Home | History | Annotate | Download | only in operations
      1 /*
      2  * Copyright (C) 2018 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "CpuOperationUtils.h"
     18 #include "OperationResolver.h"
     19 
     20 #include <cfloat>
     21 #include <cmath>
     22 
     23 #include "Tracing.h"
     24 #include "tensorflow/lite/kernels/internal/common.h"
     25 
     26 namespace android {
     27 namespace nn {
     28 namespace transpose_conv_2d {
     29 
     30 constexpr char kOperationName[] = "TRANSPOSE_CONV_2D";
     31 
     32 constexpr uint32_t kInputTensor = 0;
     33 constexpr uint32_t kFilterTensor = 1;
     34 constexpr uint32_t kBiasTensor = 2;
     35 
     36 constexpr uint32_t kNumOutputs = 1;
     37 constexpr uint32_t kOutputTensor = 0;
     38 
     39 namespace {
     40 
     41 // If possible we will use this static buffer for the tensor.
     42 constexpr size_t kStaticBufferSize = 1605632;
     43 char static_scratch_buffer[kStaticBufferSize];
     44 
     45 // executionMutex is used to protect concurrent access of the static_scratch_buffer.
     46 // std::mutex is safe for pthreads on Android.
     47 std::mutex executionMutex;
     48 
     49 struct TransposeConv2dParam {
     50     int32_t paddingLeft, paddingRight;
     51     int32_t paddingTop, paddingBottom;
     52     int32_t strideWidth, strideHeight;
     53     int32_t activation;
     54     bool useNchw = false;
     55 
     56     bool initialize(const IOperationExecutionContext* context) {
     57         uint32_t inCount = context->getNumInputs();
     58         int32_t paddingImplicit = 0;
     59         if (inCount == 9) {
     60             paddingImplicit = context->getInputValue<int32_t>(4);
     61             strideWidth = context->getInputValue<int32_t>(5);
     62             strideHeight = context->getInputValue<int32_t>(6);
     63             activation = context->getInputValue<int32_t>(7);
     64             useNchw = context->getInputValue<bool>(8);
     65             Shape filterShape = context->getInputShape(kFilterTensor);
     66             int32_t filterWidth = getSizeOfDimension(filterShape, 2);
     67             int32_t filterHeight = getSizeOfDimension(filterShape, 1);
     68             NN_RET_CHECK_EQ(getNumberOfDimensions(context->getInputShape(3)), 1);
     69             NN_RET_CHECK_EQ(getSizeOfDimension(context->getInputShape(3), 0), 4);
     70             const int32_t* outputShapeData = context->getInputBuffer<int32_t>(3);
     71             int32_t outputWidth = useNchw ? outputShapeData[3] : outputShapeData[2];
     72             int32_t outputHeight = useNchw ? outputShapeData[2] : outputShapeData[1];
     73             calculateExplicitPaddingTransposeConv(outputWidth, strideWidth, filterWidth,
     74                                                   paddingImplicit, &paddingLeft, &paddingRight);
     75             calculateExplicitPaddingTransposeConv(outputHeight, strideHeight, filterHeight,
     76                                                   paddingImplicit, &paddingTop, &paddingBottom);
     77         } else if (inCount == 11) {
     78             paddingLeft = context->getInputValue<int32_t>(3);
     79             paddingRight = context->getInputValue<int32_t>(4);
     80             paddingTop = context->getInputValue<int32_t>(5);
     81             paddingBottom = context->getInputValue<int32_t>(6);
     82             strideWidth = context->getInputValue<int32_t>(7);
     83             strideHeight = context->getInputValue<int32_t>(8);
     84             activation = context->getInputValue<int32_t>(9);
     85             useNchw = context->getInputValue<bool>(10);
     86         } else {
     87             NN_RET_CHECK_FAIL() << "Unsupported input spec for operation " << kOperationName;
     88         }
     89         // paddingRight and paddingBottom in transpose conv may be less than 0 to resolve the
     90         // ambiguous output shape issue in the case of stride > 1.
     91         NN_RET_CHECK_GE(paddingLeft, 0);
     92         NN_RET_CHECK_GE(paddingTop, 0);
     93         NN_RET_CHECK_GT(strideWidth, 0);
     94         NN_RET_CHECK_GT(strideHeight, 0);
     95         NN_RET_CHECK_GE(activation, 0);
     96         return true;
     97     }
     98 };
     99 
    100 #define ANDROID_NN_TRANSPOSE_CONV_PARAMETERS                                    \
    101     uint32_t numBatches = getSizeOfDimension(inputShape, 0);                    \
    102     uint32_t inputHeight = getSizeOfDimension(inputShape, 1);                   \
    103     uint32_t inputWidth = getSizeOfDimension(inputShape, 2);                    \
    104     uint32_t inputDepth = getSizeOfDimension(inputShape, 3);                    \
    105     uint32_t filterHeight = getSizeOfDimension(filterShape, 1);                 \
    106     uint32_t filterWidth = getSizeOfDimension(filterShape, 2);                  \
    107     uint32_t outputHeight = getSizeOfDimension(outputShape, 1);                 \
    108     uint32_t outputWidth = getSizeOfDimension(outputShape, 2);                  \
    109     uint32_t outputDepth = getSizeOfDimension(outputShape, 3);                  \
    110     int32_t paddingLeft = param.paddingLeft, paddingRight = param.paddingRight; \
    111     int32_t paddingTop = param.paddingTop, paddingBottom = param.paddingBottom; \
    112     int32_t strideWidth = param.strideWidth, strideHeight = param.strideHeight; \
    113     int32_t activation = param.activation;
    114 
    115 bool transposeConvNhwc(const float* inputData, const Shape& inputShape, const float* filterData,
    116                        const Shape& filterShape, const float* biasData, const Shape& biasShape,
    117                        const TransposeConv2dParam& param, float* outputData,
    118                        const Shape& outputShape) {
    119     NNTRACE_TRANS("transposeConvFloat32");
    120     ANDROID_NN_TRANSPOSE_CONV_PARAMETERS
    121 
    122     float outputActivationMin = 0.0f, outputActivationMax = 0.0f;
    123     CalculateActivationRangeFloat(activation, &outputActivationMin, &outputActivationMax);
    124 
    125     memset(outputData, 0, getNumberOfElements(outputShape) * sizeof(float));
    126 
    127     const float* inputBase = inputData;
    128     float* outputBase = outputData;
    129     for (uint32_t b = 0; b < numBatches; b++) {
    130         for (uint32_t h = 0; h < inputHeight; h++) {
    131             for (uint32_t w = 0; w < inputWidth; w++) {
    132                 int32_t wOutputOrigin = static_cast<int32_t>(w) * strideWidth - paddingLeft;
    133                 int32_t hOutputOrigin = static_cast<int32_t>(h) * strideHeight - paddingTop;
    134 
    135                 const float* filterBase = filterData;
    136                 for (uint32_t k = 0; k < outputDepth; k++) {
    137                     for (uint32_t i = 0; i < filterHeight; i++) {
    138                         for (uint32_t j = 0; j < filterWidth; j++, filterBase += inputDepth) {
    139                             int32_t hOutput = hOutputOrigin + static_cast<int32_t>(i);
    140                             int32_t wOutput = wOutputOrigin + static_cast<int32_t>(j);
    141                             if (hOutput >= 0 && hOutput < static_cast<int32_t>(outputHeight) &&
    142                                 wOutput >= 0 && wOutput < static_cast<int32_t>(outputWidth)) {
    143                                 for (uint32_t d = 0; d < inputDepth; d++) {
    144                                     uint32_t outputIndex = hOutput * outputWidth * outputDepth +
    145                                                            wOutput * outputDepth + k;
    146                                     outputBase[outputIndex] += inputBase[d] * filterBase[d];
    147                                 }
    148                             }
    149                         }
    150                     }
    151                 }
    152 
    153                 inputBase += inputDepth;
    154             }
    155         }
    156         outputBase += outputHeight * outputWidth * outputDepth;
    157     }
    158 
    159     const uint32_t outerSize = numBatches * outputHeight * outputWidth;
    160     float* outPtr = outputData;
    161     for (uint32_t i = 0; i < outerSize; i++) {
    162         for (uint32_t d = 0; d < outputDepth; d++, outPtr++) {
    163             *outPtr += biasData[d];
    164             *outPtr = std::max(std::min(*outPtr, outputActivationMax), outputActivationMin);
    165         }
    166     }
    167 
    168     return true;
    169 }
    170 
    171 bool transposeConvNhwc(const uint8_t* inputData, const Shape& inputShape, const uint8_t* filterData,
    172                        const Shape& filterShape, const int32_t* biasData, const Shape& biasShape,
    173                        const TransposeConv2dParam& param, uint8_t* outputData,
    174                        const Shape& outputShape) {
    175     NNTRACE_TRANS("transposeConvQuant8");
    176     ANDROID_NN_TRANSPOSE_CONV_PARAMETERS
    177 
    178     int32_t* tempBuffer = nullptr;
    179     std::unique_ptr<int32_t[]> bufferGuard;
    180     uint32_t tempBufferByteSize = getNumberOfElements(outputShape) * sizeof(int32_t);
    181     if (tempBufferByteSize <= kStaticBufferSize) {
    182         tempBuffer = reinterpret_cast<int32_t*>(static_scratch_buffer);
    183     } else {
    184         tempBuffer = new (std::nothrow) int32_t[tempBufferByteSize / sizeof(int32_t)];
    185         if (tempBuffer == nullptr) {
    186             LOG(ERROR) << "ConvTranspose size is too large, not enough memory";
    187             return false;
    188         }
    189         bufferGuard.reset(tempBuffer);
    190     }
    191 
    192     int32_t inputOffset = -inputShape.offset;
    193     int32_t filterOffset = -filterShape.offset;
    194     int32_t outputOffset = outputShape.offset;
    195 
    196     double realMultiplier = 0.0;
    197     int32_t outputMultiplier = 0;
    198     int32_t outputShift = 0;
    199     NN_RET_CHECK(GetQuantizedConvolutionMultipler(inputShape, filterShape, biasShape, outputShape,
    200                                                   &realMultiplier));
    201     int exponent;
    202     NN_RET_CHECK(QuantizeMultiplier(realMultiplier, &outputMultiplier, &exponent));
    203     outputShift = -exponent;
    204 
    205     int32_t outputActivationMin = 0, outputActivationMax = 0;
    206     CalculateActivationRangeUint8(activation, outputShape, &outputActivationMin,
    207                                   &outputActivationMax);
    208 
    209     // Prevent concurrent executions that may access the scratch buffer
    210     std::unique_lock<std::mutex> lock(executionMutex);
    211     memset(tempBuffer, 0, tempBufferByteSize);
    212 
    213     const uint8_t* inputPtr = inputData;
    214     int32_t* outputBase = tempBuffer;
    215     for (uint32_t b = 0; b < numBatches; b++) {
    216         for (uint32_t h = 0; h < inputHeight; h++) {
    217             for (uint32_t w = 0; w < inputWidth; w++) {
    218                 for (uint32_t d = 0; d < inputDepth; d++) {
    219                     int32_t wOutputOrigin = static_cast<int32_t>(w) * strideWidth - paddingLeft;
    220                     int32_t hOutputOrigin = static_cast<int32_t>(h) * strideHeight - paddingTop;
    221 
    222                     for (uint32_t i = 0; i < filterHeight; i++) {
    223                         for (uint32_t j = 0; j < filterWidth; j++) {
    224                             for (uint32_t k = 0; k < outputDepth; k++) {
    225                                 int32_t hOutput = hOutputOrigin + static_cast<int32_t>(i);
    226                                 int32_t wOutput = wOutputOrigin + static_cast<int32_t>(j);
    227                                 if (hOutput >= 0 && hOutput < static_cast<int32_t>(outputHeight) &&
    228                                     wOutput >= 0 && wOutput < static_cast<int32_t>(outputWidth)) {
    229                                     uint32_t filterIndex =
    230                                             k * filterHeight * filterWidth * inputDepth +
    231                                             i * filterWidth * inputDepth + j * inputDepth + d;
    232                                     uint32_t outputIndex = hOutput * outputWidth * outputDepth +
    233                                                            wOutput * outputDepth + k;
    234                                     outputBase[outputIndex] +=
    235                                             (static_cast<int32_t>(*inputPtr) + inputOffset) *
    236                                             (static_cast<int32_t>(filterData[filterIndex]) +
    237                                              filterOffset);
    238                                 }
    239                             }
    240                         }
    241                     }
    242 
    243                     inputPtr++;
    244                 }
    245             }
    246         }
    247         outputBase += outputHeight * outputWidth * outputDepth;
    248     }
    249 
    250     const uint32_t outerSize = numBatches * outputHeight * outputWidth;
    251     int32_t* bufferPtr = tempBuffer;
    252     uint8_t* outPtr = outputData;
    253     for (uint32_t i = 0; i < outerSize; i++) {
    254         for (uint32_t d = 0; d < outputDepth; d++, bufferPtr++, outPtr++) {
    255             int32_t outVal = *bufferPtr + biasData[d];
    256             outVal = tflite::MultiplyByQuantizedMultiplier(outVal, outputMultiplier, -outputShift);
    257             outVal += outputOffset;
    258             outVal = std::max(std::min(outVal, outputActivationMax), outputActivationMin);
    259             *outPtr = static_cast<uint8_t>(outVal);
    260         }
    261     }
    262 
    263     return true;
    264 }
    265 
    266 bool transposeConvNhwc(const _Float16* inputData, const Shape& inputShape,
    267                        const _Float16* filterData, const Shape& filterShape,
    268                        const _Float16* biasData, const Shape& biasShape,
    269                        const TransposeConv2dParam& param, _Float16* outputData,
    270                        const Shape& outputShape) {
    271     NNTRACE_TRANS("transposeConvFloat16");
    272     std::vector<float> inputData_float32(getNumberOfElements(inputShape));
    273     std::vector<float> filterData_float32(getNumberOfElements(filterShape));
    274     std::vector<float> biasData_float32(getNumberOfElements(biasShape));
    275     std::vector<float> outputData_float32(getNumberOfElements(outputShape));
    276 
    277     convertFloat16ToFloat32(inputData, &inputData_float32);
    278     convertFloat16ToFloat32(filterData, &filterData_float32);
    279     convertFloat16ToFloat32(biasData, &biasData_float32);
    280 
    281     transposeConvNhwc(inputData_float32.data(), inputShape, filterData_float32.data(), filterShape,
    282                       biasData_float32.data(), biasShape, param, outputData_float32.data(),
    283                       outputShape);
    284     convertFloat32ToFloat16(outputData_float32, outputData);
    285 
    286     return true;
    287 }
    288 
    289 template <typename T_Input, typename T_Filter, typename T_Bias>
    290 bool transposeConv(const T_Input* inputData, const Shape& inputShape, const T_Filter* filterData,
    291                    const Shape& filterShape, const T_Bias* biasData, const Shape& biasShape,
    292                    const TransposeConv2dParam& param, T_Input* outputData,
    293                    const Shape& outputShape) {
    294     InputWithLayout<T_Input> input(param.useNchw);
    295     OutputWithLayout<T_Input> output(param.useNchw);
    296     NN_RET_CHECK(input.initialize(inputData, inputShape));
    297     NN_RET_CHECK(output.initialize(outputData, outputShape));
    298     NN_RET_CHECK(transposeConvNhwc(input.getNhwcBuffer(), input.getNhwcShape(), filterData,
    299                                    filterShape, biasData, biasShape, param, output.getNhwcBuffer(),
    300                                    output.getNhwcShape()));
    301     NN_RET_CHECK(output.commit());
    302     return true;
    303 }
    304 
    305 bool transposeConvQuant8PerChannelNhwc(const uint8_t* inputData, const Shape& inputShape,
    306                                        const int8_t* filterData, const Shape& filterShape,
    307                                        const float* filterScales, const int32_t* biasData,
    308                                        const Shape& biasShape, const TransposeConv2dParam& param,
    309                                        uint8_t* outputData, const Shape& outputShape) {
    310     NNTRACE_TRANS("transposeConvQuant8PerChannel");
    311     ANDROID_NN_TRANSPOSE_CONV_PARAMETERS
    312 
    313     int32_t* tempBuffer = nullptr;
    314     std::unique_ptr<int32_t[]> bufferGuard;
    315     uint32_t tempBufferByteSize = getNumberOfElements(outputShape) * sizeof(int32_t);
    316     if (tempBufferByteSize <= kStaticBufferSize) {
    317         tempBuffer = reinterpret_cast<int32_t*>(static_scratch_buffer);
    318     } else {
    319         tempBuffer = new (std::nothrow) int32_t[tempBufferByteSize / sizeof(int32_t)];
    320         if (tempBuffer == nullptr) {
    321             LOG(ERROR) << "ConvTranspose size is too large, not enough memory";
    322             return false;
    323         }
    324         bufferGuard.reset(tempBuffer);
    325     }
    326 
    327     int32_t inputOffset = -inputShape.offset;
    328     int32_t outputOffset = outputShape.offset;
    329 
    330     std::vector<double> realMultiplier(outputDepth, 0.0);
    331     std::vector<int32_t> outputMultiplier(outputDepth, 0);
    332     std::vector<int32_t> outputShift(outputDepth, 0);
    333     for (int i = 0; i < outputDepth; ++i) {
    334         Shape filterChannelShape = filterShape;
    335         filterChannelShape.scale = filterScales[i];
    336         Shape biasChannelShape = biasShape;
    337         biasChannelShape.scale = filterScales[i] * inputShape.scale;
    338 
    339         NN_RET_CHECK(GetQuantizedConvolutionMultipler(
    340                 inputShape, filterChannelShape, biasChannelShape, outputShape, &realMultiplier[i]));
    341         int exponent;
    342         NN_RET_CHECK(QuantizeMultiplier(realMultiplier[i], &outputMultiplier[i], &exponent));
    343         outputShift[i] = -exponent;
    344     }
    345 
    346     int32_t outputActivationMin = 0, outputActivationMax = 0;
    347     CalculateActivationRangeUint8(activation, outputShape, &outputActivationMin,
    348                                   &outputActivationMax);
    349 
    350     // Prevent concurrent executions that may access the scratch buffer
    351     std::unique_lock<std::mutex> lock(executionMutex);
    352     memset(tempBuffer, 0, tempBufferByteSize);
    353 
    354     const uint8_t* inputPtr = inputData;
    355     int32_t* outputBase = tempBuffer;
    356     for (uint32_t b = 0; b < numBatches; b++) {
    357         for (uint32_t h = 0; h < inputHeight; h++) {
    358             for (uint32_t w = 0; w < inputWidth; w++) {
    359                 for (uint32_t d = 0; d < inputDepth; d++) {
    360                     int32_t wOutputOrigin = static_cast<int32_t>(w) * strideWidth - paddingLeft;
    361                     int32_t hOutputOrigin = static_cast<int32_t>(h) * strideHeight - paddingTop;
    362 
    363                     for (uint32_t i = 0; i < filterHeight; i++) {
    364                         for (uint32_t j = 0; j < filterWidth; j++) {
    365                             for (uint32_t k = 0; k < outputDepth; k++) {
    366                                 int32_t hOutput = hOutputOrigin + static_cast<int32_t>(i);
    367                                 int32_t wOutput = wOutputOrigin + static_cast<int32_t>(j);
    368                                 if (hOutput >= 0 && hOutput < static_cast<int32_t>(outputHeight) &&
    369                                     wOutput >= 0 && wOutput < static_cast<int32_t>(outputWidth)) {
    370                                     uint32_t filterIndex =
    371                                             k * filterHeight * filterWidth * inputDepth +
    372                                             i * filterWidth * inputDepth + j * inputDepth + d;
    373                                     uint32_t outputIndex = hOutput * outputWidth * outputDepth +
    374                                                            wOutput * outputDepth + k;
    375                                     outputBase[outputIndex] +=
    376                                             (static_cast<int32_t>(*inputPtr) + inputOffset) *
    377                                             static_cast<int32_t>(filterData[filterIndex]);
    378                                 }
    379                             }
    380                         }
    381                     }
    382 
    383                     inputPtr++;
    384                 }
    385             }
    386         }
    387         outputBase += outputHeight * outputWidth * outputDepth;
    388     }
    389 
    390     const uint32_t outerSize = numBatches * outputHeight * outputWidth;
    391     int32_t* bufferPtr = tempBuffer;
    392     uint8_t* outPtr = outputData;
    393     for (uint32_t i = 0; i < outerSize; i++) {
    394         for (uint32_t d = 0; d < outputDepth; d++, bufferPtr++, outPtr++) {
    395             int32_t outVal = *bufferPtr + biasData[d];
    396             outVal = tflite::MultiplyByQuantizedMultiplier(outVal, outputMultiplier[d],
    397                                                            -outputShift[d]);
    398             outVal += outputOffset;
    399             outVal = std::max(std::min(outVal, outputActivationMax), outputActivationMin);
    400             *outPtr = static_cast<uint8_t>(outVal);
    401         }
    402     }
    403 
    404     return true;
    405 }
    406 
    407 bool transposeConvQuant8PerChannel(const uint8_t* inputData, const Shape& inputShape,
    408                                    const int8_t* filterData, const Shape& filterShape,
    409                                    const float* filterScales, const int32_t* biasData,
    410                                    const Shape& biasShape, const TransposeConv2dParam& param,
    411                                    uint8_t* outputData, const Shape& outputShape) {
    412     InputWithLayout<uint8_t> input(param.useNchw);
    413     OutputWithLayout<uint8_t> output(param.useNchw);
    414     NN_RET_CHECK(input.initialize(inputData, inputShape));
    415     NN_RET_CHECK(output.initialize(outputData, outputShape));
    416     NN_RET_CHECK(transposeConvQuant8PerChannelNhwc(
    417             input.getNhwcBuffer(), input.getNhwcShape(), filterData, filterShape, filterScales,
    418             biasData, biasShape, param, output.getNhwcBuffer(), output.getNhwcShape()));
    419     NN_RET_CHECK(output.commit());
    420     return true;
    421 }
    422 
    423 #undef ANDROID_NN_TRANSPOSE_CONV_PARAMETERS
    424 
    425 }  // namespace
    426 
    427 bool validate(const IOperationValidationContext* context) {
    428     NN_RET_CHECK_EQ(context->getNumOutputs(), kNumOutputs);
    429     auto inputCount = context->getNumInputs();
    430     auto inputType = context->getInputType(kInputTensor);
    431     auto filterType = context->getInputType(kFilterTensor);
    432     std::vector<OperandType> inExpectedTypes;
    433     if (inputType == OperandType::TENSOR_FLOAT32 || inputType == OperandType::TENSOR_FLOAT16) {
    434         inExpectedTypes = {inputType, inputType, inputType};
    435     } else if (inputType == OperandType::TENSOR_QUANT8_ASYMM) {
    436         NN_RET_CHECK(filterType == OperandType::TENSOR_QUANT8_ASYMM ||
    437                      filterType == OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL)
    438                 << "Unsupported filter tensor type for operation " << kOperationName;
    439         if (filterType == OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL) {
    440             NN_RET_CHECK_EQ(context->getInputExtraParams(kFilterTensor).channelQuant().channelDim,
    441                             0)
    442                     << "Unsupported filter tensor channel dimension for operation "
    443                     << kOperationName;
    444         }
    445         inExpectedTypes = {inputType, filterType, OperandType::TENSOR_INT32};
    446     } else {
    447         NN_RET_CHECK_FAIL() << "Unsupported input tensor type for operation " << kOperationName;
    448     }
    449 
    450     std::vector<OperandType> argExpectedTypes;
    451     if (inputCount == 11) {
    452         argExpectedTypes = {OperandType::INT32, OperandType::INT32, OperandType::INT32,
    453                             OperandType::INT32, OperandType::INT32, OperandType::INT32,
    454                             OperandType::INT32, OperandType::BOOL};
    455     } else {
    456         argExpectedTypes = {OperandType::TENSOR_INT32, OperandType::INT32, OperandType::INT32,
    457                             OperandType::INT32,        OperandType::INT32, OperandType::BOOL};
    458     }
    459     inExpectedTypes.insert(inExpectedTypes.end(), argExpectedTypes.begin(), argExpectedTypes.end());
    460     NN_RET_CHECK(validateHalVersion(context, HalVersion::V1_2));
    461     return validateInputTypes(context, inExpectedTypes) &&
    462            validateOutputTypes(context, {inputType});
    463 }
    464 
    465 bool prepare(IOperationExecutionContext* context) {
    466     Shape input = context->getInputShape(kInputTensor);
    467     Shape filter = context->getInputShape(kFilterTensor);
    468     Shape bias = context->getInputShape(kBiasTensor);
    469 
    470     if (filter.type == OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL) {
    471         NN_RET_CHECK(input.type == OperandType::TENSOR_QUANT8_ASYMM);
    472     } else {
    473         NN_RET_CHECK(input.type == filter.type);
    474     }
    475     if (input.type == OperandType::TENSOR_QUANT8_ASYMM) {
    476         NN_RET_CHECK(bias.type == OperandType::TENSOR_INT32);
    477     } else {
    478         NN_RET_CHECK(input.type == bias.type);
    479     }
    480     NN_RET_CHECK_EQ(getNumberOfDimensions(input), 4);
    481     NN_RET_CHECK_EQ(getNumberOfDimensions(filter), 4);
    482     NN_RET_CHECK_EQ(getNumberOfDimensions(bias), 1);
    483 
    484     TransposeConv2dParam param;
    485     NN_RET_CHECK(param.initialize(context));
    486 
    487     uint32_t batches = getSizeOfDimension(input, 0);
    488     uint32_t height = getSizeOfDimension(input, param.useNchw ? 2 : 1);
    489     uint32_t width = getSizeOfDimension(input, param.useNchw ? 3 : 2);
    490     uint32_t channels_in = getSizeOfDimension(input, param.useNchw ? 1 : 3);
    491     uint32_t channels_out = getSizeOfDimension(filter, 0);
    492     uint32_t filterHeight = getSizeOfDimension(filter, 1);
    493     uint32_t filterWidth = getSizeOfDimension(filter, 2);
    494     // Only batches can be zero.
    495     NN_RET_CHECK_EQ(channels_in, getSizeOfDimension(filter, 3));
    496     NN_RET_CHECK_EQ(channels_out, getSizeOfDimension(bias, 0));
    497     NN_RET_CHECK_GT(height, 0);
    498     NN_RET_CHECK_GT(width, 0);
    499     NN_RET_CHECK_GT(channels_in, 0);
    500     NN_RET_CHECK_GT(channels_out, 0);
    501     NN_RET_CHECK_GT(filterWidth, 0);
    502     NN_RET_CHECK_GT(filterHeight, 0);
    503 
    504     uint32_t outWidth = computeOutSizeTransposeConv(width, filterWidth, param.strideWidth,
    505                                                     param.paddingLeft, param.paddingRight);
    506     uint32_t outHeight = computeOutSizeTransposeConv(height, filterHeight, param.strideHeight,
    507                                                      param.paddingTop, param.paddingBottom);
    508     NN_RET_CHECK_GT(outWidth, 0);
    509     NN_RET_CHECK_GT(outHeight, 0);
    510 
    511     Shape output = context->getOutputShape(kOutputTensor);
    512     output.type = input.type;
    513     if (param.useNchw) {
    514         output.dimensions = {batches, channels_out, outHeight, outWidth};
    515     } else {
    516         output.dimensions = {batches, outHeight, outWidth, channels_out};
    517     }
    518     return context->setOutputShape(kOutputTensor, output);
    519 }
    520 
    521 bool execute(IOperationExecutionContext* context) {
    522     // Bypass execution in the case of zero-sized input.
    523     if (getNumberOfElements(context->getOutputShape(kOutputTensor)) == 0) return true;
    524     TransposeConv2dParam param;
    525     NN_RET_CHECK(param.initialize(context));
    526     switch (context->getInputType(kInputTensor)) {
    527         case OperandType::TENSOR_FLOAT32:
    528             return transposeConv(context->getInputBuffer<float>(kInputTensor),
    529                                  context->getInputShape(kInputTensor),
    530                                  context->getInputBuffer<float>(kFilterTensor),
    531                                  context->getInputShape(kFilterTensor),
    532                                  context->getInputBuffer<float>(kBiasTensor),
    533                                  context->getInputShape(kBiasTensor), param,
    534                                  context->getOutputBuffer<float>(kOutputTensor),
    535                                  context->getOutputShape(kOutputTensor));
    536         case OperandType::TENSOR_FLOAT16:
    537             return transposeConv(context->getInputBuffer<_Float16>(kInputTensor),
    538                                  context->getInputShape(kInputTensor),
    539                                  context->getInputBuffer<_Float16>(kFilterTensor),
    540                                  context->getInputShape(kFilterTensor),
    541                                  context->getInputBuffer<_Float16>(kBiasTensor),
    542                                  context->getInputShape(kBiasTensor), param,
    543                                  context->getOutputBuffer<_Float16>(kOutputTensor),
    544                                  context->getOutputShape(kOutputTensor));
    545         case OperandType::TENSOR_QUANT8_ASYMM:
    546             if (context->getInputType(kFilterTensor) ==
    547                 OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL) {
    548                 return transposeConvQuant8PerChannel(
    549                         context->getInputBuffer<uint8_t>(kInputTensor),
    550                         context->getInputShape(kInputTensor),
    551                         context->getInputBuffer<int8_t>(kFilterTensor),
    552                         context->getInputShape(kFilterTensor),
    553                         context->getInputExtraParams(kFilterTensor).channelQuant().scales.data(),
    554                         context->getInputBuffer<int32_t>(kBiasTensor),
    555                         context->getInputShape(kBiasTensor), param,
    556                         context->getOutputBuffer<uint8_t>(kOutputTensor),
    557                         context->getOutputShape(kOutputTensor));
    558             } else if (context->getInputType(kFilterTensor) == OperandType::TENSOR_QUANT8_ASYMM) {
    559                 return transposeConv(context->getInputBuffer<uint8_t>(kInputTensor),
    560                                      context->getInputShape(kInputTensor),
    561                                      context->getInputBuffer<uint8_t>(kFilterTensor),
    562                                      context->getInputShape(kFilterTensor),
    563                                      context->getInputBuffer<int32_t>(kBiasTensor),
    564                                      context->getInputShape(kBiasTensor), param,
    565                                      context->getOutputBuffer<uint8_t>(kOutputTensor),
    566                                      context->getOutputShape(kOutputTensor));
    567             } else {
    568                 NN_RET_CHECK_FAIL() << "Unsupported filter type for operation " << kOperationName;
    569             }
    570         default:
    571             NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << kOperationName;
    572     }
    573 }
    574 
    575 }  // namespace transpose_conv_2d
    576 
    577 NN_REGISTER_OPERATION(TRANSPOSE_CONV_2D, transpose_conv_2d::kOperationName,
    578                       transpose_conv_2d::validate, transpose_conv_2d::prepare,
    579                       transpose_conv_2d::execute, .allowZeroSizedInput = true);
    580 
    581 }  // namespace nn
    582 }  // namespace android
    583