Home | History | Annotate | Download | only in models
      1 // clang-format off
      2 // Generated file (from: strided_slice_float16.mod.py). Do not edit
      3 void CreateModel(Model *model) {
      4   OperandType type0(Type::TENSOR_FLOAT16, {2, 3});
      5   OperandType type1(Type::TENSOR_INT32, {2});
      6   OperandType type2(Type::INT32, {});
      7   OperandType type3(Type::TENSOR_FLOAT16, {1, 2});
      8   // Phase 1, operands
      9   auto input = model->addOperand(&type0);
     10   auto begins = model->addOperand(&type1);
     11   auto ends = model->addOperand(&type1);
     12   auto strides = model->addOperand(&type1);
     13   auto beginMask = model->addOperand(&type2);
     14   auto endMask = model->addOperand(&type2);
     15   auto shrinkAxisMask = model->addOperand(&type2);
     16   auto output = model->addOperand(&type3);
     17   // Phase 2, operations
     18   static int32_t begins_init[] = {0, 0};
     19   model->setOperandValue(begins, begins_init, sizeof(int32_t) * 2);
     20   static int32_t ends_init[] = {2, 3};
     21   model->setOperandValue(ends, ends_init, sizeof(int32_t) * 2);
     22   static int32_t strides_init[] = {2, 2};
     23   model->setOperandValue(strides, strides_init, sizeof(int32_t) * 2);
     24   static int32_t beginMask_init[] = {0};
     25   model->setOperandValue(beginMask, beginMask_init, sizeof(int32_t) * 1);
     26   static int32_t endMask_init[] = {0};
     27   model->setOperandValue(endMask, endMask_init, sizeof(int32_t) * 1);
     28   static int32_t shrinkAxisMask_init[] = {0};
     29   model->setOperandValue(shrinkAxisMask, shrinkAxisMask_init, sizeof(int32_t) * 1);
     30   model->addOperation(ANEURALNETWORKS_STRIDED_SLICE, {input, begins, ends, strides, beginMask, endMask, shrinkAxisMask}, {output});
     31   // Phase 3, inputs and outputs
     32   model->identifyInputsAndOutputs(
     33     {input},
     34     {output});
     35   assert(model->isValid());
     36 }
     37 
     38 inline bool is_ignored(int i) {
     39   static std::set<int> ignore = {};
     40   return ignore.find(i) != ignore.end();
     41 }
     42 
     43 void CreateModel_dynamic_output_shape(Model *model) {
     44   OperandType type0(Type::TENSOR_FLOAT16, {2, 3});
     45   OperandType type1(Type::TENSOR_INT32, {2});
     46   OperandType type2(Type::INT32, {});
     47   OperandType type4(Type::TENSOR_FLOAT16, {0, 0});
     48   // Phase 1, operands
     49   auto input = model->addOperand(&type0);
     50   auto begins = model->addOperand(&type1);
     51   auto ends = model->addOperand(&type1);
     52   auto strides = model->addOperand(&type1);
     53   auto beginMask = model->addOperand(&type2);
     54   auto endMask = model->addOperand(&type2);
     55   auto shrinkAxisMask = model->addOperand(&type2);
     56   auto output = model->addOperand(&type4);
     57   // Phase 2, operations
     58   static int32_t begins_init[] = {0, 0};
     59   model->setOperandValue(begins, begins_init, sizeof(int32_t) * 2);
     60   static int32_t ends_init[] = {2, 3};
     61   model->setOperandValue(ends, ends_init, sizeof(int32_t) * 2);
     62   static int32_t strides_init[] = {2, 2};
     63   model->setOperandValue(strides, strides_init, sizeof(int32_t) * 2);
     64   static int32_t beginMask_init[] = {0};
     65   model->setOperandValue(beginMask, beginMask_init, sizeof(int32_t) * 1);
     66   static int32_t endMask_init[] = {0};
     67   model->setOperandValue(endMask, endMask_init, sizeof(int32_t) * 1);
     68   static int32_t shrinkAxisMask_init[] = {0};
     69   model->setOperandValue(shrinkAxisMask, shrinkAxisMask_init, sizeof(int32_t) * 1);
     70   model->addOperation(ANEURALNETWORKS_STRIDED_SLICE, {input, begins, ends, strides, beginMask, endMask, shrinkAxisMask}, {output});
     71   // Phase 3, inputs and outputs
     72   model->identifyInputsAndOutputs(
     73     {input},
     74     {output});
     75   assert(model->isValid());
     76 }
     77 
     78 inline bool is_ignored_dynamic_output_shape(int i) {
     79   static std::set<int> ignore = {};
     80   return ignore.find(i) != ignore.end();
     81 }
     82 
     83