Home | History | Annotate | Download | only in V1_2
      1 #
      2 # Copyright (C) 2018 The Android Open Source Project
      3 #
      4 # Licensed under the Apache License, Version 2.0 (the "License");
      5 # you may not use this file except in compliance with the License.
      6 # You may obtain a copy of the License at
      7 #
      8 #      http://www.apache.org/licenses/LICENSE-2.0
      9 #
     10 # Unless required by applicable law or agreed to in writing, software
     11 # distributed under the License is distributed on an "AS IS" BASIS,
     12 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13 # See the License for the specific language governing permissions and
     14 # limitations under the License.
     15 #
     16 import collections
     17 
     18 TestCase = collections.namedtuple("TestCase", [
     19     "inp", "inp_data", "k", "out_values", "out_values_data", "out_indices",
     20     "out_indices_data"
     21 ])
     22 
     23 test_cases = [
     24     TestCase(
     25         inp=Input("input", "TENSOR_FLOAT32", "{2, 2}"),
     26         inp_data=[-2.0, 0.2, 0.8, 0.1],
     27         k=Int32Scalar("k", 2),
     28         out_values=Output("out_values", "TENSOR_FLOAT32", "{2, 2}"),
     29         out_values_data=[0.2, -2.0, 0.8, 0.1],
     30         out_indices=Output("out_indices", "TENSOR_INT32", "{2, 2}"),
     31         out_indices_data=[1, 0, 0, 1]),
     32     TestCase(
     33         inp=Input("input", "TENSOR_FLOAT32", "{2, 3}"),
     34         inp_data=[-2.0, -3.0, 0.2, 0.8, 0.1, -0.1],
     35         k=Int32Scalar("k", 2),
     36         out_values=Output("out_values", "TENSOR_FLOAT32", "{2, 2}"),
     37         out_values_data=[0.2, -2.0, 0.8, 0.1],
     38         out_indices=Output("out_indices", "TENSOR_INT32", "{2, 2}"),
     39         out_indices_data=[2, 0, 0, 1]),
     40     TestCase(
     41         inp=Input("input", "TENSOR_FLOAT32", "{2, 4}"),
     42         inp_data=[-2.0, -3.0, -4.0, 0.2, 0.8, 0.1, -0.1, -0.8],
     43         k=Int32Scalar("k", 2),
     44         out_values=Output("out_values", "TENSOR_FLOAT32", "{2, 2}"),
     45         out_values_data=[0.2, -2.0, 0.8, 0.1],
     46         out_indices=Output("out_indices", "TENSOR_INT32", "{2, 2}"),
     47         out_indices_data=[3, 0, 0, 1]),
     48     TestCase(
     49         inp=Input("input", "TENSOR_FLOAT32", "{8}"),
     50         inp_data=[-2.0, -3.0, -4.0, 0.2, 0.8, 0.1, -0.1, -0.8],
     51         k=Int32Scalar("k", 2),
     52         out_values=Output("out_values", "TENSOR_FLOAT32", "{2}"),
     53         out_values_data=[0.8, 0.2],
     54         out_indices=Output("out_indices", "TENSOR_INT32", "{2}"),
     55         out_indices_data=[4, 3]),
     56     TestCase(
     57         inp=Input("input", "TENSOR_QUANT8_ASYMM", "{2, 3}, 2.0, 128"),
     58         inp_data=[1, 2, 3, 251, 250, 249],
     59         k=Int32Scalar("k", 2),
     60         out_values=Output("out_values", "TENSOR_QUANT8_ASYMM", "{2, 2}, 2.0, 128"),
     61         out_values_data=[3, 2, 251, 250],
     62         out_indices=Output("out_indices", "TENSOR_INT32", "{2, 2}"),
     63         out_indices_data=[2, 1, 0, 1]),
     64     TestCase(
     65         inp=Input("input", "TENSOR_INT32", "{2, 3}"),
     66         inp_data=[1, 2, 3, 10251, 10250, 10249],
     67         k=Int32Scalar("k", 2),
     68         out_values=Output("out_values", "TENSOR_INT32", "{2, 2}"),
     69         out_values_data=[3, 2, 10251, 10250],
     70         out_indices=Output("out_indices", "TENSOR_INT32", "{2, 2}"),
     71         out_indices_data=[2, 1, 0, 1]),
     72 ]
     73 
     74 for test_case in test_cases:
     75   model = Model().Operation("TOPK_V2", test_case.inp, test_case.k).To(
     76       test_case.out_values, test_case.out_indices)
     77   Example({
     78       test_case.inp: test_case.inp_data,
     79       test_case.out_values: test_case.out_values_data,
     80       test_case.out_indices: test_case.out_indices_data
     81   }, model=model).AddVariations("relaxed", "float16")
     82