
     77     int32_t ndim = getNumberOfDimensions(inputShape);
     78     NN_CHECK(handleNegativeAxis(inputShape, &axis));
     79     // TFLite optimized implementation only supports computation along the last axis
     80     if (axis == ndim - 1) {
     81         NNTRACE_COMP("optimized_ops::LocalResponseNormalization::float");
     82         tflite::LocalResponseNormalizationParams param = {
     83                 .range = radius, .bias = bias, .alpha = alpha, .beta = beta};
     84         tflite::optimized_ops::LocalResponseNormalization(
     85                 param, convertShapeToTflshape(inputShape), inputData,
     86                 convertShapeToTflshape(outputShape), outputData);
     87         return true;
     88     } else {
     89         return localResponseNormFloat32Impl(inputData, inputShape, radius, bias, alpha, beta, axis,
     90                                             outputData, outputShape);
     91     }
     92 }
     93 }  // namespace nn
     94 }  // namespace android
     95