Home | History | Annotate | Download | only in input
      1 /*
      2  * Copyright (C) 2010 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #ifndef _LIBINPUT_INPUT_TRANSPORT_H
     18 #define _LIBINPUT_INPUT_TRANSPORT_H
     19 
     20 #pragma GCC system_header
     21 
     22 /**
     23  * Native input transport.
     24  *
     25  * The InputChannel provides a mechanism for exchanging InputMessage structures across processes.
     26  *
     27  * The InputPublisher and InputConsumer each handle one end-point of an input channel.
     28  * The InputPublisher is used by the input dispatcher to send events to the application.
     29  * The InputConsumer is used by the application to receive events from the input dispatcher.
     30  */
     31 
     32 #include <string>
     33 
     34 #include <binder/IBinder.h>
     35 #include <input/Input.h>
     36 #include <utils/Errors.h>
     37 #include <utils/Timers.h>
     38 #include <utils/RefBase.h>
     39 #include <utils/Vector.h>
     40 #include <utils/BitSet.h>
     41 
     42 namespace android {
     43 class Parcel;
     44 
     45 /*
     46  * Intermediate representation used to send input events and related signals.
     47  *
     48  * Note that this structure is used for IPCs so its layout must be identical
     49  * on 64 and 32 bit processes. This is tested in StructLayout_test.cpp.
     50  *
     51  * Since the struct must be aligned to an 8-byte boundary, there could be uninitialized bytes
     52  * in-between the defined fields. This padding data should be explicitly accounted for by adding
     53  * "empty" fields into the struct. This data is memset to zero before sending the struct across
     54  * the socket. Adding the explicit fields ensures that the memset is not optimized away by the
     55  * compiler. When a new field is added to the struct, the corresponding change
     56  * in StructLayout_test should be made.
     57  */
     58 struct InputMessage {
     59     enum {
     60         TYPE_KEY = 1,
     61         TYPE_MOTION = 2,
     62         TYPE_FINISHED = 3,
     63     };
     64 
     65     struct Header {
     66         uint32_t type;
     67         // We don't need this field in order to align the body below but we
     68         // leave it here because InputMessage::size() and other functions
     69         // compute the size of this structure as sizeof(Header) + sizeof(Body).
     70         uint32_t padding;
     71     } header;
     72 
     73     // Body *must* be 8 byte aligned.
     74     union Body {
     75         struct Key {
     76             uint32_t seq;
     77             uint32_t empty1;
     78             nsecs_t eventTime __attribute__((aligned(8)));
     79             int32_t deviceId;
     80             int32_t source;
     81             int32_t displayId;
     82             int32_t action;
     83             int32_t flags;
     84             int32_t keyCode;
     85             int32_t scanCode;
     86             int32_t metaState;
     87             int32_t repeatCount;
     88             uint32_t empty2;
     89             nsecs_t downTime __attribute__((aligned(8)));
     90 
     91             inline size_t size() const {
     92                 return sizeof(Key);
     93             }
     94         } key;
     95 
     96         struct Motion {
     97             uint32_t seq;
     98             uint32_t empty1;
     99             nsecs_t eventTime __attribute__((aligned(8)));
    100             int32_t deviceId;
    101             int32_t source;
    102             int32_t displayId;
    103             int32_t action;
    104             int32_t actionButton;
    105             int32_t flags;
    106             int32_t metaState;
    107             int32_t buttonState;
    108             MotionClassification classification; // base type: uint8_t
    109             uint8_t empty2[3];
    110             int32_t edgeFlags;
    111             nsecs_t downTime __attribute__((aligned(8)));
    112             float xOffset;
    113             float yOffset;
    114             float xPrecision;
    115             float yPrecision;
    116             uint32_t pointerCount;
    117             uint32_t empty3;
    118             // Note that PointerCoords requires 8 byte alignment.
    119             struct Pointer {
    120                 PointerProperties properties;
    121                 PointerCoords coords;
    122             } pointers[MAX_POINTERS];
    123 
    124             int32_t getActionId() const {
    125                 uint32_t index = (action & AMOTION_EVENT_ACTION_POINTER_INDEX_MASK)
    126                         >> AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT;
    127                 return pointers[index].properties.id;
    128             }
    129 
    130             inline size_t size() const {
    131                 return sizeof(Motion) - sizeof(Pointer) * MAX_POINTERS
    132                         + sizeof(Pointer) * pointerCount;
    133             }
    134         } motion;
    135 
    136         struct Finished {
    137             uint32_t seq;
    138             bool handled;
    139 
    140             inline size_t size() const {
    141                 return sizeof(Finished);
    142             }
    143         } finished;
    144     } __attribute__((aligned(8))) body;
    145 
    146     bool isValid(size_t actualSize) const;
    147     size_t size() const;
    148     void getSanitizedCopy(InputMessage* msg) const;
    149 };
    150 
    151 /*
    152  * An input channel consists of a local unix domain socket used to send and receive
    153  * input messages across processes.  Each channel has a descriptive name for debugging purposes.
    154  *
    155  * Each endpoint has its own InputChannel object that specifies its file descriptor.
    156  *
    157  * The input channel is closed when all references to it are released.
    158  */
    159 class InputChannel : public RefBase {
    160 protected:
    161     virtual ~InputChannel();
    162 
    163 public:
    164     InputChannel() = default;
    165     InputChannel(const std::string& name, int fd);
    166 
    167     /* Creates a pair of input channels.
    168      *
    169      * Returns OK on success.
    170      */
    171     static status_t openInputChannelPair(const std::string& name,
    172             sp<InputChannel>& outServerChannel, sp<InputChannel>& outClientChannel);
    173 
    174     inline std::string getName() const { return mName; }
    175     inline int getFd() const { return mFd; }
    176 
    177     /* Sends a message to the other endpoint.
    178      *
    179      * If the channel is full then the message is guaranteed not to have been sent at all.
    180      * Try again after the consumer has sent a finished signal indicating that it has
    181      * consumed some of the pending messages from the channel.
    182      *
    183      * Returns OK on success.
    184      * Returns WOULD_BLOCK if the channel is full.
    185      * Returns DEAD_OBJECT if the channel's peer has been closed.
    186      * Other errors probably indicate that the channel is broken.
    187      */
    188     status_t sendMessage(const InputMessage* msg);
    189 
    190     /* Receives a message sent by the other endpoint.
    191      *
    192      * If there is no message present, try again after poll() indicates that the fd
    193      * is readable.
    194      *
    195      * Returns OK on success.
    196      * Returns WOULD_BLOCK if there is no message present.
    197      * Returns DEAD_OBJECT if the channel's peer has been closed.
    198      * Other errors probably indicate that the channel is broken.
    199      */
    200     status_t receiveMessage(InputMessage* msg);
    201 
    202     /* Returns a new object that has a duplicate of this channel's fd. */
    203     sp<InputChannel> dup() const;
    204 
    205     status_t write(Parcel& out) const;
    206     status_t read(const Parcel& from);
    207 
    208     sp<IBinder> getToken() const;
    209     void setToken(const sp<IBinder>& token);
    210 
    211 private:
    212     void setFd(int fd);
    213 
    214     std::string mName;
    215     int mFd = -1;
    216 
    217     sp<IBinder> mToken = nullptr;
    218 };
    219 
    220 /*
    221  * Publishes input events to an input channel.
    222  */
    223 class InputPublisher {
    224 public:
    225     /* Creates a publisher associated with an input channel. */
    226     explicit InputPublisher(const sp<InputChannel>& channel);
    227 
    228     /* Destroys the publisher and releases its input channel. */
    229     ~InputPublisher();
    230 
    231     /* Gets the underlying input channel. */
    232     inline sp<InputChannel> getChannel() { return mChannel; }
    233 
    234     /* Publishes a key event to the input channel.
    235      *
    236      * Returns OK on success.
    237      * Returns WOULD_BLOCK if the channel is full.
    238      * Returns DEAD_OBJECT if the channel's peer has been closed.
    239      * Returns BAD_VALUE if seq is 0.
    240      * Other errors probably indicate that the channel is broken.
    241      */
    242     status_t publishKeyEvent(
    243             uint32_t seq,
    244             int32_t deviceId,
    245             int32_t source,
    246             int32_t displayId,
    247             int32_t action,
    248             int32_t flags,
    249             int32_t keyCode,
    250             int32_t scanCode,
    251             int32_t metaState,
    252             int32_t repeatCount,
    253             nsecs_t downTime,
    254             nsecs_t eventTime);
    255 
    256     /* Publishes a motion event to the input channel.
    257      *
    258      * Returns OK on success.
    259      * Returns WOULD_BLOCK if the channel is full.
    260      * Returns DEAD_OBJECT if the channel's peer has been closed.
    261      * Returns BAD_VALUE if seq is 0 or if pointerCount is less than 1 or greater than MAX_POINTERS.
    262      * Other errors probably indicate that the channel is broken.
    263      */
    264     status_t publishMotionEvent(
    265             uint32_t seq,
    266             int32_t deviceId,
    267             int32_t source,
    268             int32_t displayId,
    269             int32_t action,
    270             int32_t actionButton,
    271             int32_t flags,
    272             int32_t edgeFlags,
    273             int32_t metaState,
    274             int32_t buttonState,
    275             MotionClassification classification,
    276             float xOffset,
    277             float yOffset,
    278             float xPrecision,
    279             float yPrecision,
    280             nsecs_t downTime,
    281             nsecs_t eventTime,
    282             uint32_t pointerCount,
    283             const PointerProperties* pointerProperties,
    284             const PointerCoords* pointerCoords);
    285 
    286     /* Receives the finished signal from the consumer in reply to the original dispatch signal.
    287      * If a signal was received, returns the message sequence number,
    288      * and whether the consumer handled the message.
    289      *
    290      * The returned sequence number is never 0 unless the operation failed.
    291      *
    292      * Returns OK on success.
    293      * Returns WOULD_BLOCK if there is no signal present.
    294      * Returns DEAD_OBJECT if the channel's peer has been closed.
    295      * Other errors probably indicate that the channel is broken.
    296      */
    297     status_t receiveFinishedSignal(uint32_t* outSeq, bool* outHandled);
    298 
    299 private:
    300     sp<InputChannel> mChannel;
    301 };
    302 
    303 /*
    304  * Consumes input events from an input channel.
    305  */
    306 class InputConsumer {
    307 public:
    308     /* Creates a consumer associated with an input channel. */
    309     explicit InputConsumer(const sp<InputChannel>& channel);
    310 
    311     /* Destroys the consumer and releases its input channel. */
    312     ~InputConsumer();
    313 
    314     /* Gets the underlying input channel. */
    315     inline sp<InputChannel> getChannel() { return mChannel; }
    316 
    317     /* Consumes an input event from the input channel and copies its contents into
    318      * an InputEvent object created using the specified factory.
    319      *
    320      * Tries to combine a series of move events into larger batches whenever possible.
    321      *
    322      * If consumeBatches is false, then defers consuming pending batched events if it
    323      * is possible for additional samples to be added to them later.  Call hasPendingBatch()
    324      * to determine whether a pending batch is available to be consumed.
    325      *
    326      * If consumeBatches is true, then events are still batched but they are consumed
    327      * immediately as soon as the input channel is exhausted.
    328      *
    329      * The frameTime parameter specifies the time when the current display frame started
    330      * rendering in the CLOCK_MONOTONIC time base, or -1 if unknown.
    331      *
    332      * The returned sequence number is never 0 unless the operation failed.
    333      *
    334      * Returns OK on success.
    335      * Returns WOULD_BLOCK if there is no event present.
    336      * Returns DEAD_OBJECT if the channel's peer has been closed.
    337      * Returns NO_MEMORY if the event could not be created.
    338      * Other errors probably indicate that the channel is broken.
    339      */
    340     status_t consume(InputEventFactoryInterface* factory, bool consumeBatches,
    341             nsecs_t frameTime, uint32_t* outSeq, InputEvent** outEvent);
    342 
    343     /* Sends a finished signal to the publisher to inform it that the message
    344      * with the specified sequence number has finished being process and whether
    345      * the message was handled by the consumer.
    346      *
    347      * Returns OK on success.
    348      * Returns BAD_VALUE if seq is 0.
    349      * Other errors probably indicate that the channel is broken.
    350      */
    351     status_t sendFinishedSignal(uint32_t seq, bool handled);
    352 
    353     /* Returns true if there is a deferred event waiting.
    354      *
    355      * Should be called after calling consume() to determine whether the consumer
    356      * has a deferred event to be processed.  Deferred events are somewhat special in
    357      * that they have already been removed from the input channel.  If the input channel
    358      * becomes empty, the client may need to do extra work to ensure that it processes
    359      * the deferred event despite the fact that the input channel's file descriptor
    360      * is not readable.
    361      *
    362      * One option is simply to call consume() in a loop until it returns WOULD_BLOCK.
    363      * This guarantees that all deferred events will be processed.
    364      *
    365      * Alternately, the caller can call hasDeferredEvent() to determine whether there is
    366      * a deferred event waiting and then ensure that its event loop wakes up at least
    367      * one more time to consume the deferred event.
    368      */
    369     bool hasDeferredEvent() const;
    370 
    371     /* Returns true if there is a pending batch.
    372      *
    373      * Should be called after calling consume() with consumeBatches == false to determine
    374      * whether consume() should be called again later on with consumeBatches == true.
    375      */
    376     bool hasPendingBatch() const;
    377 
    378 private:
    379     // True if touch resampling is enabled.
    380     const bool mResampleTouch;
    381 
    382     // The input channel.
    383     sp<InputChannel> mChannel;
    384 
    385     // The current input message.
    386     InputMessage mMsg;
    387 
    388     // True if mMsg contains a valid input message that was deferred from the previous
    389     // call to consume and that still needs to be handled.
    390     bool mMsgDeferred;
    391 
    392     // Batched motion events per device and source.
    393     struct Batch {
    394         Vector<InputMessage> samples;
    395     };
    396     Vector<Batch> mBatches;
    397 
    398     // Touch state per device and source, only for sources of class pointer.
    399     struct History {
    400         nsecs_t eventTime;
    401         BitSet32 idBits;
    402         int32_t idToIndex[MAX_POINTER_ID + 1];
    403         PointerCoords pointers[MAX_POINTERS];
    404 
    405         void initializeFrom(const InputMessage& msg) {
    406             eventTime = msg.body.motion.eventTime;
    407             idBits.clear();
    408             for (uint32_t i = 0; i < msg.body.motion.pointerCount; i++) {
    409                 uint32_t id = msg.body.motion.pointers[i].properties.id;
    410                 idBits.markBit(id);
    411                 idToIndex[id] = i;
    412                 pointers[i].copyFrom(msg.body.motion.pointers[i].coords);
    413             }
    414         }
    415 
    416         void initializeFrom(const History& other) {
    417             eventTime = other.eventTime;
    418             idBits = other.idBits; // temporary copy
    419             for (size_t i = 0; i < other.idBits.count(); i++) {
    420                 uint32_t id = idBits.clearFirstMarkedBit();
    421                 int32_t index = other.idToIndex[id];
    422                 idToIndex[id] = index;
    423                 pointers[index].copyFrom(other.pointers[index]);
    424             }
    425             idBits = other.idBits; // final copy
    426         }
    427 
    428         const PointerCoords& getPointerById(uint32_t id) const {
    429             return pointers[idToIndex[id]];
    430         }
    431 
    432         bool hasPointerId(uint32_t id) const {
    433             return idBits.hasBit(id);
    434         }
    435     };
    436     struct TouchState {
    437         int32_t deviceId;
    438         int32_t source;
    439         size_t historyCurrent;
    440         size_t historySize;
    441         History history[2];
    442         History lastResample;
    443 
    444         void initialize(int32_t deviceId, int32_t source) {
    445             this->deviceId = deviceId;
    446             this->source = source;
    447             historyCurrent = 0;
    448             historySize = 0;
    449             lastResample.eventTime = 0;
    450             lastResample.idBits.clear();
    451         }
    452 
    453         void addHistory(const InputMessage& msg) {
    454             historyCurrent ^= 1;
    455             if (historySize < 2) {
    456                 historySize += 1;
    457             }
    458             history[historyCurrent].initializeFrom(msg);
    459         }
    460 
    461         const History* getHistory(size_t index) const {
    462             return &history[(historyCurrent + index) & 1];
    463         }
    464 
    465         bool recentCoordinatesAreIdentical(uint32_t id) const {
    466             // Return true if the two most recently received "raw" coordinates are identical
    467             if (historySize < 2) {
    468                 return false;
    469             }
    470             if (!getHistory(0)->hasPointerId(id) || !getHistory(1)->hasPointerId(id)) {
    471                 return false;
    472             }
    473             float currentX = getHistory(0)->getPointerById(id).getX();
    474             float currentY = getHistory(0)->getPointerById(id).getY();
    475             float previousX = getHistory(1)->getPointerById(id).getX();
    476             float previousY = getHistory(1)->getPointerById(id).getY();
    477             if (currentX == previousX && currentY == previousY) {
    478                 return true;
    479             }
    480             return false;
    481         }
    482     };
    483     Vector<TouchState> mTouchStates;
    484 
    485     // Chain of batched sequence numbers.  When multiple input messages are combined into
    486     // a batch, we append a record here that associates the last sequence number in the
    487     // batch with the previous one.  When the finished signal is sent, we traverse the
    488     // chain to individually finish all input messages that were part of the batch.
    489     struct SeqChain {
    490         uint32_t seq;   // sequence number of batched input message
    491         uint32_t chain; // sequence number of previous batched input message
    492     };
    493     Vector<SeqChain> mSeqChains;
    494 
    495     status_t consumeBatch(InputEventFactoryInterface* factory,
    496             nsecs_t frameTime, uint32_t* outSeq, InputEvent** outEvent);
    497     status_t consumeSamples(InputEventFactoryInterface* factory,
    498             Batch& batch, size_t count, uint32_t* outSeq, InputEvent** outEvent);
    499 
    500     void updateTouchState(InputMessage& msg);
    501     void resampleTouchState(nsecs_t frameTime, MotionEvent* event,
    502             const InputMessage *next);
    503 
    504     ssize_t findBatch(int32_t deviceId, int32_t source) const;
    505     ssize_t findTouchState(int32_t deviceId, int32_t source) const;
    506 
    507     status_t sendUnchainedFinishedSignal(uint32_t seq, bool handled);
    508 
    509     static void rewriteMessage(TouchState& state, InputMessage& msg);
    510     static void initializeKeyEvent(KeyEvent* event, const InputMessage* msg);
    511     static void initializeMotionEvent(MotionEvent* event, const InputMessage* msg);
    512     static void addSample(MotionEvent* event, const InputMessage* msg);
    513     static bool canAddSample(const Batch& batch, const InputMessage* msg);
    514     static ssize_t findSampleNoLaterThan(const Batch& batch, nsecs_t time);
    515     static bool shouldResampleTool(int32_t toolType);
    516 
    517     static bool isTouchResamplingEnabled();
    518 };
    519 
    520 } // namespace android
    521 
    522 #endif // _LIBINPUT_INPUT_TRANSPORT_H
    523