Home | History | Annotate | Download | only in V1_2
      1 #
      2 # Copyright (C) 2018 The Android Open Source Project
      3 #
      4 # Licensed under the Apache License, Version 2.0 (the "License");
      5 # you may not use this file except in compliance with the License.
      6 # You may obtain a copy of the License at
      7 #
      8 #      http://www.apache.org/licenses/LICENSE-2.0
      9 #
     10 # Unless required by applicable law or agreed to in writing, software
     11 # distributed under the License is distributed on an "AS IS" BASIS,
     12 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13 # See the License for the specific language governing permissions and
     14 # limitations under the License.
     15 #
     16 def test(name, input0, input1, output0, input0_data, input1_data, output_data, do_variations=True):
     17   model = Model().Operation("GREATER_EQUAL", input0, input1).To(output0)
     18   example = Example({
     19       input0: input0_data,
     20       input1: input1_data,
     21       output0: output_data,
     22   }, model=model, name=name)
     23   if do_variations:
     24       example.AddVariations("int32", "float16", "relaxed")
     25 
     26 test(
     27     name="simple",
     28     input0=Input("input0", "TENSOR_FLOAT32", "{3}"),
     29     input1=Input("input1", "TENSOR_FLOAT32", "{3}"),
     30     output0=Output("output0", "TENSOR_BOOL8", "{3}"),
     31     input0_data=[5, 7, 10],
     32     input1_data=[10, 7, 5],
     33     output_data=[False, True, True],
     34 )
     35 
     36 test(
     37     name="broadcast",
     38     input0=Input("input0", "TENSOR_FLOAT32", "{2, 1}"),
     39     input1=Input("input1", "TENSOR_FLOAT32", "{2}"),
     40     output0=Output("output0", "TENSOR_BOOL8", "{2, 2}"),
     41     input0_data=[5, 10],
     42     input1_data=[10, 5],
     43     output_data=[False, True, True, True],
     44 )
     45 
     46 test(
     47     name="quantized_different_scale",
     48     input0=Input("input0", ("TENSOR_QUANT8_ASYMM", [3], 1.0, 128)),
     49     input1=Input("input1", ("TENSOR_QUANT8_ASYMM", [1], 2.0, 128)),
     50     output0=Output("output0", "TENSOR_BOOL8", "{3}"),
     51     input0_data=[129, 130, 131], # effectively 1, 2, 3
     52     input1_data=[129],           # effectively 2
     53     output_data=[False, True, True],
     54     do_variations=False,
     55 )
     56 
     57 test(
     58     name="quantized_different_zero_point",
     59     input0=Input("input0", ("TENSOR_QUANT8_ASYMM", [3], 1.0, 128)),
     60     input1=Input("input1", ("TENSOR_QUANT8_ASYMM", [1], 1.0, 129)),
     61     output0=Output("output0", "TENSOR_BOOL8", "{3}"),
     62     input0_data=[129, 130, 131], # effectively 1, 2, 3
     63     input1_data=[131],           # effectively 2
     64     output_data=[False, True, True],
     65     do_variations=False,
     66 )
     67 
     68 test(
     69     name="quantized_overflow_second_input_if_requantized",
     70     input0=Input("input0", ("TENSOR_QUANT8_ASYMM", [1], 1.64771, 31)),
     71     input1=Input("input1", ("TENSOR_QUANT8_ASYMM", [1], 1.49725, 240)),
     72     output0=Output("output0", "TENSOR_BOOL8", "{1}"),
     73     input0_data=[0],
     74     input1_data=[200],
     75     output_data=[True],
     76     do_variations=False,
     77 )
     78 
     79 test(
     80     name="quantized_overflow_first_input_if_requantized",
     81     input0=Input("input0", ("TENSOR_QUANT8_ASYMM", [1], 1.49725, 240)),
     82     input1=Input("input1", ("TENSOR_QUANT8_ASYMM", [1], 1.64771, 31)),
     83     output0=Output("output0", "TENSOR_BOOL8", "{1}"),
     84     input0_data=[200],
     85     input1_data=[0],
     86     output_data=[False],
     87     do_variations=False,
     88 )
     89 
     90 test(
     91     name="boolean",
     92     input0=Input("input0", "TENSOR_BOOL8", "{4}"),
     93     input1=Input("input1", "TENSOR_BOOL8", "{4}"),
     94     output0=Output("output0", "TENSOR_BOOL8", "{4}"),
     95     input0_data=[False, True, False, True],
     96     input1_data=[False, False, True, True],
     97     output_data=[True, True, False, True],
     98     do_variations=False,
     99 )
    100