Home | History | Annotate | Download | only in V1_0
      1 #
      2 # Copyright (C) 2017 The Android Open Source Project
      3 #
      4 # Licensed under the Apache License, Version 2.0 (the "License");
      5 # you may not use this file except in compliance with the License.
      6 # You may obtain a copy of the License at
      7 #
      8 #      http://www.apache.org/licenses/LICENSE-2.0
      9 #
     10 # Unless required by applicable law or agreed to in writing, software
     11 # distributed under the License is distributed on an "AS IS" BASIS,
     12 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13 # See the License for the specific language governing permissions and
     14 # limitations under the License.
     15 #
     16 
     17 batches = 2
     18 features = 4
     19 rank = 1
     20 units = int(features / rank)
     21 input_size = 3
     22 memory_size = 10
     23 
     24 model = Model()
     25 
     26 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size))
     27 weights_feature = Input("weights_feature", "TENSOR_FLOAT32", "{%d, %d}" % (features, input_size))
     28 weights_time = Input("weights_time", "TENSOR_FLOAT32", "{%d, %d}" % (features, memory_size))
     29 bias = Input("bias", "TENSOR_FLOAT32", "{%d}" % (units))
     30 state_in = Input("state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*features))
     31 rank_param = Int32Scalar("rank_param", rank)
     32 activation_param = Int32Scalar("activation_param", 0)
     33 state_out = IgnoredOutput("state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*features))
     34 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units))
     35 
     36 model = model.Operation("SVDF", input, weights_feature, weights_time, bias, state_in,
     37                         rank_param, activation_param).To([state_out, output])
     38 
     39 input0 = {
     40     input: [],
     41     weights_feature: [
     42         -0.31930989, -0.36118156, 0.0079667, 0.37613347,
     43       0.22197971, 0.12416199, 0.27901134, 0.27557442,
     44       0.3905206, -0.36137494, -0.06634006, -0.10640851
     45     ],
     46     weights_time: [
     47         -0.31930989, 0.37613347,  0.27901134,  -0.36137494, -0.36118156,
     48       0.22197971,  0.27557442,  -0.06634006, 0.0079667,   0.12416199,
     49 
     50        0.3905206,   -0.10640851, -0.0976817,  0.15294972,  0.39635518,
     51       -0.02702999, 0.39296314,  0.15785322,  0.21931258,  0.31053296,
     52 
     53        -0.36916667, 0.38031587,  -0.21580373, 0.27072677,  0.23622236,
     54       0.34936687,  0.18174365,  0.35907319,  -0.17493086, 0.324846,
     55 
     56        -0.10781813, 0.27201805,  0.14324132,  -0.23681851, -0.27115166,
     57       -0.01580888, -0.14943552, 0.15465137,  0.09784451,  -0.0337657
     58     ],
     59     bias: [],
     60     state_in: [0 for _ in range(batches * memory_size * features)],
     61 }
     62 
     63 test_inputs = [
     64     0.12609188,  -0.46347019, -0.89598465,
     65     0.12609188,  -0.46347019, -0.89598465,
     66 
     67     0.14278367,  -1.64410412, -0.75222826,
     68     0.14278367,  -1.64410412, -0.75222826,
     69 
     70     0.49837467,  0.19278903,  0.26584083,
     71     0.49837467,  0.19278903,  0.26584083,
     72 
     73     -0.11186574, 0.13164264,  -0.05349274,
     74     -0.11186574, 0.13164264,  -0.05349274,
     75 
     76     -0.68892461, 0.37783599,  0.18263303,
     77     -0.68892461, 0.37783599,  0.18263303,
     78 
     79     -0.81299269, -0.86831826, 1.43940818,
     80     -0.81299269, -0.86831826, 1.43940818,
     81 
     82     -1.45006323, -0.82251364, -1.69082689,
     83     -1.45006323, -0.82251364, -1.69082689,
     84 
     85     0.03966608,  -0.24936394, -0.77526885,
     86     0.03966608,  -0.24936394, -0.77526885,
     87 
     88     0.11771342,  -0.23761693, -0.65898693,
     89     0.11771342,  -0.23761693, -0.65898693,
     90 
     91     -0.89477462, 1.67204106,  -0.53235275,
     92     -0.89477462, 1.67204106,  -0.53235275
     93 ]
     94 
     95 golden_outputs = [
     96     0.014899,    -0.0517661, -0.143725, -0.00271883,
     97     0.014899,    -0.0517661, -0.143725, -0.00271883,
     98 
     99     0.068281,    -0.162217,  -0.152268, 0.00323521,
    100     0.068281,    -0.162217,  -0.152268, 0.00323521,
    101 
    102     -0.0317821,  -0.0333089, 0.0609602, 0.0333759,
    103     -0.0317821,  -0.0333089, 0.0609602, 0.0333759,
    104 
    105     -0.00623099, -0.077701,  -0.391193, -0.0136691,
    106     -0.00623099, -0.077701,  -0.391193, -0.0136691,
    107 
    108     0.201551,    -0.164607,  -0.179462, -0.0592739,
    109     0.201551,    -0.164607,  -0.179462, -0.0592739,
    110 
    111     0.0886511,   -0.0875401, -0.269283, 0.0281379,
    112     0.0886511,   -0.0875401, -0.269283, 0.0281379,
    113 
    114     -0.201174,   -0.586145,  -0.628624, -0.0330412,
    115     -0.201174,   -0.586145,  -0.628624, -0.0330412,
    116 
    117     -0.0839096,  -0.299329,  0.108746,  0.109808,
    118     -0.0839096,  -0.299329,  0.108746,  0.109808,
    119 
    120     0.419114,    -0.237824,  -0.422627, 0.175115,
    121     0.419114,    -0.237824,  -0.422627, 0.175115,
    122 
    123     0.36726,     -0.522303,  -0.456502, -0.175475,
    124     0.36726,     -0.522303,  -0.456502, -0.175475
    125 ]
    126 
    127 output0 = {state_out: [0 for _ in range(batches * memory_size * features)],
    128            output: []}
    129 
    130 # TODO: enable more data points after fixing the reference issue
    131 for i in range(1):
    132   batch_start = i * input_size * batches
    133   batch_end = batch_start + input_size * batches
    134   input0[input] = test_inputs[batch_start:batch_end]
    135   golden_start = i * units * batches
    136   golden_end = golden_start + units * batches
    137   output0[output] = golden_outputs[golden_start:golden_end]
    138   Example((input0, output0))
    139