Home | History | Annotate | Download | only in models
      1 // clang-format off
      2 // Generated file (from: lstm2_state2_float16.mod.py). Do not edit
      3 void CreateModel(Model *model) {
      4   OperandType type0(Type::TENSOR_FLOAT16, {1, 2});
      5   OperandType type1(Type::TENSOR_FLOAT16, {4, 2});
      6   OperandType type2(Type::TENSOR_FLOAT16, {4, 4});
      7   OperandType type3(Type::TENSOR_FLOAT16, {0});
      8   OperandType type4(Type::TENSOR_FLOAT16, {4});
      9   OperandType type5(Type::TENSOR_FLOAT16, {0, 0});
     10   OperandType type6(Type::TENSOR_FLOAT16, {1, 4});
     11   OperandType type7(Type::INT32, {});
     12   OperandType type8(Type::FLOAT16, {});
     13   OperandType type9(Type::TENSOR_FLOAT16, {1, 12});
     14   // Phase 1, operands
     15   auto input = model->addOperand(&type0);
     16   auto input_to_input_weights = model->addOperand(&type1);
     17   auto input_to_forget_weights = model->addOperand(&type1);
     18   auto input_to_cell_weights = model->addOperand(&type1);
     19   auto input_to_output_weights = model->addOperand(&type1);
     20   auto recurrent_to_intput_weights = model->addOperand(&type2);
     21   auto recurrent_to_forget_weights = model->addOperand(&type2);
     22   auto recurrent_to_cell_weights = model->addOperand(&type2);
     23   auto recurrent_to_output_weights = model->addOperand(&type2);
     24   auto cell_to_input_weights = model->addOperand(&type3);
     25   auto cell_to_forget_weights = model->addOperand(&type4);
     26   auto cell_to_output_weights = model->addOperand(&type4);
     27   auto input_gate_bias = model->addOperand(&type4);
     28   auto forget_gate_bias = model->addOperand(&type4);
     29   auto cell_gate_bias = model->addOperand(&type4);
     30   auto output_gate_bias = model->addOperand(&type4);
     31   auto projection_weights = model->addOperand(&type5);
     32   auto projection_bias = model->addOperand(&type3);
     33   auto output_state_in = model->addOperand(&type6);
     34   auto cell_state_in = model->addOperand(&type6);
     35   auto activation_param = model->addOperand(&type7);
     36   auto cell_clip_param = model->addOperand(&type8);
     37   auto proj_clip_param = model->addOperand(&type8);
     38   auto scratch_buffer = model->addOperand(&type9);
     39   auto output_state_out = model->addOperand(&type6);
     40   auto cell_state_out = model->addOperand(&type6);
     41   auto output = model->addOperand(&type6);
     42   // Phase 2, operations
     43   static int32_t activation_param_init[] = {4};
     44   model->setOperandValue(activation_param, activation_param_init, sizeof(int32_t) * 1);
     45   static _Float16 cell_clip_param_init[] = {0.0f};
     46   model->setOperandValue(cell_clip_param, cell_clip_param_init, sizeof(_Float16) * 1);
     47   static _Float16 proj_clip_param_init[] = {0.0f};
     48   model->setOperandValue(proj_clip_param, proj_clip_param_init, sizeof(_Float16) * 1);
     49   model->addOperation(ANEURALNETWORKS_LSTM, {input, input_to_input_weights, input_to_forget_weights, input_to_cell_weights, input_to_output_weights, recurrent_to_intput_weights, recurrent_to_forget_weights, recurrent_to_cell_weights, recurrent_to_output_weights, cell_to_input_weights, cell_to_forget_weights, cell_to_output_weights, input_gate_bias, forget_gate_bias, cell_gate_bias, output_gate_bias, projection_weights, projection_bias, output_state_in, cell_state_in, activation_param, cell_clip_param, proj_clip_param}, {scratch_buffer, output_state_out, cell_state_out, output});
     50   // Phase 3, inputs and outputs
     51   model->identifyInputsAndOutputs(
     52     {input, input_to_input_weights, input_to_forget_weights, input_to_cell_weights, input_to_output_weights, recurrent_to_intput_weights, recurrent_to_forget_weights, recurrent_to_cell_weights, recurrent_to_output_weights, cell_to_input_weights, cell_to_forget_weights, cell_to_output_weights, input_gate_bias, forget_gate_bias, cell_gate_bias, output_gate_bias, projection_weights, projection_bias, output_state_in, cell_state_in},
     53     {scratch_buffer, output_state_out, cell_state_out, output});
     54   assert(model->isValid());
     55 }
     56 
     57 inline bool is_ignored(int i) {
     58   static std::set<int> ignore = {0, 1, 2};
     59   return ignore.find(i) != ignore.end();
     60 }
     61 
     62 void CreateModel_dynamic_output_shape(Model *model) {
     63   OperandType type0(Type::TENSOR_FLOAT16, {1, 2});
     64   OperandType type1(Type::TENSOR_FLOAT16, {4, 2});
     65   OperandType type2(Type::TENSOR_FLOAT16, {4, 4});
     66   OperandType type3(Type::TENSOR_FLOAT16, {0});
     67   OperandType type4(Type::TENSOR_FLOAT16, {4});
     68   OperandType type5(Type::TENSOR_FLOAT16, {0, 0});
     69   OperandType type6(Type::TENSOR_FLOAT16, {1, 4});
     70   OperandType type7(Type::INT32, {});
     71   OperandType type8(Type::FLOAT16, {});
     72   // Phase 1, operands
     73   auto input = model->addOperand(&type0);
     74   auto input_to_input_weights = model->addOperand(&type1);
     75   auto input_to_forget_weights = model->addOperand(&type1);
     76   auto input_to_cell_weights = model->addOperand(&type1);
     77   auto input_to_output_weights = model->addOperand(&type1);
     78   auto recurrent_to_intput_weights = model->addOperand(&type2);
     79   auto recurrent_to_forget_weights = model->addOperand(&type2);
     80   auto recurrent_to_cell_weights = model->addOperand(&type2);
     81   auto recurrent_to_output_weights = model->addOperand(&type2);
     82   auto cell_to_input_weights = model->addOperand(&type3);
     83   auto cell_to_forget_weights = model->addOperand(&type4);
     84   auto cell_to_output_weights = model->addOperand(&type4);
     85   auto input_gate_bias = model->addOperand(&type4);
     86   auto forget_gate_bias = model->addOperand(&type4);
     87   auto cell_gate_bias = model->addOperand(&type4);
     88   auto output_gate_bias = model->addOperand(&type4);
     89   auto projection_weights = model->addOperand(&type5);
     90   auto projection_bias = model->addOperand(&type3);
     91   auto output_state_in = model->addOperand(&type6);
     92   auto cell_state_in = model->addOperand(&type6);
     93   auto activation_param = model->addOperand(&type7);
     94   auto cell_clip_param = model->addOperand(&type8);
     95   auto proj_clip_param = model->addOperand(&type8);
     96   auto scratch_buffer = model->addOperand(&type5);
     97   auto output_state_out = model->addOperand(&type5);
     98   auto cell_state_out = model->addOperand(&type5);
     99   auto output = model->addOperand(&type5);
    100   // Phase 2, operations
    101   static int32_t activation_param_init[] = {4};
    102   model->setOperandValue(activation_param, activation_param_init, sizeof(int32_t) * 1);
    103   static _Float16 cell_clip_param_init[] = {0.0f};
    104   model->setOperandValue(cell_clip_param, cell_clip_param_init, sizeof(_Float16) * 1);
    105   static _Float16 proj_clip_param_init[] = {0.0f};
    106   model->setOperandValue(proj_clip_param, proj_clip_param_init, sizeof(_Float16) * 1);
    107   model->addOperation(ANEURALNETWORKS_LSTM, {input, input_to_input_weights, input_to_forget_weights, input_to_cell_weights, input_to_output_weights, recurrent_to_intput_weights, recurrent_to_forget_weights, recurrent_to_cell_weights, recurrent_to_output_weights, cell_to_input_weights, cell_to_forget_weights, cell_to_output_weights, input_gate_bias, forget_gate_bias, cell_gate_bias, output_gate_bias, projection_weights, projection_bias, output_state_in, cell_state_in, activation_param, cell_clip_param, proj_clip_param}, {scratch_buffer, output_state_out, cell_state_out, output});
    108   // Phase 3, inputs and outputs
    109   model->identifyInputsAndOutputs(
    110     {input, input_to_input_weights, input_to_forget_weights, input_to_cell_weights, input_to_output_weights, recurrent_to_intput_weights, recurrent_to_forget_weights, recurrent_to_cell_weights, recurrent_to_output_weights, cell_to_input_weights, cell_to_forget_weights, cell_to_output_weights, input_gate_bias, forget_gate_bias, cell_gate_bias, output_gate_bias, projection_weights, projection_bias, output_state_in, cell_state_in},
    111     {scratch_buffer, output_state_out, cell_state_out, output});
    112   assert(model->isValid());
    113 }
    114 
    115 inline bool is_ignored_dynamic_output_shape(int i) {
    116   static std::set<int> ignore = {0, 1, 2};
    117   return ignore.find(i) != ignore.end();
    118 }
    119 
    120