1 /* 2 * Copyright (C) 2007 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #include <math.h> 18 19 #include <android-base/stringprintf.h> 20 #include <cutils/compiler.h> 21 #include <ui/Region.h> 22 #include <ui/Transform.h> 23 #include <utils/String8.h> 24 25 namespace android { 26 namespace ui { 27 28 Transform::Transform() { 29 reset(); 30 } 31 32 Transform::Transform(const Transform& other) 33 : mMatrix(other.mMatrix), mType(other.mType) { 34 } 35 36 Transform::Transform(uint32_t orientation) { 37 set(orientation, 0, 0); 38 } 39 40 Transform::~Transform() = default; 41 42 static const float EPSILON = 0.0f; 43 44 bool Transform::isZero(float f) { 45 return fabs(f) <= EPSILON; 46 } 47 48 bool Transform::absIsOne(float f) { 49 return isZero(fabs(f) - 1.0f); 50 } 51 52 Transform Transform::operator * (const Transform& rhs) const 53 { 54 if (CC_LIKELY(mType == IDENTITY)) 55 return rhs; 56 57 Transform r(*this); 58 if (rhs.mType == IDENTITY) 59 return r; 60 61 // TODO: we could use mType to optimize the matrix multiply 62 const mat33& A(mMatrix); 63 const mat33& B(rhs.mMatrix); 64 mat33& D(r.mMatrix); 65 for (size_t i = 0; i < 3; i++) { 66 const float v0 = A[0][i]; 67 const float v1 = A[1][i]; 68 const float v2 = A[2][i]; 69 D[0][i] = v0*B[0][0] + v1*B[0][1] + v2*B[0][2]; 70 D[1][i] = v0*B[1][0] + v1*B[1][1] + v2*B[1][2]; 71 D[2][i] = v0*B[2][0] + v1*B[2][1] + v2*B[2][2]; 72 } 73 r.mType |= rhs.mType; 74 75 // TODO: we could recompute this value from r and rhs 76 r.mType &= 0xFF; 77 r.mType |= UNKNOWN_TYPE; 78 return r; 79 } 80 81 Transform& Transform::operator=(const Transform& other) { 82 mMatrix = other.mMatrix; 83 mType = other.mType; 84 return *this; 85 } 86 87 const vec3& Transform::operator [] (size_t i) const { 88 return mMatrix[i]; 89 } 90 91 float Transform::tx() const { 92 return mMatrix[2][0]; 93 } 94 95 float Transform::ty() const { 96 return mMatrix[2][1]; 97 } 98 99 float Transform::sx() const { 100 return mMatrix[0][0]; 101 } 102 103 float Transform::sy() const { 104 return mMatrix[1][1]; 105 } 106 107 void Transform::reset() { 108 mType = IDENTITY; 109 for(size_t i = 0; i < 3; i++) { 110 vec3& v(mMatrix[i]); 111 for (size_t j = 0; j < 3; j++) 112 v[j] = ((i == j) ? 1.0f : 0.0f); 113 } 114 } 115 116 void Transform::set(float tx, float ty) 117 { 118 mMatrix[2][0] = tx; 119 mMatrix[2][1] = ty; 120 mMatrix[2][2] = 1.0f; 121 122 if (isZero(tx) && isZero(ty)) { 123 mType &= ~TRANSLATE; 124 } else { 125 mType |= TRANSLATE; 126 } 127 } 128 129 void Transform::set(float a, float b, float c, float d) 130 { 131 mat33& M(mMatrix); 132 M[0][0] = a; M[1][0] = b; 133 M[0][1] = c; M[1][1] = d; 134 M[0][2] = 0; M[1][2] = 0; 135 mType = UNKNOWN_TYPE; 136 } 137 138 status_t Transform::set(uint32_t flags, float w, float h) 139 { 140 if (flags & ROT_INVALID) { 141 // that's not allowed! 142 reset(); 143 return BAD_VALUE; 144 } 145 146 Transform H, V, R; 147 if (flags & ROT_90) { 148 // w & h are inverted when rotating by 90 degrees 149 std::swap(w, h); 150 } 151 152 if (flags & FLIP_H) { 153 H.mType = (FLIP_H << 8) | SCALE; 154 H.mType |= isZero(w) ? IDENTITY : TRANSLATE; 155 mat33& M(H.mMatrix); 156 M[0][0] = -1; 157 M[2][0] = w; 158 } 159 160 if (flags & FLIP_V) { 161 V.mType = (FLIP_V << 8) | SCALE; 162 V.mType |= isZero(h) ? IDENTITY : TRANSLATE; 163 mat33& M(V.mMatrix); 164 M[1][1] = -1; 165 M[2][1] = h; 166 } 167 168 if (flags & ROT_90) { 169 const float original_w = h; 170 R.mType = (ROT_90 << 8) | ROTATE; 171 R.mType |= isZero(original_w) ? IDENTITY : TRANSLATE; 172 mat33& M(R.mMatrix); 173 M[0][0] = 0; M[1][0] =-1; M[2][0] = original_w; 174 M[0][1] = 1; M[1][1] = 0; 175 } 176 177 *this = (R*(H*V)); 178 return NO_ERROR; 179 } 180 181 vec2 Transform::transform(const vec2& v) const { 182 vec2 r; 183 const mat33& M(mMatrix); 184 r[0] = M[0][0]*v[0] + M[1][0]*v[1] + M[2][0]; 185 r[1] = M[0][1]*v[0] + M[1][1]*v[1] + M[2][1]; 186 return r; 187 } 188 189 vec3 Transform::transform(const vec3& v) const { 190 vec3 r; 191 const mat33& M(mMatrix); 192 r[0] = M[0][0]*v[0] + M[1][0]*v[1] + M[2][0]*v[2]; 193 r[1] = M[0][1]*v[0] + M[1][1]*v[1] + M[2][1]*v[2]; 194 r[2] = M[0][2]*v[0] + M[1][2]*v[1] + M[2][2]*v[2]; 195 return r; 196 } 197 198 vec2 Transform::transform(int x, int y) const 199 { 200 return transform(vec2(x,y)); 201 } 202 203 Rect Transform::makeBounds(int w, int h) const 204 { 205 return transform( Rect(w, h) ); 206 } 207 208 Rect Transform::transform(const Rect& bounds, bool roundOutwards) const 209 { 210 Rect r; 211 vec2 lt( bounds.left, bounds.top ); 212 vec2 rt( bounds.right, bounds.top ); 213 vec2 lb( bounds.left, bounds.bottom ); 214 vec2 rb( bounds.right, bounds.bottom ); 215 216 lt = transform(lt); 217 rt = transform(rt); 218 lb = transform(lb); 219 rb = transform(rb); 220 221 if (roundOutwards) { 222 r.left = static_cast<int32_t>(floorf(std::min({lt[0], rt[0], lb[0], rb[0]}))); 223 r.top = static_cast<int32_t>(floorf(std::min({lt[1], rt[1], lb[1], rb[1]}))); 224 r.right = static_cast<int32_t>(ceilf(std::max({lt[0], rt[0], lb[0], rb[0]}))); 225 r.bottom = static_cast<int32_t>(ceilf(std::max({lt[1], rt[1], lb[1], rb[1]}))); 226 } else { 227 r.left = static_cast<int32_t>(floorf(std::min({lt[0], rt[0], lb[0], rb[0]}) + 0.5f)); 228 r.top = static_cast<int32_t>(floorf(std::min({lt[1], rt[1], lb[1], rb[1]}) + 0.5f)); 229 r.right = static_cast<int32_t>(floorf(std::max({lt[0], rt[0], lb[0], rb[0]}) + 0.5f)); 230 r.bottom = static_cast<int32_t>(floorf(std::max({lt[1], rt[1], lb[1], rb[1]}) + 0.5f)); 231 } 232 233 return r; 234 } 235 236 FloatRect Transform::transform(const FloatRect& bounds) const 237 { 238 vec2 lt(bounds.left, bounds.top); 239 vec2 rt(bounds.right, bounds.top); 240 vec2 lb(bounds.left, bounds.bottom); 241 vec2 rb(bounds.right, bounds.bottom); 242 243 lt = transform(lt); 244 rt = transform(rt); 245 lb = transform(lb); 246 rb = transform(rb); 247 248 FloatRect r; 249 r.left = std::min({lt[0], rt[0], lb[0], rb[0]}); 250 r.top = std::min({lt[1], rt[1], lb[1], rb[1]}); 251 r.right = std::max({lt[0], rt[0], lb[0], rb[0]}); 252 r.bottom = std::max({lt[1], rt[1], lb[1], rb[1]}); 253 254 return r; 255 } 256 257 Region Transform::transform(const Region& reg) const 258 { 259 Region out; 260 if (CC_UNLIKELY(type() > TRANSLATE)) { 261 if (CC_LIKELY(preserveRects())) { 262 Region::const_iterator it = reg.begin(); 263 Region::const_iterator const end = reg.end(); 264 while (it != end) { 265 out.orSelf(transform(*it++)); 266 } 267 } else { 268 out.set(transform(reg.bounds())); 269 } 270 } else { 271 int xpos = static_cast<int>(floorf(tx() + 0.5f)); 272 int ypos = static_cast<int>(floorf(ty() + 0.5f)); 273 out = reg.translate(xpos, ypos); 274 } 275 return out; 276 } 277 278 uint32_t Transform::type() const 279 { 280 if (mType & UNKNOWN_TYPE) { 281 // recompute what this transform is 282 283 const mat33& M(mMatrix); 284 const float a = M[0][0]; 285 const float b = M[1][0]; 286 const float c = M[0][1]; 287 const float d = M[1][1]; 288 const float x = M[2][0]; 289 const float y = M[2][1]; 290 291 bool scale = false; 292 uint32_t flags = ROT_0; 293 if (isZero(b) && isZero(c)) { 294 if (a<0) flags |= FLIP_H; 295 if (d<0) flags |= FLIP_V; 296 if (!absIsOne(a) || !absIsOne(d)) { 297 scale = true; 298 } 299 } else if (isZero(a) && isZero(d)) { 300 flags |= ROT_90; 301 if (b>0) flags |= FLIP_V; 302 if (c<0) flags |= FLIP_H; 303 if (!absIsOne(b) || !absIsOne(c)) { 304 scale = true; 305 } 306 } else { 307 // there is a skew component and/or a non 90 degrees rotation 308 flags = ROT_INVALID; 309 } 310 311 mType = flags << 8; 312 if (flags & ROT_INVALID) { 313 mType |= UNKNOWN; 314 } else { 315 if ((flags & ROT_90) || ((flags & ROT_180) == ROT_180)) 316 mType |= ROTATE; 317 if (flags & FLIP_H) 318 mType ^= SCALE; 319 if (flags & FLIP_V) 320 mType ^= SCALE; 321 if (scale) 322 mType |= SCALE; 323 } 324 325 if (!isZero(x) || !isZero(y)) 326 mType |= TRANSLATE; 327 } 328 return mType; 329 } 330 331 Transform Transform::inverse() const { 332 // our 3x3 matrix is always of the form of a 2x2 transformation 333 // followed by a translation: T*M, therefore: 334 // (T*M)^-1 = M^-1 * T^-1 335 Transform result; 336 if (mType <= TRANSLATE) { 337 // 1 0 0 338 // 0 1 0 339 // x y 1 340 result = *this; 341 result.mMatrix[2][0] = -result.mMatrix[2][0]; 342 result.mMatrix[2][1] = -result.mMatrix[2][1]; 343 } else { 344 // a c 0 345 // b d 0 346 // x y 1 347 const mat33& M(mMatrix); 348 const float a = M[0][0]; 349 const float b = M[1][0]; 350 const float c = M[0][1]; 351 const float d = M[1][1]; 352 const float x = M[2][0]; 353 const float y = M[2][1]; 354 355 const float idet = 1.0f / (a*d - b*c); 356 result.mMatrix[0][0] = d*idet; 357 result.mMatrix[0][1] = -c*idet; 358 result.mMatrix[1][0] = -b*idet; 359 result.mMatrix[1][1] = a*idet; 360 result.mType = mType; 361 362 vec2 T(-x, -y); 363 T = result.transform(T); 364 result.mMatrix[2][0] = T[0]; 365 result.mMatrix[2][1] = T[1]; 366 } 367 return result; 368 } 369 370 uint32_t Transform::getType() const { 371 return type() & 0xFF; 372 } 373 374 uint32_t Transform::getOrientation() const 375 { 376 return (type() >> 8) & 0xFF; 377 } 378 379 bool Transform::preserveRects() const 380 { 381 return (getOrientation() & ROT_INVALID) ? false : true; 382 } 383 384 mat4 Transform::asMatrix4() const { 385 // Internally Transform uses a 3x3 matrix since the transform is meant for 386 // two-dimensional values. An equivalent 4x4 matrix means inserting an extra 387 // row and column which adds as an identity transform on the third 388 // dimension. 389 390 mat4 m = mat4{mat4::NO_INIT}; // NO_INIT since we explicitly set every element 391 392 m[0][0] = mMatrix[0][0]; 393 m[0][1] = mMatrix[0][1]; 394 m[0][2] = 0.f; 395 m[0][3] = mMatrix[0][2]; 396 397 m[1][0] = mMatrix[1][0]; 398 m[1][1] = mMatrix[1][1]; 399 m[1][2] = 0.f; 400 m[1][3] = mMatrix[1][2]; 401 402 m[2][0] = 0.f; 403 m[2][1] = 0.f; 404 m[2][2] = 1.f; 405 m[2][3] = 0.f; 406 407 m[3][0] = mMatrix[2][0]; 408 m[3][1] = mMatrix[2][1]; 409 m[3][2] = 0.f; 410 m[3][3] = mMatrix[2][2]; 411 412 return m; 413 } 414 415 void Transform::dump(std::string& out, const char* name) const { 416 using android::base::StringAppendF; 417 418 type(); // Ensure the information in mType is up to date 419 420 const uint32_t type = mType; 421 const uint32_t orient = type >> 8; 422 423 StringAppendF(&out, "%s 0x%08x (", name, orient); 424 425 if (orient & ROT_INVALID) { 426 out.append("ROT_INVALID "); 427 } else { 428 if (orient & ROT_90) { 429 out.append("ROT_90 "); 430 } else { 431 out.append("ROT_0 "); 432 } 433 if (orient & FLIP_V) out.append("FLIP_V "); 434 if (orient & FLIP_H) out.append("FLIP_H "); 435 } 436 437 StringAppendF(&out, ") 0x%02x (", type); 438 439 if (!(type & (SCALE | ROTATE | TRANSLATE))) out.append("IDENTITY "); 440 if (type & SCALE) out.append("SCALE "); 441 if (type & ROTATE) out.append("ROTATE "); 442 if (type & TRANSLATE) out.append("TRANSLATE "); 443 444 out.append(")\n"); 445 446 for (size_t i = 0; i < 3; i++) { 447 StringAppendF(&out, " %.4f %.4f %.4f\n", static_cast<double>(mMatrix[0][i]), 448 static_cast<double>(mMatrix[1][i]), static_cast<double>(mMatrix[2][i])); 449 } 450 } 451 452 void Transform::dump(const char* name) const { 453 std::string out; 454 dump(out, name); 455 ALOGD("%s", out.c_str()); 456 } 457 458 } // namespace ui 459 } // namespace android 460