Home | History | Annotate | Download | only in gl
      1 /*
      2  * Copyright 2013 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #define ATRACE_TAG ATRACE_TAG_GRAPHICS
     18 
     19 #include "ProgramCache.h"
     20 
     21 #include <GLES2/gl2.h>
     22 #include <GLES2/gl2ext.h>
     23 #include <log/log.h>
     24 #include <renderengine/private/Description.h>
     25 #include <utils/String8.h>
     26 #include <utils/Trace.h>
     27 #include "Program.h"
     28 
     29 ANDROID_SINGLETON_STATIC_INSTANCE(android::renderengine::gl::ProgramCache)
     30 
     31 namespace android {
     32 namespace renderengine {
     33 namespace gl {
     34 
     35 /*
     36  * A simple formatter class to automatically add the endl and
     37  * manage the indentation.
     38  */
     39 
     40 class Formatter;
     41 static Formatter& indent(Formatter& f);
     42 static Formatter& dedent(Formatter& f);
     43 
     44 class Formatter {
     45     String8 mString;
     46     int mIndent;
     47     typedef Formatter& (*FormaterManipFunc)(Formatter&);
     48     friend Formatter& indent(Formatter& f);
     49     friend Formatter& dedent(Formatter& f);
     50 
     51 public:
     52     Formatter() : mIndent(0) {}
     53 
     54     String8 getString() const { return mString; }
     55 
     56     friend Formatter& operator<<(Formatter& out, const char* in) {
     57         for (int i = 0; i < out.mIndent; i++) {
     58             out.mString.append("    ");
     59         }
     60         out.mString.append(in);
     61         out.mString.append("\n");
     62         return out;
     63     }
     64     friend inline Formatter& operator<<(Formatter& out, const String8& in) {
     65         return operator<<(out, in.string());
     66     }
     67     friend inline Formatter& operator<<(Formatter& to, FormaterManipFunc func) {
     68         return (*func)(to);
     69     }
     70 };
     71 Formatter& indent(Formatter& f) {
     72     f.mIndent++;
     73     return f;
     74 }
     75 Formatter& dedent(Formatter& f) {
     76     f.mIndent--;
     77     return f;
     78 }
     79 
     80 void ProgramCache::primeCache(EGLContext context, bool useColorManagement) {
     81     auto& cache = mCaches[context];
     82     uint32_t shaderCount = 0;
     83     uint32_t keyMask = Key::BLEND_MASK | Key::OPACITY_MASK | Key::ALPHA_MASK | Key::TEXTURE_MASK
     84         | Key::ROUNDED_CORNERS_MASK;
     85     // Prime the cache for all combinations of the above masks,
     86     // leaving off the experimental color matrix mask options.
     87 
     88     nsecs_t timeBefore = systemTime();
     89     for (uint32_t keyVal = 0; keyVal <= keyMask; keyVal++) {
     90         Key shaderKey;
     91         shaderKey.set(keyMask, keyVal);
     92         uint32_t tex = shaderKey.getTextureTarget();
     93         if (tex != Key::TEXTURE_OFF && tex != Key::TEXTURE_EXT && tex != Key::TEXTURE_2D) {
     94             continue;
     95         }
     96         if (cache.count(shaderKey) == 0) {
     97             cache.emplace(shaderKey, generateProgram(shaderKey));
     98             shaderCount++;
     99         }
    100     }
    101 
    102     // Prime for sRGB->P3 conversion
    103     if (useColorManagement) {
    104         Key shaderKey;
    105         shaderKey.set(Key::BLEND_MASK | Key::OUTPUT_TRANSFORM_MATRIX_MASK | Key::INPUT_TF_MASK |
    106                               Key::OUTPUT_TF_MASK,
    107                       Key::BLEND_PREMULT | Key::OUTPUT_TRANSFORM_MATRIX_ON | Key::INPUT_TF_SRGB |
    108                               Key::OUTPUT_TF_SRGB);
    109         for (int i = 0; i < 16; i++) {
    110             shaderKey.set(Key::OPACITY_MASK,
    111                           (i & 1) ? Key::OPACITY_OPAQUE : Key::OPACITY_TRANSLUCENT);
    112             shaderKey.set(Key::ALPHA_MASK, (i & 2) ? Key::ALPHA_LT_ONE : Key::ALPHA_EQ_ONE);
    113 
    114             // Cache rounded corners
    115             shaderKey.set(Key::ROUNDED_CORNERS_MASK,
    116                           (i & 4) ? Key::ROUNDED_CORNERS_ON : Key::ROUNDED_CORNERS_OFF);
    117 
    118             // Cache texture off option for window transition
    119             shaderKey.set(Key::TEXTURE_MASK, (i & 8) ? Key::TEXTURE_EXT : Key::TEXTURE_OFF);
    120             if (cache.count(shaderKey) == 0) {
    121                 cache.emplace(shaderKey, generateProgram(shaderKey));
    122                 shaderCount++;
    123             }
    124         }
    125     }
    126 
    127     nsecs_t timeAfter = systemTime();
    128     float compileTimeMs = static_cast<float>(timeAfter - timeBefore) / 1.0E6;
    129     ALOGD("shader cache generated - %u shaders in %f ms\n", shaderCount, compileTimeMs);
    130 }
    131 
    132 ProgramCache::Key ProgramCache::computeKey(const Description& description) {
    133     Key needs;
    134     needs.set(Key::TEXTURE_MASK,
    135               !description.textureEnabled
    136                       ? Key::TEXTURE_OFF
    137                       : description.texture.getTextureTarget() == GL_TEXTURE_EXTERNAL_OES
    138                               ? Key::TEXTURE_EXT
    139                               : description.texture.getTextureTarget() == GL_TEXTURE_2D
    140                                       ? Key::TEXTURE_2D
    141                                       : Key::TEXTURE_OFF)
    142             .set(Key::ALPHA_MASK, (description.color.a < 1) ? Key::ALPHA_LT_ONE : Key::ALPHA_EQ_ONE)
    143             .set(Key::BLEND_MASK,
    144                  description.isPremultipliedAlpha ? Key::BLEND_PREMULT : Key::BLEND_NORMAL)
    145             .set(Key::OPACITY_MASK,
    146                  description.isOpaque ? Key::OPACITY_OPAQUE : Key::OPACITY_TRANSLUCENT)
    147             .set(Key::Key::INPUT_TRANSFORM_MATRIX_MASK,
    148                  description.hasInputTransformMatrix()
    149                          ? Key::INPUT_TRANSFORM_MATRIX_ON : Key::INPUT_TRANSFORM_MATRIX_OFF)
    150             .set(Key::Key::OUTPUT_TRANSFORM_MATRIX_MASK,
    151                  description.hasOutputTransformMatrix() || description.hasColorMatrix()
    152                          ? Key::OUTPUT_TRANSFORM_MATRIX_ON
    153                          : Key::OUTPUT_TRANSFORM_MATRIX_OFF)
    154             .set(Key::ROUNDED_CORNERS_MASK,
    155                  description.cornerRadius > 0
    156                          ? Key::ROUNDED_CORNERS_ON : Key::ROUNDED_CORNERS_OFF);
    157 
    158     needs.set(Key::Y410_BT2020_MASK,
    159               description.isY410BT2020 ? Key::Y410_BT2020_ON : Key::Y410_BT2020_OFF);
    160 
    161     if (needs.hasTransformMatrix() ||
    162         (description.inputTransferFunction != description.outputTransferFunction)) {
    163         switch (description.inputTransferFunction) {
    164             case Description::TransferFunction::LINEAR:
    165             default:
    166                 needs.set(Key::INPUT_TF_MASK, Key::INPUT_TF_LINEAR);
    167                 break;
    168             case Description::TransferFunction::SRGB:
    169                 needs.set(Key::INPUT_TF_MASK, Key::INPUT_TF_SRGB);
    170                 break;
    171             case Description::TransferFunction::ST2084:
    172                 needs.set(Key::INPUT_TF_MASK, Key::INPUT_TF_ST2084);
    173                 break;
    174             case Description::TransferFunction::HLG:
    175                 needs.set(Key::INPUT_TF_MASK, Key::INPUT_TF_HLG);
    176                 break;
    177         }
    178 
    179         switch (description.outputTransferFunction) {
    180             case Description::TransferFunction::LINEAR:
    181             default:
    182                 needs.set(Key::OUTPUT_TF_MASK, Key::OUTPUT_TF_LINEAR);
    183                 break;
    184             case Description::TransferFunction::SRGB:
    185                 needs.set(Key::OUTPUT_TF_MASK, Key::OUTPUT_TF_SRGB);
    186                 break;
    187             case Description::TransferFunction::ST2084:
    188                 needs.set(Key::OUTPUT_TF_MASK, Key::OUTPUT_TF_ST2084);
    189                 break;
    190             case Description::TransferFunction::HLG:
    191                 needs.set(Key::OUTPUT_TF_MASK, Key::OUTPUT_TF_HLG);
    192                 break;
    193         }
    194     }
    195 
    196     return needs;
    197 }
    198 
    199 // Generate EOTF that converts signal values to relative display light,
    200 // both normalized to [0, 1].
    201 void ProgramCache::generateEOTF(Formatter& fs, const Key& needs) {
    202     switch (needs.getInputTF()) {
    203         case Key::INPUT_TF_SRGB:
    204             fs << R"__SHADER__(
    205                 float EOTF_sRGB(float srgb) {
    206                     return srgb <= 0.04045 ? srgb / 12.92 : pow((srgb + 0.055) / 1.055, 2.4);
    207                 }
    208 
    209                 vec3 EOTF_sRGB(const vec3 srgb) {
    210                     return vec3(EOTF_sRGB(srgb.r), EOTF_sRGB(srgb.g), EOTF_sRGB(srgb.b));
    211                 }
    212 
    213                 vec3 EOTF(const vec3 srgb) {
    214                     return sign(srgb.rgb) * EOTF_sRGB(abs(srgb.rgb));
    215                 }
    216             )__SHADER__";
    217             break;
    218         case Key::INPUT_TF_ST2084:
    219             fs << R"__SHADER__(
    220                 vec3 EOTF(const highp vec3 color) {
    221                     const highp float m1 = (2610.0 / 4096.0) / 4.0;
    222                     const highp float m2 = (2523.0 / 4096.0) * 128.0;
    223                     const highp float c1 = (3424.0 / 4096.0);
    224                     const highp float c2 = (2413.0 / 4096.0) * 32.0;
    225                     const highp float c3 = (2392.0 / 4096.0) * 32.0;
    226 
    227                     highp vec3 tmp = pow(clamp(color, 0.0, 1.0), 1.0 / vec3(m2));
    228                     tmp = max(tmp - c1, 0.0) / (c2 - c3 * tmp);
    229                     return pow(tmp, 1.0 / vec3(m1));
    230                 }
    231             )__SHADER__";
    232             break;
    233         case Key::INPUT_TF_HLG:
    234             fs << R"__SHADER__(
    235                 highp float EOTF_channel(const highp float channel) {
    236                     const highp float a = 0.17883277;
    237                     const highp float b = 0.28466892;
    238                     const highp float c = 0.55991073;
    239                     return channel <= 0.5 ? channel * channel / 3.0 :
    240                             (exp((channel - c) / a) + b) / 12.0;
    241                 }
    242 
    243                 vec3 EOTF(const highp vec3 color) {
    244                     return vec3(EOTF_channel(color.r), EOTF_channel(color.g),
    245                             EOTF_channel(color.b));
    246                 }
    247             )__SHADER__";
    248             break;
    249         default:
    250             fs << R"__SHADER__(
    251                 vec3 EOTF(const vec3 linear) {
    252                     return linear;
    253                 }
    254             )__SHADER__";
    255             break;
    256     }
    257 }
    258 
    259 void ProgramCache::generateToneMappingProcess(Formatter& fs, const Key& needs) {
    260     // Convert relative light to absolute light.
    261     switch (needs.getInputTF()) {
    262         case Key::INPUT_TF_ST2084:
    263             fs << R"__SHADER__(
    264                 highp vec3 ScaleLuminance(highp vec3 color) {
    265                     return color * 10000.0;
    266                 }
    267             )__SHADER__";
    268             break;
    269         case Key::INPUT_TF_HLG:
    270             fs << R"__SHADER__(
    271                 highp vec3 ScaleLuminance(highp vec3 color) {
    272                     // The formula is:
    273                     // alpha * pow(Y, gamma - 1.0) * color + beta;
    274                     // where alpha is 1000.0, gamma is 1.2, beta is 0.0.
    275                     return color * 1000.0 * pow(color.y, 0.2);
    276                 }
    277             )__SHADER__";
    278             break;
    279         default:
    280             fs << R"__SHADER__(
    281                 highp vec3 ScaleLuminance(highp vec3 color) {
    282                     return color * displayMaxLuminance;
    283                 }
    284             )__SHADER__";
    285             break;
    286     }
    287 
    288     // Tone map absolute light to display luminance range.
    289     switch (needs.getInputTF()) {
    290         case Key::INPUT_TF_ST2084:
    291         case Key::INPUT_TF_HLG:
    292             switch (needs.getOutputTF()) {
    293                 case Key::OUTPUT_TF_HLG:
    294                     // Right now when mixed PQ and HLG contents are presented,
    295                     // HLG content will always be converted to PQ. However, for
    296                     // completeness, we simply clamp the value to [0.0, 1000.0].
    297                     fs << R"__SHADER__(
    298                         highp vec3 ToneMap(highp vec3 color) {
    299                             return clamp(color, 0.0, 1000.0);
    300                         }
    301                     )__SHADER__";
    302                     break;
    303                 case Key::OUTPUT_TF_ST2084:
    304                     fs << R"__SHADER__(
    305                         highp vec3 ToneMap(highp vec3 color) {
    306                             return color;
    307                         }
    308                     )__SHADER__";
    309                     break;
    310                 default:
    311                     fs << R"__SHADER__(
    312                         highp vec3 ToneMap(highp vec3 color) {
    313                             const float maxMasteringLumi = 1000.0;
    314                             const float maxContentLumi = 1000.0;
    315                             const float maxInLumi = min(maxMasteringLumi, maxContentLumi);
    316                             float maxOutLumi = displayMaxLuminance;
    317 
    318                             float nits = color.y;
    319 
    320                             // clamp to max input luminance
    321                             nits = clamp(nits, 0.0, maxInLumi);
    322 
    323                             // scale [0.0, maxInLumi] to [0.0, maxOutLumi]
    324                             if (maxInLumi <= maxOutLumi) {
    325                                 return color * (maxOutLumi / maxInLumi);
    326                             } else {
    327                                 // three control points
    328                                 const float x0 = 10.0;
    329                                 const float y0 = 17.0;
    330                                 float x1 = maxOutLumi * 0.75;
    331                                 float y1 = x1;
    332                                 float x2 = x1 + (maxInLumi - x1) / 2.0;
    333                                 float y2 = y1 + (maxOutLumi - y1) * 0.75;
    334 
    335                                 // horizontal distances between the last three control points
    336                                 float h12 = x2 - x1;
    337                                 float h23 = maxInLumi - x2;
    338                                 // tangents at the last three control points
    339                                 float m1 = (y2 - y1) / h12;
    340                                 float m3 = (maxOutLumi - y2) / h23;
    341                                 float m2 = (m1 + m3) / 2.0;
    342 
    343                                 if (nits < x0) {
    344                                     // scale [0.0, x0] to [0.0, y0] linearly
    345                                     float slope = y0 / x0;
    346                                     return color * slope;
    347                                 } else if (nits < x1) {
    348                                     // scale [x0, x1] to [y0, y1] linearly
    349                                     float slope = (y1 - y0) / (x1 - x0);
    350                                     nits = y0 + (nits - x0) * slope;
    351                                 } else if (nits < x2) {
    352                                     // scale [x1, x2] to [y1, y2] using Hermite interp
    353                                     float t = (nits - x1) / h12;
    354                                     nits = (y1 * (1.0 + 2.0 * t) + h12 * m1 * t) * (1.0 - t) * (1.0 - t) +
    355                                             (y2 * (3.0 - 2.0 * t) + h12 * m2 * (t - 1.0)) * t * t;
    356                                 } else {
    357                                     // scale [x2, maxInLumi] to [y2, maxOutLumi] using Hermite interp
    358                                     float t = (nits - x2) / h23;
    359                                     nits = (y2 * (1.0 + 2.0 * t) + h23 * m2 * t) * (1.0 - t) * (1.0 - t) +
    360                                             (maxOutLumi * (3.0 - 2.0 * t) + h23 * m3 * (t - 1.0)) * t * t;
    361                                 }
    362                             }
    363 
    364                             // color.y is greater than x0 and is thus non-zero
    365                             return color * (nits / color.y);
    366                         }
    367                     )__SHADER__";
    368                     break;
    369             }
    370             break;
    371         default:
    372             // inverse tone map; the output luminance can be up to maxOutLumi.
    373             fs << R"__SHADER__(
    374                 highp vec3 ToneMap(highp vec3 color) {
    375                     const float maxOutLumi = 3000.0;
    376 
    377                     const float x0 = 5.0;
    378                     const float y0 = 2.5;
    379                     float x1 = displayMaxLuminance * 0.7;
    380                     float y1 = maxOutLumi * 0.15;
    381                     float x2 = displayMaxLuminance * 0.9;
    382                     float y2 = maxOutLumi * 0.45;
    383                     float x3 = displayMaxLuminance;
    384                     float y3 = maxOutLumi;
    385 
    386                     float c1 = y1 / 3.0;
    387                     float c2 = y2 / 2.0;
    388                     float c3 = y3 / 1.5;
    389 
    390                     float nits = color.y;
    391 
    392                     float scale;
    393                     if (nits <= x0) {
    394                         // scale [0.0, x0] to [0.0, y0] linearly
    395                         const float slope = y0 / x0;
    396                         return color * slope;
    397                     } else if (nits <= x1) {
    398                         // scale [x0, x1] to [y0, y1] using a curve
    399                         float t = (nits - x0) / (x1 - x0);
    400                         nits = (1.0 - t) * (1.0 - t) * y0 + 2.0 * (1.0 - t) * t * c1 + t * t * y1;
    401                     } else if (nits <= x2) {
    402                         // scale [x1, x2] to [y1, y2] using a curve
    403                         float t = (nits - x1) / (x2 - x1);
    404                         nits = (1.0 - t) * (1.0 - t) * y1 + 2.0 * (1.0 - t) * t * c2 + t * t * y2;
    405                     } else {
    406                         // scale [x2, x3] to [y2, y3] using a curve
    407                         float t = (nits - x2) / (x3 - x2);
    408                         nits = (1.0 - t) * (1.0 - t) * y2 + 2.0 * (1.0 - t) * t * c3 + t * t * y3;
    409                     }
    410 
    411                     // color.y is greater than x0 and is thus non-zero
    412                     return color * (nits / color.y);
    413                 }
    414             )__SHADER__";
    415             break;
    416     }
    417 
    418     // convert absolute light to relative light.
    419     switch (needs.getOutputTF()) {
    420         case Key::OUTPUT_TF_ST2084:
    421             fs << R"__SHADER__(
    422                 highp vec3 NormalizeLuminance(highp vec3 color) {
    423                     return color / 10000.0;
    424                 }
    425             )__SHADER__";
    426             break;
    427         case Key::OUTPUT_TF_HLG:
    428             fs << R"__SHADER__(
    429                 highp vec3 NormalizeLuminance(highp vec3 color) {
    430                     return color / 1000.0 * pow(color.y / 1000.0, -0.2 / 1.2);
    431                 }
    432             )__SHADER__";
    433             break;
    434         default:
    435             fs << R"__SHADER__(
    436                 highp vec3 NormalizeLuminance(highp vec3 color) {
    437                     return color / displayMaxLuminance;
    438                 }
    439             )__SHADER__";
    440             break;
    441     }
    442 }
    443 
    444 // Generate OOTF that modifies the relative scence light to relative display light.
    445 void ProgramCache::generateOOTF(Formatter& fs, const ProgramCache::Key& needs) {
    446     if (!needs.needsToneMapping()) {
    447         fs << R"__SHADER__(
    448             highp vec3 OOTF(const highp vec3 color) {
    449                 return color;
    450             }
    451         )__SHADER__";
    452     } else {
    453         generateToneMappingProcess(fs, needs);
    454         fs << R"__SHADER__(
    455             highp vec3 OOTF(const highp vec3 color) {
    456                 return NormalizeLuminance(ToneMap(ScaleLuminance(color)));
    457             }
    458         )__SHADER__";
    459     }
    460 }
    461 
    462 // Generate OETF that converts relative display light to signal values,
    463 // both normalized to [0, 1]
    464 void ProgramCache::generateOETF(Formatter& fs, const Key& needs) {
    465     switch (needs.getOutputTF()) {
    466         case Key::OUTPUT_TF_SRGB:
    467             fs << R"__SHADER__(
    468                 float OETF_sRGB(const float linear) {
    469                     return linear <= 0.0031308 ?
    470                             linear * 12.92 : (pow(linear, 1.0 / 2.4) * 1.055) - 0.055;
    471                 }
    472 
    473                 vec3 OETF_sRGB(const vec3 linear) {
    474                     return vec3(OETF_sRGB(linear.r), OETF_sRGB(linear.g), OETF_sRGB(linear.b));
    475                 }
    476 
    477                 vec3 OETF(const vec3 linear) {
    478                     return sign(linear.rgb) * OETF_sRGB(abs(linear.rgb));
    479                 }
    480             )__SHADER__";
    481             break;
    482         case Key::OUTPUT_TF_ST2084:
    483             fs << R"__SHADER__(
    484                 vec3 OETF(const vec3 linear) {
    485                     const highp float m1 = (2610.0 / 4096.0) / 4.0;
    486                     const highp float m2 = (2523.0 / 4096.0) * 128.0;
    487                     const highp float c1 = (3424.0 / 4096.0);
    488                     const highp float c2 = (2413.0 / 4096.0) * 32.0;
    489                     const highp float c3 = (2392.0 / 4096.0) * 32.0;
    490 
    491                     highp vec3 tmp = pow(linear, vec3(m1));
    492                     tmp = (c1 + c2 * tmp) / (1.0 + c3 * tmp);
    493                     return pow(tmp, vec3(m2));
    494                 }
    495             )__SHADER__";
    496             break;
    497         case Key::OUTPUT_TF_HLG:
    498             fs << R"__SHADER__(
    499                 highp float OETF_channel(const highp float channel) {
    500                     const highp float a = 0.17883277;
    501                     const highp float b = 0.28466892;
    502                     const highp float c = 0.55991073;
    503                     return channel <= 1.0 / 12.0 ? sqrt(3.0 * channel) :
    504                             a * log(12.0 * channel - b) + c;
    505                 }
    506 
    507                 vec3 OETF(const highp vec3 color) {
    508                     return vec3(OETF_channel(color.r), OETF_channel(color.g),
    509                             OETF_channel(color.b));
    510                 }
    511             )__SHADER__";
    512             break;
    513         default:
    514             fs << R"__SHADER__(
    515                 vec3 OETF(const vec3 linear) {
    516                     return linear;
    517                 }
    518             )__SHADER__";
    519             break;
    520     }
    521 }
    522 
    523 String8 ProgramCache::generateVertexShader(const Key& needs) {
    524     Formatter vs;
    525     if (needs.isTexturing()) {
    526         vs << "attribute vec4 texCoords;"
    527            << "varying vec2 outTexCoords;";
    528     }
    529     if (needs.hasRoundedCorners()) {
    530         vs << "attribute lowp vec4 cropCoords;";
    531         vs << "varying lowp vec2 outCropCoords;";
    532     }
    533     vs << "attribute vec4 position;"
    534        << "uniform mat4 projection;"
    535        << "uniform mat4 texture;"
    536        << "void main(void) {" << indent << "gl_Position = projection * position;";
    537     if (needs.isTexturing()) {
    538         vs << "outTexCoords = (texture * texCoords).st;";
    539     }
    540     if (needs.hasRoundedCorners()) {
    541         vs << "outCropCoords = cropCoords.st;";
    542     }
    543     vs << dedent << "}";
    544     return vs.getString();
    545 }
    546 
    547 String8 ProgramCache::generateFragmentShader(const Key& needs) {
    548     Formatter fs;
    549     if (needs.getTextureTarget() == Key::TEXTURE_EXT) {
    550         fs << "#extension GL_OES_EGL_image_external : require";
    551     }
    552 
    553     // default precision is required-ish in fragment shaders
    554     fs << "precision mediump float;";
    555 
    556     if (needs.getTextureTarget() == Key::TEXTURE_EXT) {
    557         fs << "uniform samplerExternalOES sampler;"
    558            << "varying vec2 outTexCoords;";
    559     } else if (needs.getTextureTarget() == Key::TEXTURE_2D) {
    560         fs << "uniform sampler2D sampler;"
    561            << "varying vec2 outTexCoords;";
    562     }
    563 
    564     if (needs.hasRoundedCorners()) {
    565         // Rounded corners implementation using a signed distance function.
    566         fs << R"__SHADER__(
    567             uniform float cornerRadius;
    568             uniform vec2 cropCenter;
    569             varying vec2 outCropCoords;
    570 
    571             /**
    572              * This function takes the current crop coordinates and calculates an alpha value based
    573              * on the corner radius and distance from the crop center.
    574              */
    575             float applyCornerRadius(vec2 cropCoords)
    576             {
    577                 vec2 position = cropCoords - cropCenter;
    578                 // Scale down the dist vector here, as otherwise large corner
    579                 // radii can cause floating point issues when computing the norm
    580                 vec2 dist = (abs(position) - cropCenter + vec2(cornerRadius)) / 16.0;
    581                 // Once we've found the norm, then scale back up.
    582                 float plane = length(max(dist, vec2(0.0))) * 16.0;
    583                 return 1.0 - clamp(plane - cornerRadius, 0.0, 1.0);
    584             }
    585             )__SHADER__";
    586     }
    587 
    588     if (needs.getTextureTarget() == Key::TEXTURE_OFF || needs.hasAlpha()) {
    589         fs << "uniform vec4 color;";
    590     }
    591 
    592     if (needs.isY410BT2020()) {
    593         fs << R"__SHADER__(
    594             vec3 convertY410BT2020(const vec3 color) {
    595                 const vec3 offset = vec3(0.0625, 0.5, 0.5);
    596                 const mat3 transform = mat3(
    597                     vec3(1.1678,  1.1678, 1.1678),
    598                     vec3(   0.0, -0.1878, 2.1481),
    599                     vec3(1.6836, -0.6523,   0.0));
    600                 // Y is in G, U is in R, and V is in B
    601                 return clamp(transform * (color.grb - offset), 0.0, 1.0);
    602             }
    603             )__SHADER__";
    604     }
    605 
    606     if (needs.hasTransformMatrix() || (needs.getInputTF() != needs.getOutputTF())) {
    607         // Currently, display maximum luminance is needed when doing tone mapping.
    608         if (needs.needsToneMapping()) {
    609             fs << "uniform float displayMaxLuminance;";
    610         }
    611 
    612         if (needs.hasInputTransformMatrix()) {
    613             fs << "uniform mat4 inputTransformMatrix;";
    614             fs << R"__SHADER__(
    615                 highp vec3 InputTransform(const highp vec3 color) {
    616                     return clamp(vec3(inputTransformMatrix * vec4(color, 1.0)), 0.0, 1.0);
    617                 }
    618             )__SHADER__";
    619         } else {
    620             fs << R"__SHADER__(
    621                 highp vec3 InputTransform(const highp vec3 color) {
    622                     return color;
    623                 }
    624             )__SHADER__";
    625         }
    626 
    627         // the transformation from a wider colorspace to a narrower one can
    628         // result in >1.0 or <0.0 pixel values
    629         if (needs.hasOutputTransformMatrix()) {
    630             fs << "uniform mat4 outputTransformMatrix;";
    631             fs << R"__SHADER__(
    632                 highp vec3 OutputTransform(const highp vec3 color) {
    633                     return clamp(vec3(outputTransformMatrix * vec4(color, 1.0)), 0.0, 1.0);
    634                 }
    635             )__SHADER__";
    636         } else {
    637             fs << R"__SHADER__(
    638                 highp vec3 OutputTransform(const highp vec3 color) {
    639                     return clamp(color, 0.0, 1.0);
    640                 }
    641             )__SHADER__";
    642         }
    643 
    644         generateEOTF(fs, needs);
    645         generateOOTF(fs, needs);
    646         generateOETF(fs, needs);
    647     }
    648 
    649     fs << "void main(void) {" << indent;
    650     if (needs.isTexturing()) {
    651         fs << "gl_FragColor = texture2D(sampler, outTexCoords);";
    652         if (needs.isY410BT2020()) {
    653             fs << "gl_FragColor.rgb = convertY410BT2020(gl_FragColor.rgb);";
    654         }
    655     } else {
    656         fs << "gl_FragColor.rgb = color.rgb;";
    657         fs << "gl_FragColor.a = 1.0;";
    658     }
    659     if (needs.isOpaque()) {
    660         fs << "gl_FragColor.a = 1.0;";
    661     }
    662     if (needs.hasAlpha()) {
    663         // modulate the current alpha value with alpha set
    664         if (needs.isPremultiplied()) {
    665             // ... and the color too if we're premultiplied
    666             fs << "gl_FragColor *= color.a;";
    667         } else {
    668             fs << "gl_FragColor.a *= color.a;";
    669         }
    670     }
    671 
    672     if (needs.hasTransformMatrix() || (needs.getInputTF() != needs.getOutputTF())) {
    673         if (!needs.isOpaque() && needs.isPremultiplied()) {
    674             // un-premultiply if needed before linearization
    675             // avoid divide by 0 by adding 0.5/256 to the alpha channel
    676             fs << "gl_FragColor.rgb = gl_FragColor.rgb / (gl_FragColor.a + 0.0019);";
    677         }
    678         fs << "gl_FragColor.rgb = "
    679               "OETF(OutputTransform(OOTF(InputTransform(EOTF(gl_FragColor.rgb)))));";
    680         if (!needs.isOpaque() && needs.isPremultiplied()) {
    681             // and re-premultiply if needed after gamma correction
    682             fs << "gl_FragColor.rgb = gl_FragColor.rgb * (gl_FragColor.a + 0.0019);";
    683         }
    684     }
    685 
    686     if (needs.hasRoundedCorners()) {
    687         if (needs.isPremultiplied()) {
    688             fs << "gl_FragColor *= vec4(applyCornerRadius(outCropCoords));";
    689         } else {
    690             fs << "gl_FragColor.a *= applyCornerRadius(outCropCoords);";
    691         }
    692     }
    693 
    694     fs << dedent << "}";
    695     return fs.getString();
    696 }
    697 
    698 std::unique_ptr<Program> ProgramCache::generateProgram(const Key& needs) {
    699     ATRACE_CALL();
    700 
    701     // vertex shader
    702     String8 vs = generateVertexShader(needs);
    703 
    704     // fragment shader
    705     String8 fs = generateFragmentShader(needs);
    706 
    707     return std::make_unique<Program>(needs, vs.string(), fs.string());
    708 }
    709 
    710 void ProgramCache::useProgram(EGLContext context, const Description& description) {
    711     // generate the key for the shader based on the description
    712     Key needs(computeKey(description));
    713 
    714     // look-up the program in the cache
    715     auto& cache = mCaches[context];
    716     auto it = cache.find(needs);
    717     if (it == cache.end()) {
    718         // we didn't find our program, so generate one...
    719         nsecs_t time = systemTime();
    720         it = cache.emplace(needs, generateProgram(needs)).first;
    721         time = systemTime() - time;
    722 
    723         ALOGV(">>> generated new program for context %p: needs=%08X, time=%u ms (%zu programs)",
    724               context, needs.mKey, uint32_t(ns2ms(time)), cache.size());
    725     }
    726 
    727     // here we have a suitable program for this description
    728     std::unique_ptr<Program>& program = it->second;
    729     if (program->isValid()) {
    730         program->use();
    731         program->setUniforms(description);
    732     }
    733 }
    734 
    735 } // namespace gl
    736 } // namespace renderengine
    737 } // namespace android
    738