Home | History | Annotate | Download | only in operations
      1 /*
      2  * Copyright (C) 2017 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #ifndef FRAMEWORKS_ML_NN_RNN_H
     18 #define FRAMEWORKS_ML_NN_RNN_H
     19 
     20 #include "ActivationFunctor.h"
     21 #include "HalOperation.h"
     22 
     23 namespace android {
     24 namespace nn {
     25 
     26 struct RunTimeOperandInfo;
     27 struct Shape;
     28 
     29 class RNN {
     30    public:
     31     RNN(const Operation& operation, std::vector<RunTimeOperandInfo>& operands);
     32 
     33     static bool Prepare(const Operation& operation, std::vector<RunTimeOperandInfo>& operands,
     34                         Shape* hiddenStateShape, Shape* outputShape);
     35     bool Eval();
     36 
     37     static constexpr int kInputTensor = 0;
     38     static constexpr int kWeightsTensor = 1;  // Optional
     39     static constexpr int kRecurrentWeightsTensor = 2;
     40     static constexpr int kBiasTensor = 3;
     41     static constexpr int kHiddenStateInTensor = 4;
     42     static constexpr int kActivationParam = 5;
     43 
     44     static constexpr int kHiddenStateOutTensor = 0;
     45     static constexpr int kOutputTensor = 1;
     46 
     47     template <typename T>
     48     static bool RNNStep(const T* inputData, const Shape& inputShape, const T* hiddenStateInputData,
     49                         const T* biasData, const T* weightsData, const Shape& weightsShape,
     50                         const T* recurrentWeightsData, const Shape& recurrentWeightsShape,
     51                         int32_t activation, T* outputData);
     52 
     53     template <typename T>
     54     static bool RNNStep(const T* inputData, const Shape& inputShape, const T* auxInputData,
     55                         const Shape& auxInputShape, const T* hiddenStateInputData,
     56                         const T* biasData, const T* weightsData, const Shape& weightsShape,
     57                         const T* auxWeightsData, const Shape& auxWeightsShape,
     58                         const T* recurrentWeightsData, const Shape& recurrentWeightsShape,
     59                         int32_t activation, uint32_t outputBatchStride, uint32_t outputBatchStep,
     60                         T* outputData, T* hiddenStateOutput = nullptr);
     61 
     62    private:
     63     ActivationFn activation_;
     64 
     65     const RunTimeOperandInfo* input_;
     66     const RunTimeOperandInfo* weights_;
     67     const RunTimeOperandInfo* recurrent_weights_;
     68     const RunTimeOperandInfo* bias_;
     69     const RunTimeOperandInfo* hidden_state_in_;
     70 
     71     RunTimeOperandInfo* hidden_state_out_;
     72     RunTimeOperandInfo* output_;
     73 };
     74 
     75 }  // namespace nn
     76 }  // namespace android
     77 
     78 #endif  // FRAMEWORKS_ML_NN_RNN_H
     79