1 /* 2 * Copyright (C) 2018 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #include "TestCompliance.h" 18 19 #include <gtest/gtest.h> 20 21 #include "ModelBuilder.h" 22 #include "TestNeuralNetworksWrapper.h" 23 #include "Utils.h" 24 25 namespace compliance_test { 26 27 using namespace ::android::nn; 28 using HidlModel = V1_2::Model; 29 using WrapperModel = test_wrapper::Model; 30 using WrapperOperandType = test_wrapper::OperandType; 31 using WrapperType = test_wrapper::Type; 32 33 // Creates a HIDL model from a creator of the wrapper model. 34 static HidlModel createHidlModel(std::function<void(WrapperModel*)> createModel) { 35 HidlModel hidlModel; 36 WrapperModel wrapperModel; 37 createModel(&wrapperModel); 38 EXPECT_EQ(wrapperModel.finish(), test_wrapper::Result::NO_ERROR); 39 ModelBuilder* modelBuilder = reinterpret_cast<ModelBuilder*>(wrapperModel.getHandle()); 40 modelBuilder->setHidlModel(&hidlModel); 41 return hidlModel; 42 } 43 44 void ComplianceTest::testAvailableSinceV1_2(std::function<void(WrapperModel*)> createModel) { 45 HidlModel model = createHidlModel(createModel); 46 ASSERT_FALSE(compliantWithV1_1(model)); 47 ASSERT_FALSE(compliantWithV1_0(model)); 48 } 49 50 void ComplianceTest::testAvailableSinceV1_1(std::function<void(WrapperModel*)> createModel) { 51 HidlModel model = createHidlModel(createModel); 52 ASSERT_TRUE(compliantWithV1_1(model)); 53 ASSERT_FALSE(compliantWithV1_0(model)); 54 } 55 56 void ComplianceTest::testAvailableSinceV1_0(std::function<void(WrapperModel*)> createModel) { 57 HidlModel model = createHidlModel(createModel); 58 ASSERT_TRUE(compliantWithV1_1(model)); 59 ASSERT_TRUE(compliantWithV1_0(model)); 60 } 61 62 static const WrapperOperandType kTypeTensorFloat(WrapperType::TENSOR_FLOAT32, {1}); 63 static const WrapperOperandType kTypeTensorFloatRank0(WrapperType::TENSOR_FLOAT32, {}); 64 static const WrapperOperandType kTypeInt32(WrapperType::INT32, {}); 65 66 TEST_F(ComplianceTest, Rank0TensorModelInput) { 67 int32_t act_init = 0; 68 // A simple ADD operation: op1 ADD op2 = op3, with op1 and op2 of rank 0. 69 testAvailableSinceV1_2([&act_init](WrapperModel* model) { 70 auto op1 = model->addOperand(&kTypeTensorFloatRank0); 71 auto op2 = model->addOperand(&kTypeTensorFloatRank0); 72 auto act = model->addOperand(&kTypeInt32); 73 auto op3 = model->addOperand(&kTypeTensorFloat); 74 model->setOperandValue(act, &act_init, sizeof(act_init)); 75 model->addOperation(ANEURALNETWORKS_ADD, {op1, op2, act}, {op3}); 76 model->identifyInputsAndOutputs({op1, op2}, {op3}); 77 assert(model->isValid()); 78 }); 79 } 80 81 TEST_F(ComplianceTest, Rank0TensorModelOutput) { 82 int32_t act_init = 0; 83 // A simple ADD operation: op1 ADD op2 = op3, with op3 of rank 0. 84 testAvailableSinceV1_2([&act_init](WrapperModel* model) { 85 auto op1 = model->addOperand(&kTypeTensorFloat); 86 auto op2 = model->addOperand(&kTypeTensorFloat); 87 auto act = model->addOperand(&kTypeInt32); 88 auto op3 = model->addOperand(&kTypeTensorFloatRank0); 89 model->setOperandValue(act, &act_init, sizeof(act_init)); 90 model->addOperation(ANEURALNETWORKS_ADD, {op1, op2, act}, {op3}); 91 model->identifyInputsAndOutputs({op1, op2}, {op3}); 92 assert(model->isValid()); 93 }); 94 } 95 96 TEST_F(ComplianceTest, Rank0TensorTemporaryVariable) { 97 int32_t act_init = 0; 98 // Two ADD operations: op1 ADD op2 = op3, op3 ADD op4 = op5, with op3 of rank 0. 99 testAvailableSinceV1_2([&act_init](WrapperModel* model) { 100 auto op1 = model->addOperand(&kTypeTensorFloat); 101 auto op2 = model->addOperand(&kTypeTensorFloat); 102 auto op3 = model->addOperand(&kTypeTensorFloatRank0); 103 auto op4 = model->addOperand(&kTypeTensorFloat); 104 auto op5 = model->addOperand(&kTypeTensorFloat); 105 auto act = model->addOperand(&kTypeInt32); 106 model->setOperandValue(act, &act_init, sizeof(act_init)); 107 model->addOperation(ANEURALNETWORKS_ADD, {op1, op2, act}, {op3}); 108 model->addOperation(ANEURALNETWORKS_ADD, {op3, op4, act}, {op5}); 109 model->identifyInputsAndOutputs({op1, op2, op4}, {op5}); 110 assert(model->isValid()); 111 }); 112 } 113 114 TEST_F(ComplianceTest, HardwareBuffer) { 115 const size_t memorySize = 20; 116 AHardwareBuffer_Desc desc{ 117 .width = memorySize, 118 .height = 1, 119 .layers = 1, 120 .format = AHARDWAREBUFFER_FORMAT_BLOB, 121 .usage = AHARDWAREBUFFER_USAGE_CPU_READ_OFTEN | AHARDWAREBUFFER_USAGE_CPU_WRITE_OFTEN, 122 }; 123 124 AHardwareBuffer* buffer = nullptr; 125 ASSERT_EQ(AHardwareBuffer_allocate(&desc, &buffer), 0); 126 test_wrapper::Memory memory(buffer); 127 ASSERT_TRUE(memory.isValid()); 128 129 int32_t act_init = 0; 130 131 // A simple ADD operation: op1 ADD op2 = op3, with op2 using a const hardware buffer. 132 testAvailableSinceV1_2([&memory, &act_init](WrapperModel* model) { 133 auto op1 = model->addOperand(&kTypeTensorFloat); 134 auto op2 = model->addOperand(&kTypeTensorFloat); 135 auto act = model->addOperand(&kTypeInt32); 136 auto op3 = model->addOperand(&kTypeTensorFloat); 137 model->setOperandValueFromMemory(op2, &memory, 0, sizeof(float)); 138 model->setOperandValue(act, &act_init, sizeof(act_init)); 139 model->addOperation(ANEURALNETWORKS_ADD, {op1, op2, act}, {op3}); 140 model->identifyInputsAndOutputs({op1}, {op3}); 141 assert(model->isValid()); 142 }); 143 144 AHardwareBuffer_release(buffer); 145 } 146 147 } // namespace compliance_test 148