Home | History | Annotate | Download | only in fuzzing
      1 /*
      2  * Copyright (C) 2019 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #ifndef ANDROID_FRAMEWORK_ML_NN_RUNTIME_TEST_FUZZING_RANDOM_GRAPH_GENERATOR_H
     18 #define ANDROID_FRAMEWORK_ML_NN_RUNTIME_TEST_FUZZING_RANDOM_GRAPH_GENERATOR_H
     19 
     20 #include <string>
     21 #include <vector>
     22 
     23 #include "TestNeuralNetworksWrapper.h"
     24 #include "fuzzing/RandomVariable.h"
     25 
     26 namespace android {
     27 namespace nn {
     28 namespace fuzzing_test {
     29 
     30 using test_wrapper::Type;
     31 using OperandBuffer = std::vector<int32_t>;
     32 
     33 struct OperandSignature;
     34 struct OperationSignature;
     35 class OperationManager;
     36 
     37 enum class RandomOperandType { INPUT = 0, OUTPUT = 1, INTERNAL = 2, CONST = 3 };
     38 
     39 struct RandomOperand {
     40     RandomOperandType type;
     41     Type dataType;
     42     float scale = 0.0f;
     43     int32_t zeroPoint = 0;
     44     std::vector<RandomVariable> dimensions;
     45     OperandBuffer buffer;
     46     std::vector<RandomVariable> randomBuffer;
     47 
     48     // The finalizer will be invoked after RandomVariableNetwork::freeze().
     49     // Operand buffer will be set during this step (if not set before).
     50     std::function<void(RandomOperand*)> finalizer = nullptr;
     51 
     52     // The index of the operand in the model as returned from model->addOperand(...).
     53     int32_t opIndex = -1;
     54     // The index of the input/output as specified in model->identifyInputsAndOutputs(...).
     55     int32_t ioIndex = -1;
     56 
     57     // If set true, this operand will be ignored during the accuracy checking step.
     58     bool doNotCheckAccuracy = false;
     59 
     60     // If set true, this operand will not be connected to another operation, e.g. if this operand is
     61     // an operation output, then it will not be used as an input to another operation, and will
     62     // eventually end up being a model output.
     63     bool doNotConnect = false;
     64 
     65     RandomOperand(const OperandSignature& op, Type dataType, uint32_t rank);
     66 
     67     // Resize the underlying operand buffer.
     68     template <typename T>
     69     void resizeBuffer(uint32_t len) {
     70         constexpr size_t valueSize = sizeof(OperandBuffer::value_type);
     71         uint32_t bufferSize = (sizeof(T) * len + valueSize - 1) / valueSize;
     72         buffer.resize(bufferSize);
     73     }
     74 
     75     // Get the operand value as the specified type. The caller is reponsible for making sure that
     76     // the index is not out of range.
     77     template <typename T>
     78     T& value(uint32_t index = 0) {
     79         return reinterpret_cast<T*>(buffer.data())[index];
     80     }
     81     template <>
     82     RandomVariable& value<RandomVariable>(uint32_t index) {
     83         return randomBuffer[index];
     84     }
     85 
     86     // The caller is reponsible for making sure that the operand is indeed a scalar.
     87     template <typename T>
     88     void setScalarValue(const T& val) {
     89         resizeBuffer<T>(/*len=*/1);
     90         value<T>() = val;
     91     }
     92 
     93     // Check if a directed edge between [other -> this] is valid. If yes, add the edge.
     94     // Where "this" must be of type INPUT and "other" must be of type OUTPUT.
     95     bool createEdgeIfValid(const RandomOperand& other) const;
     96 
     97     // The followings are only intended to be used after RandomVariableNetwork::freeze().
     98     std::vector<uint32_t> getDimensions() const;
     99     uint32_t getNumberOfElements() const;
    100     size_t getBufferSize() const;
    101 };
    102 
    103 struct RandomOperation {
    104     ANeuralNetworksOperationType opType;
    105     std::vector<std::shared_ptr<RandomOperand>> inputs;
    106     std::vector<std::shared_ptr<RandomOperand>> outputs;
    107     std::function<void(RandomOperation*)> finalizer = nullptr;
    108     RandomOperation(const OperationSignature& operation);
    109 };
    110 
    111 // TODO: Consider relative bias and mse on floating point data types?
    112 struct AccuracyCriterion {
    113     // We expect the driver results to be unbiased.
    114     // Formula: abs(sum_{i}(diff)) <= bias, where
    115     // * fixed point: diff = actual - expected
    116     // * floating point: diff = (actual - expected) / max(1, abs(expected))
    117     float bias = std::numeric_limits<float>::max();
    118 
    119     // Set the threshold on Mean Square Error (MSE).
    120     // Formula: sum_{i}(diff ^ 2) / sum(1) <= mse
    121     float mse = std::numeric_limits<float>::max();
    122 
    123     // We also set accuracy thresholds on each element to detect any particular edge cases that may
    124     // be shadowed in bias or MSE. We use the similar approach as our CTS unit tests, but with much
    125     // relaxed criterion.
    126     // Formula: abs(actual - expected) <= atol + rtol * abs(expected)
    127     //   where atol stands for Absolute TOLerance and rtol for Relative TOLerance.
    128     float atol = 0.0f;
    129     float rtol = 0.0f;
    130 };
    131 
    132 struct AccuracyCriteria {
    133     AccuracyCriterion float32;
    134     AccuracyCriterion float16;
    135     AccuracyCriterion int32;
    136     AccuracyCriterion quant8Asymm;
    137     AccuracyCriterion quant8Symm;
    138     AccuracyCriterion quant16Asymm;
    139     AccuracyCriterion quant16Symm;
    140 };
    141 
    142 // The main interface of the random graph generator.
    143 class RandomGraph {
    144    public:
    145     RandomGraph() = default;
    146 
    147     // Generate a random graph with numOperations and dimensionRange from a seed.
    148     bool generate(uint32_t seed, uint32_t numOperations, uint32_t dimensionRange);
    149 
    150     // Create a NDK model from the random graph.
    151     void createModel(test_wrapper::Model* model);
    152 
    153     // Set the input/output buffers to an NDK execution object. The input buffer resides in
    154     // RandomOperand.buffer, the output buffer is either provided by "buffers" argument, or set
    155     // buffers to nullptr to use RandomOperand.buffer to record reference result.
    156     void createRequest(test_wrapper::Execution* execution,
    157                        std::vector<OperandBuffer>* buffers = nullptr);
    158 
    159     // Check if the results in buffers meet the given accuracy criteria.
    160     void checkResults(const std::vector<OperandBuffer>& buffers,
    161                       const AccuracyCriteria& criteria) const;
    162 
    163     // Dump the generated random graph to a spec file for debugging and visualization purpose.
    164     void dumpSpecFile(std::string filename, std::string testname);
    165 
    166     const std::vector<RandomOperation>& getOperations() const { return mOperations; }
    167 
    168    private:
    169     // Generate the graph structure.
    170     bool generateGraph(uint32_t numOperations);
    171 
    172     // Fill in random values for dimensions, constants, and inputs.
    173     bool generateValue();
    174 
    175     std::vector<RandomOperation> mOperations;
    176     std::vector<std::shared_ptr<RandomOperand>> mOperands;
    177 };
    178 
    179 }  // namespace fuzzing_test
    180 }  // namespace nn
    181 }  // namespace android
    182 
    183 #endif  // ANDROID_FRAMEWORK_ML_NN_RUNTIME_TEST_FUZZING_RANDOM_GRAPH_GENERATOR_H
    184