Home | History | Annotate | Download | only in operations
      1 /*
      2  * Copyright (C) 2018 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #define LOG_TAG "Operations"
     18 
     19 #include "HalInterfaces.h"
     20 #include "IndexedShapeWrapper.h"
     21 #include "OperationResolver.h"
     22 #include "OperationsUtils.h"
     23 
     24 namespace android {
     25 namespace nn {
     26 namespace select_op {
     27 
     28 constexpr uint32_t kNumInputs = 3;
     29 constexpr uint32_t kInputCondition = 0;
     30 constexpr uint32_t kInputTensor1 = 1;
     31 constexpr uint32_t kInputTensor2 = 2;
     32 
     33 constexpr uint32_t kNumOutputs = 1;
     34 constexpr uint32_t kOutputTensor = 0;
     35 
     36 namespace {
     37 
     38 template <typename T>
     39 bool compute(const bool8* conditionData, const Shape& conditionShape, const T* aData,
     40              const Shape& aShape, const T* bData, const Shape& bShape, T* outputData,
     41              const Shape& outputShape) {
     42     // The code assumes that condition has the same shape as all other tensors.
     43     // This should be checked during preparation stage.
     44     uint32_t size = getNumberOfElements(conditionShape);
     45     for (uint32_t i = 0; i < size; ++i) {
     46         T a = aData[i];
     47         T b = bData[i];
     48         if (aShape.type == OperandType::TENSOR_QUANT8_ASYMM) {
     49             a = requantize(a, aShape, outputShape);
     50             b = requantize(b, bShape, outputShape);
     51         }
     52         outputData[i] = conditionData[i] ? a : b;
     53     }
     54     return true;
     55 }
     56 
     57 template <typename T>
     58 bool executeTyped(IOperationExecutionContext* context) {
     59     return compute<T>(
     60             context->getInputBuffer<bool8>(kInputCondition),
     61             context->getInputShape(kInputCondition), context->getInputBuffer<T>(kInputTensor1),
     62             context->getInputShape(kInputTensor1), context->getInputBuffer<T>(kInputTensor2),
     63             context->getInputShape(kInputTensor2), context->getOutputBuffer<T>(kOutputTensor),
     64             context->getOutputShape(kOutputTensor));
     65 }
     66 
     67 }  // namespace
     68 
     69 bool validate(const IOperationValidationContext* context) {
     70     NN_RET_CHECK_EQ(context->getNumInputs(), kNumInputs);
     71     NN_RET_CHECK_EQ(context->getNumOutputs(), kNumOutputs);
     72     OperandType inputType = context->getInputType(kInputTensor1);
     73     NN_RET_CHECK(
     74             inputType == OperandType::TENSOR_FLOAT16 || inputType == OperandType::TENSOR_FLOAT32 ||
     75             inputType == OperandType::TENSOR_INT32 || inputType == OperandType::TENSOR_QUANT8_ASYMM)
     76             << "Unsupported input operand type for select op: " << toString(inputType);
     77     NN_RET_CHECK(validateInputTypes(context, {OperandType::TENSOR_BOOL8, inputType, inputType}));
     78     NN_RET_CHECK(validateOutputTypes(context, {inputType}));
     79     return validateHalVersion(context, HalVersion::V1_2);
     80 }
     81 
     82 bool prepare(IOperationExecutionContext* context) {
     83     Shape inputCondition = context->getInputShape(kInputCondition);
     84     Shape input1 = context->getInputShape(kInputTensor1);
     85     if (inputCondition.dimensions.size() != input1.dimensions.size()) {
     86         LOG(ERROR) << "Condition and input tensor dimensions are not equal";
     87         return false;
     88     }
     89     for (int i = 0; i < inputCondition.dimensions.size(); ++i) {
     90         if (inputCondition.dimensions[i] != input1.dimensions[i]) {
     91             LOG(ERROR) << "Condition and input tensor dimensions are not equal";
     92             return false;
     93         }
     94     }
     95 
     96     Shape input2 = context->getInputShape(kInputTensor2);
     97     NN_RET_CHECK(SameShape(input1, input2));
     98 
     99     Shape output = context->getOutputShape(kOutputTensor);
    100     NN_RET_CHECK(SetShape(input1, &output));
    101     return context->setOutputShape(kOutputTensor, output);
    102 }
    103 
    104 bool execute(IOperationExecutionContext* context) {
    105     switch (context->getInputType(kInputTensor1)) {
    106         case OperandType::TENSOR_FLOAT16:
    107             return executeTyped<_Float16>(context);
    108         case OperandType::TENSOR_FLOAT32:
    109             return executeTyped<float>(context);
    110         case OperandType::TENSOR_INT32:
    111             return executeTyped<int32_t>(context);
    112         case OperandType::TENSOR_QUANT8_ASYMM:
    113             return executeTyped<uint8_t>(context);
    114         default:
    115             NN_RET_CHECK_FAIL() << "Unsupported tensor type for SELECT op.";
    116     }
    117 }
    118 
    119 }  // namespace select_op
    120 
    121 NN_REGISTER_OPERATION(SELECT, "SELECT", select_op::validate, select_op::prepare,
    122                       select_op::execute);
    123 
    124 }  // namespace nn
    125 }  // namespace android
    126