Home | History | Annotate | Download | only in runtime
      1 /*
      2  * Copyright (C) 2017 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 // Class used to build a model through a succession of successive calls
     18 // to the NN API.
     19 
     20 #ifndef ANDROID_ML_NN_RUNTIME_MODEL_BUILDER_H
     21 #define ANDROID_ML_NN_RUNTIME_MODEL_BUILDER_H
     22 
     23 #include "HalInterfaces.h"
     24 #include "Memory.h"
     25 #include "NeuralNetworks.h"
     26 #include "Utils.h"
     27 
     28 namespace android {
     29 namespace nn {
     30 
     31 class CompilationBuilder;
     32 class Device;
     33 class ExecutionPlan;
     34 class Memory;
     35 
     36 class ModelBuilder {
     37    public:
     38     ModelBuilder() {}
     39     // Returns an operand/operation type corresponding to a given extension operand/operation type.
     40     int getExtensionType(const char* extensionName, uint16_t typeWithinExtension, int32_t* type);
     41     // Adds an operand to the model.
     42     int addOperand(const ANeuralNetworksOperandType& type);
     43     int setOperandValue(uint32_t index, const void* buffer, size_t length);
     44     int setOperandValueFromMemory(uint32_t index, const Memory* memory, uint32_t offset,
     45                                   size_t length);
     46     int setOperandSymmPerChannelQuantParams(
     47             uint32_t index, const ANeuralNetworksSymmPerChannelQuantParams& extraParams);
     48     int setOperandExtensionData(uint32_t index, const void* data, size_t length);
     49 
     50     int addOperation(ANeuralNetworksOperationType type, uint32_t inputCount, const uint32_t* inputs,
     51                      uint32_t outputCount, const uint32_t* outputs);
     52     int identifyInputsAndOutputs(uint32_t inputCount, const uint32_t* inputs, uint32_t outputCount,
     53                                  const uint32_t* outputs);
     54     int relaxComputationFloat32toFloat16(bool allow);
     55     bool isComputationFloat32RelaxedToFloat16() const { return mRelaxComputationFloat32toFloat16; }
     56 
     57     int finish();
     58     bool isFinished() const { return mCompletedModel; }
     59     bool isValid() const { return !mInvalidModel; }
     60 
     61     bool hasOEMOperation() const { return mHasOEMOperation; }
     62     bool hasExtensionOperation() const { return mHasExtensionOperation; }
     63 
     64     // explicitDeviceList is true if the list of devices was provided explicitly
     65     // via the ANeuralNetworksModel_createForDevices API (which has certain
     66     // special semantics) and false otherwise.
     67     int createCompilation(CompilationBuilder** compilation,
     68                           const std::vector<std::shared_ptr<Device>>& devices,
     69                           bool explicitDeviceList = false);
     70 
     71     void setHidlModel(Model* model) const;
     72 
     73     uint32_t operandCount() const {
     74         // We don't allow more than uint32_t worth of operands
     75         return static_cast<uint32_t>(mOperands.size());
     76     }
     77     uint32_t operationCount() const {
     78         // We don't allow more than uint32_t worth of operations
     79         return static_cast<uint32_t>(mOperations.size());
     80     }
     81     uint32_t inputCount() const { return static_cast<uint32_t>(mInputIndexes.size()); }
     82     uint32_t outputCount() const { return static_cast<uint32_t>(mOutputIndexes.size()); }
     83     uint32_t getInputOperandIndex(uint32_t i) const { return mInputIndexes[i]; }
     84     const std::vector<uint32_t>& getInputOperandIndexes() const { return mInputIndexes; }
     85     const Operand& getInputOperand(uint32_t i) const { return mOperands[getInputOperandIndex(i)]; }
     86     uint32_t getOutputOperandIndex(uint32_t i) const { return mOutputIndexes[i]; }
     87     const std::vector<uint32_t>& getOutputOperandIndexes() const { return mOutputIndexes; }
     88     const Operand& getOutputOperand(uint32_t i) const {
     89         return mOperands[getOutputOperandIndex(i)];
     90     }
     91     const Operand& getOperand(uint32_t index) const { return mOperands[index]; }
     92     const Operation& getOperation(uint32_t index) const { return mOperations[index]; }
     93     const MemoryTracker& getMemories() const { return mMemories; }
     94     const std::vector<Operation>& getOperations() const { return mOperations; }
     95     const std::vector<uint32_t>& getSortedOperationMapping() const {
     96         return mSortedOperationIndexMap;
     97     }
     98     const uint8_t* getPointerToOperandValue(uint32_t offset) const {
     99         return mSmallOperandValues.data() + offset;
    100     }
    101 
    102     int partitionTheWork(const std::vector<std::shared_ptr<Device>>& devices, uint32_t preference,
    103                          ExecutionPlan* plan) const;
    104 
    105    private:
    106     // TODO: move partitionTheWork, findBestDeviceForEachOperation,
    107     // sortIntoRunOrder to CompilationBuilder?
    108 
    109     int findBestDeviceForEachOperation(uint32_t preference,
    110                                        const std::vector<std::shared_ptr<Device>>& devices,
    111                                        std::vector<int>* bestDeviceForOperation) const;
    112     PerformanceInfo getPerformanceInfo(const std::shared_ptr<Device> device,
    113                                        uint32_t operationIndex) const;
    114 
    115     // Return true if either mCompleteModel or mInvalidModel is true.
    116     bool badState(const char* name);
    117 
    118     // Sorts the operations to be in the correct order for single threaded
    119     // node-at-a-time execution.
    120     void sortIntoRunOrder();
    121 
    122     // Copies the large values to a shared memory, if we have any.
    123     int copyLargeValuesToSharedMemory();
    124 
    125     // Returns the list of extension names and corresponding numeric "prefixes"
    126     // of operand and operation type values used in the model.
    127     //
    128     // Devices rely on this mapping to interpret extension types.
    129     std::vector<Model::ExtensionNameAndPrefix> getExtensionNameToPrefixMap() const;
    130 
    131     // The operations of the graph.
    132     std::vector<Operation> mOperations;
    133     // The mapping from sorted index to the original index of operations in mOperations.
    134     // mSortedOperationIndexMap is empty before sortIntoRunOrder() is called.
    135     std::vector<uint32_t> mSortedOperationIndexMap;
    136     // Is at least one of those operations an OEM_OPERATION?
    137     bool mHasOEMOperation = false;
    138     // Is at least one of those operations an extension operation?
    139     bool mHasExtensionOperation = false;
    140     // The description of the operands of the graph.
    141     std::vector<Operand> mOperands;
    142     // Specifies where to find the list of indexes identifying
    143     // the inputs and outputs of the model.  The offset is into
    144     // the mOperandIndexes table.
    145     std::vector<uint32_t> mInputIndexes;
    146     std::vector<uint32_t> mOutputIndexes;
    147 
    148     MemoryTracker mMemories;
    149 
    150     // The value of the small operands that are defined at model
    151     // creation time.
    152     std::vector<uint8_t> mSmallOperandValues;
    153 
    154     struct LargeValue {
    155         uint32_t operandIndex;
    156         const void* buffer;
    157     };
    158     // Operand index and buffer pointer for all the large operand values of this model.
    159     std::vector<LargeValue> mLargeOperandValues;
    160     // The shared memory region that will contain the large values.
    161     Memory mLargeValueMemory;
    162 
    163     // Once the model has been finished, we should not allow further
    164     // modifications to the model.
    165     bool mCompletedModel = false;
    166 
    167     // Any invalid manipulation of the model will mark the model invalid.
    168     // No further modifications are allowed to the model.
    169     bool mInvalidModel = false;
    170 
    171 
    172     // 'true' indicates TENSOR_FLOAT32 may be calculated with range and/or
    173     // precision as low as that of the IEEE 754 16-bit floating-point format.
    174     // 'false' indicates TENSOR_FLOAT32 must be calculated using at least the
    175     // range and precision of the IEEE 754 32-bit floating-point format.
    176     bool mRelaxComputationFloat32toFloat16 = false;
    177 };
    178 
    179 }  // namespace nn
    180 }  // namespace android
    181 
    182 #endif  // ANDROID_ML_NN_RUNTIME_MODEL_BUILDER_H
    183