Home | History | Annotate | Download | only in models
      1 // clang-format off
      2 // Generated file (from: lstm3_state.mod.py). Do not edit
      3 void CreateModel(Model *model) {
      4   OperandType type0(Type::TENSOR_FLOAT32, {2, 5});
      5   OperandType type1(Type::TENSOR_FLOAT32, {20, 5});
      6   OperandType type10(Type::TENSOR_FLOAT32, {2, 80});
      7   OperandType type2(Type::TENSOR_FLOAT32, {20, 16});
      8   OperandType type3(Type::TENSOR_FLOAT32, {20});
      9   OperandType type4(Type::TENSOR_FLOAT32, {16, 20});
     10   OperandType type5(Type::TENSOR_FLOAT32, {0});
     11   OperandType type6(Type::TENSOR_FLOAT32, {2, 16});
     12   OperandType type7(Type::TENSOR_FLOAT32, {2, 20});
     13   OperandType type8(Type::INT32, {});
     14   OperandType type9(Type::FLOAT32, {});
     15   // Phase 1, operands
     16   auto input = model->addOperand(&type0);
     17   auto input_to_input_weights = model->addOperand(&type1);
     18   auto input_to_forget_weights = model->addOperand(&type1);
     19   auto input_to_cell_weights = model->addOperand(&type1);
     20   auto input_to_output_weights = model->addOperand(&type1);
     21   auto recurrent_to_intput_weights = model->addOperand(&type2);
     22   auto recurrent_to_forget_weights = model->addOperand(&type2);
     23   auto recurrent_to_cell_weights = model->addOperand(&type2);
     24   auto recurrent_to_output_weights = model->addOperand(&type2);
     25   auto cell_to_input_weights = model->addOperand(&type3);
     26   auto cell_to_forget_weights = model->addOperand(&type3);
     27   auto cell_to_output_weights = model->addOperand(&type3);
     28   auto input_gate_bias = model->addOperand(&type3);
     29   auto forget_gate_bias = model->addOperand(&type3);
     30   auto cell_gate_bias = model->addOperand(&type3);
     31   auto output_gate_bias = model->addOperand(&type3);
     32   auto projection_weights = model->addOperand(&type4);
     33   auto projection_bias = model->addOperand(&type5);
     34   auto output_state_in = model->addOperand(&type6);
     35   auto cell_state_in = model->addOperand(&type7);
     36   auto activation_param = model->addOperand(&type8);
     37   auto cell_clip_param = model->addOperand(&type9);
     38   auto proj_clip_param = model->addOperand(&type9);
     39   auto scratch_buffer = model->addOperand(&type10);
     40   auto output_state_out = model->addOperand(&type6);
     41   auto cell_state_out = model->addOperand(&type7);
     42   auto output = model->addOperand(&type6);
     43   // Phase 2, operations
     44   static int32_t activation_param_init[] = {4};
     45   model->setOperandValue(activation_param, activation_param_init, sizeof(int32_t) * 1);
     46   static float cell_clip_param_init[] = {0.0f};
     47   model->setOperandValue(cell_clip_param, cell_clip_param_init, sizeof(float) * 1);
     48   static float proj_clip_param_init[] = {0.0f};
     49   model->setOperandValue(proj_clip_param, proj_clip_param_init, sizeof(float) * 1);
     50   model->addOperation(ANEURALNETWORKS_LSTM, {input, input_to_input_weights, input_to_forget_weights, input_to_cell_weights, input_to_output_weights, recurrent_to_intput_weights, recurrent_to_forget_weights, recurrent_to_cell_weights, recurrent_to_output_weights, cell_to_input_weights, cell_to_forget_weights, cell_to_output_weights, input_gate_bias, forget_gate_bias, cell_gate_bias, output_gate_bias, projection_weights, projection_bias, output_state_in, cell_state_in, activation_param, cell_clip_param, proj_clip_param}, {scratch_buffer, output_state_out, cell_state_out, output});
     51   // Phase 3, inputs and outputs
     52   model->identifyInputsAndOutputs(
     53     {input, input_to_input_weights, input_to_forget_weights, input_to_cell_weights, input_to_output_weights, recurrent_to_intput_weights, recurrent_to_forget_weights, recurrent_to_cell_weights, recurrent_to_output_weights, cell_to_input_weights, cell_to_forget_weights, cell_to_output_weights, input_gate_bias, forget_gate_bias, cell_gate_bias, output_gate_bias, projection_weights, projection_bias, output_state_in, cell_state_in},
     54     {scratch_buffer, output_state_out, cell_state_out, output});
     55   assert(model->isValid());
     56 }
     57 
     58 inline bool is_ignored(int i) {
     59   static std::set<int> ignore = {0};
     60   return ignore.find(i) != ignore.end();
     61 }
     62 
     63 void CreateModel_dynamic_output_shape(Model *model) {
     64   OperandType type0(Type::TENSOR_FLOAT32, {2, 5});
     65   OperandType type1(Type::TENSOR_FLOAT32, {20, 5});
     66   OperandType type11(Type::TENSOR_FLOAT32, {0, 0});
     67   OperandType type2(Type::TENSOR_FLOAT32, {20, 16});
     68   OperandType type3(Type::TENSOR_FLOAT32, {20});
     69   OperandType type4(Type::TENSOR_FLOAT32, {16, 20});
     70   OperandType type5(Type::TENSOR_FLOAT32, {0});
     71   OperandType type6(Type::TENSOR_FLOAT32, {2, 16});
     72   OperandType type7(Type::TENSOR_FLOAT32, {2, 20});
     73   OperandType type8(Type::INT32, {});
     74   OperandType type9(Type::FLOAT32, {});
     75   // Phase 1, operands
     76   auto input = model->addOperand(&type0);
     77   auto input_to_input_weights = model->addOperand(&type1);
     78   auto input_to_forget_weights = model->addOperand(&type1);
     79   auto input_to_cell_weights = model->addOperand(&type1);
     80   auto input_to_output_weights = model->addOperand(&type1);
     81   auto recurrent_to_intput_weights = model->addOperand(&type2);
     82   auto recurrent_to_forget_weights = model->addOperand(&type2);
     83   auto recurrent_to_cell_weights = model->addOperand(&type2);
     84   auto recurrent_to_output_weights = model->addOperand(&type2);
     85   auto cell_to_input_weights = model->addOperand(&type3);
     86   auto cell_to_forget_weights = model->addOperand(&type3);
     87   auto cell_to_output_weights = model->addOperand(&type3);
     88   auto input_gate_bias = model->addOperand(&type3);
     89   auto forget_gate_bias = model->addOperand(&type3);
     90   auto cell_gate_bias = model->addOperand(&type3);
     91   auto output_gate_bias = model->addOperand(&type3);
     92   auto projection_weights = model->addOperand(&type4);
     93   auto projection_bias = model->addOperand(&type5);
     94   auto output_state_in = model->addOperand(&type6);
     95   auto cell_state_in = model->addOperand(&type7);
     96   auto activation_param = model->addOperand(&type8);
     97   auto cell_clip_param = model->addOperand(&type9);
     98   auto proj_clip_param = model->addOperand(&type9);
     99   auto scratch_buffer = model->addOperand(&type11);
    100   auto output_state_out = model->addOperand(&type11);
    101   auto cell_state_out = model->addOperand(&type11);
    102   auto output = model->addOperand(&type11);
    103   // Phase 2, operations
    104   static int32_t activation_param_init[] = {4};
    105   model->setOperandValue(activation_param, activation_param_init, sizeof(int32_t) * 1);
    106   static float cell_clip_param_init[] = {0.0f};
    107   model->setOperandValue(cell_clip_param, cell_clip_param_init, sizeof(float) * 1);
    108   static float proj_clip_param_init[] = {0.0f};
    109   model->setOperandValue(proj_clip_param, proj_clip_param_init, sizeof(float) * 1);
    110   model->addOperation(ANEURALNETWORKS_LSTM, {input, input_to_input_weights, input_to_forget_weights, input_to_cell_weights, input_to_output_weights, recurrent_to_intput_weights, recurrent_to_forget_weights, recurrent_to_cell_weights, recurrent_to_output_weights, cell_to_input_weights, cell_to_forget_weights, cell_to_output_weights, input_gate_bias, forget_gate_bias, cell_gate_bias, output_gate_bias, projection_weights, projection_bias, output_state_in, cell_state_in, activation_param, cell_clip_param, proj_clip_param}, {scratch_buffer, output_state_out, cell_state_out, output});
    111   // Phase 3, inputs and outputs
    112   model->identifyInputsAndOutputs(
    113     {input, input_to_input_weights, input_to_forget_weights, input_to_cell_weights, input_to_output_weights, recurrent_to_intput_weights, recurrent_to_forget_weights, recurrent_to_cell_weights, recurrent_to_output_weights, cell_to_input_weights, cell_to_forget_weights, cell_to_output_weights, input_gate_bias, forget_gate_bias, cell_gate_bias, output_gate_bias, projection_weights, projection_bias, output_state_in, cell_state_in},
    114     {scratch_buffer, output_state_out, cell_state_out, output});
    115   assert(model->isValid());
    116 }
    117 
    118 inline bool is_ignored_dynamic_output_shape(int i) {
    119   static std::set<int> ignore = {0};
    120   return ignore.find(i) != ignore.end();
    121 }
    122 
    123