Home | History | Annotate | Download | only in ui
      1 /*
      2  * Copyright (C) 2007 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include <math.h>
     18 
     19 #include <android-base/stringprintf.h>
     20 #include <cutils/compiler.h>
     21 #include <ui/Region.h>
     22 #include <ui/Transform.h>
     23 #include <utils/String8.h>
     24 
     25 namespace android {
     26 namespace ui {
     27 
     28 Transform::Transform() {
     29     reset();
     30 }
     31 
     32 Transform::Transform(const Transform&  other)
     33     : mMatrix(other.mMatrix), mType(other.mType) {
     34 }
     35 
     36 Transform::Transform(uint32_t orientation) {
     37     set(orientation, 0, 0);
     38 }
     39 
     40 Transform::~Transform() = default;
     41 
     42 static const float EPSILON = 0.0f;
     43 
     44 bool Transform::isZero(float f) {
     45     return fabs(f) <= EPSILON;
     46 }
     47 
     48 bool Transform::absIsOne(float f) {
     49     return isZero(fabs(f) - 1.0f);
     50 }
     51 
     52 Transform Transform::operator * (const Transform& rhs) const
     53 {
     54     if (CC_LIKELY(mType == IDENTITY))
     55         return rhs;
     56 
     57     Transform r(*this);
     58     if (rhs.mType == IDENTITY)
     59         return r;
     60 
     61     // TODO: we could use mType to optimize the matrix multiply
     62     const mat33& A(mMatrix);
     63     const mat33& B(rhs.mMatrix);
     64           mat33& D(r.mMatrix);
     65     for (size_t i = 0; i < 3; i++) {
     66         const float v0 = A[0][i];
     67         const float v1 = A[1][i];
     68         const float v2 = A[2][i];
     69         D[0][i] = v0*B[0][0] + v1*B[0][1] + v2*B[0][2];
     70         D[1][i] = v0*B[1][0] + v1*B[1][1] + v2*B[1][2];
     71         D[2][i] = v0*B[2][0] + v1*B[2][1] + v2*B[2][2];
     72     }
     73     r.mType |= rhs.mType;
     74 
     75     // TODO: we could recompute this value from r and rhs
     76     r.mType &= 0xFF;
     77     r.mType |= UNKNOWN_TYPE;
     78     return r;
     79 }
     80 
     81 Transform& Transform::operator=(const Transform& other) {
     82     mMatrix = other.mMatrix;
     83     mType = other.mType;
     84     return *this;
     85 }
     86 
     87 const vec3& Transform::operator [] (size_t i) const {
     88     return mMatrix[i];
     89 }
     90 
     91 float Transform::tx() const {
     92     return mMatrix[2][0];
     93 }
     94 
     95 float Transform::ty() const {
     96     return mMatrix[2][1];
     97 }
     98 
     99 float Transform::sx() const {
    100     return mMatrix[0][0];
    101 }
    102 
    103 float Transform::sy() const {
    104     return mMatrix[1][1];
    105 }
    106 
    107 void Transform::reset() {
    108     mType = IDENTITY;
    109     for(size_t i = 0; i < 3; i++) {
    110         vec3& v(mMatrix[i]);
    111         for (size_t j = 0; j < 3; j++)
    112             v[j] = ((i == j) ? 1.0f : 0.0f);
    113     }
    114 }
    115 
    116 void Transform::set(float tx, float ty)
    117 {
    118     mMatrix[2][0] = tx;
    119     mMatrix[2][1] = ty;
    120     mMatrix[2][2] = 1.0f;
    121 
    122     if (isZero(tx) && isZero(ty)) {
    123         mType &= ~TRANSLATE;
    124     } else {
    125         mType |= TRANSLATE;
    126     }
    127 }
    128 
    129 void Transform::set(float a, float b, float c, float d)
    130 {
    131     mat33& M(mMatrix);
    132     M[0][0] = a;    M[1][0] = b;
    133     M[0][1] = c;    M[1][1] = d;
    134     M[0][2] = 0;    M[1][2] = 0;
    135     mType = UNKNOWN_TYPE;
    136 }
    137 
    138 status_t Transform::set(uint32_t flags, float w, float h)
    139 {
    140     if (flags & ROT_INVALID) {
    141         // that's not allowed!
    142         reset();
    143         return BAD_VALUE;
    144     }
    145 
    146     Transform H, V, R;
    147     if (flags & ROT_90) {
    148         // w & h are inverted when rotating by 90 degrees
    149         std::swap(w, h);
    150     }
    151 
    152     if (flags & FLIP_H) {
    153         H.mType = (FLIP_H << 8) | SCALE;
    154         H.mType |= isZero(w) ? IDENTITY : TRANSLATE;
    155         mat33& M(H.mMatrix);
    156         M[0][0] = -1;
    157         M[2][0] = w;
    158     }
    159 
    160     if (flags & FLIP_V) {
    161         V.mType = (FLIP_V << 8) | SCALE;
    162         V.mType |= isZero(h) ? IDENTITY : TRANSLATE;
    163         mat33& M(V.mMatrix);
    164         M[1][1] = -1;
    165         M[2][1] = h;
    166     }
    167 
    168     if (flags & ROT_90) {
    169         const float original_w = h;
    170         R.mType = (ROT_90 << 8) | ROTATE;
    171         R.mType |= isZero(original_w) ? IDENTITY : TRANSLATE;
    172         mat33& M(R.mMatrix);
    173         M[0][0] = 0;    M[1][0] =-1;    M[2][0] = original_w;
    174         M[0][1] = 1;    M[1][1] = 0;
    175     }
    176 
    177     *this = (R*(H*V));
    178     return NO_ERROR;
    179 }
    180 
    181 vec2 Transform::transform(const vec2& v) const {
    182     vec2 r;
    183     const mat33& M(mMatrix);
    184     r[0] = M[0][0]*v[0] + M[1][0]*v[1] + M[2][0];
    185     r[1] = M[0][1]*v[0] + M[1][1]*v[1] + M[2][1];
    186     return r;
    187 }
    188 
    189 vec3 Transform::transform(const vec3& v) const {
    190     vec3 r;
    191     const mat33& M(mMatrix);
    192     r[0] = M[0][0]*v[0] + M[1][0]*v[1] + M[2][0]*v[2];
    193     r[1] = M[0][1]*v[0] + M[1][1]*v[1] + M[2][1]*v[2];
    194     r[2] = M[0][2]*v[0] + M[1][2]*v[1] + M[2][2]*v[2];
    195     return r;
    196 }
    197 
    198 vec2 Transform::transform(int x, int y) const
    199 {
    200     return transform(vec2(x,y));
    201 }
    202 
    203 Rect Transform::makeBounds(int w, int h) const
    204 {
    205     return transform( Rect(w, h) );
    206 }
    207 
    208 Rect Transform::transform(const Rect& bounds, bool roundOutwards) const
    209 {
    210     Rect r;
    211     vec2 lt( bounds.left,  bounds.top    );
    212     vec2 rt( bounds.right, bounds.top    );
    213     vec2 lb( bounds.left,  bounds.bottom );
    214     vec2 rb( bounds.right, bounds.bottom );
    215 
    216     lt = transform(lt);
    217     rt = transform(rt);
    218     lb = transform(lb);
    219     rb = transform(rb);
    220 
    221     if (roundOutwards) {
    222         r.left   = static_cast<int32_t>(floorf(std::min({lt[0], rt[0], lb[0], rb[0]})));
    223         r.top    = static_cast<int32_t>(floorf(std::min({lt[1], rt[1], lb[1], rb[1]})));
    224         r.right  = static_cast<int32_t>(ceilf(std::max({lt[0], rt[0], lb[0], rb[0]})));
    225         r.bottom = static_cast<int32_t>(ceilf(std::max({lt[1], rt[1], lb[1], rb[1]})));
    226     } else {
    227         r.left   = static_cast<int32_t>(floorf(std::min({lt[0], rt[0], lb[0], rb[0]}) + 0.5f));
    228         r.top    = static_cast<int32_t>(floorf(std::min({lt[1], rt[1], lb[1], rb[1]}) + 0.5f));
    229         r.right  = static_cast<int32_t>(floorf(std::max({lt[0], rt[0], lb[0], rb[0]}) + 0.5f));
    230         r.bottom = static_cast<int32_t>(floorf(std::max({lt[1], rt[1], lb[1], rb[1]}) + 0.5f));
    231     }
    232 
    233     return r;
    234 }
    235 
    236 FloatRect Transform::transform(const FloatRect& bounds) const
    237 {
    238     vec2 lt(bounds.left, bounds.top);
    239     vec2 rt(bounds.right, bounds.top);
    240     vec2 lb(bounds.left, bounds.bottom);
    241     vec2 rb(bounds.right, bounds.bottom);
    242 
    243     lt = transform(lt);
    244     rt = transform(rt);
    245     lb = transform(lb);
    246     rb = transform(rb);
    247 
    248     FloatRect r;
    249     r.left = std::min({lt[0], rt[0], lb[0], rb[0]});
    250     r.top = std::min({lt[1], rt[1], lb[1], rb[1]});
    251     r.right = std::max({lt[0], rt[0], lb[0], rb[0]});
    252     r.bottom = std::max({lt[1], rt[1], lb[1], rb[1]});
    253 
    254     return r;
    255 }
    256 
    257 Region Transform::transform(const Region& reg) const
    258 {
    259     Region out;
    260     if (CC_UNLIKELY(type() > TRANSLATE)) {
    261         if (CC_LIKELY(preserveRects())) {
    262             Region::const_iterator it = reg.begin();
    263             Region::const_iterator const end = reg.end();
    264             while (it != end) {
    265                 out.orSelf(transform(*it++));
    266             }
    267         } else {
    268             out.set(transform(reg.bounds()));
    269         }
    270     } else {
    271         int xpos = static_cast<int>(floorf(tx() + 0.5f));
    272         int ypos = static_cast<int>(floorf(ty() + 0.5f));
    273         out = reg.translate(xpos, ypos);
    274     }
    275     return out;
    276 }
    277 
    278 uint32_t Transform::type() const
    279 {
    280     if (mType & UNKNOWN_TYPE) {
    281         // recompute what this transform is
    282 
    283         const mat33& M(mMatrix);
    284         const float a = M[0][0];
    285         const float b = M[1][0];
    286         const float c = M[0][1];
    287         const float d = M[1][1];
    288         const float x = M[2][0];
    289         const float y = M[2][1];
    290 
    291         bool scale = false;
    292         uint32_t flags = ROT_0;
    293         if (isZero(b) && isZero(c)) {
    294             if (a<0)    flags |= FLIP_H;
    295             if (d<0)    flags |= FLIP_V;
    296             if (!absIsOne(a) || !absIsOne(d)) {
    297                 scale = true;
    298             }
    299         } else if (isZero(a) && isZero(d)) {
    300             flags |= ROT_90;
    301             if (b>0)    flags |= FLIP_V;
    302             if (c<0)    flags |= FLIP_H;
    303             if (!absIsOne(b) || !absIsOne(c)) {
    304                 scale = true;
    305             }
    306         } else {
    307             // there is a skew component and/or a non 90 degrees rotation
    308             flags = ROT_INVALID;
    309         }
    310 
    311         mType = flags << 8;
    312         if (flags & ROT_INVALID) {
    313             mType |= UNKNOWN;
    314         } else {
    315             if ((flags & ROT_90) || ((flags & ROT_180) == ROT_180))
    316                 mType |= ROTATE;
    317             if (flags & FLIP_H)
    318                 mType ^= SCALE;
    319             if (flags & FLIP_V)
    320                 mType ^= SCALE;
    321             if (scale)
    322                 mType |= SCALE;
    323         }
    324 
    325         if (!isZero(x) || !isZero(y))
    326             mType |= TRANSLATE;
    327     }
    328     return mType;
    329 }
    330 
    331 Transform Transform::inverse() const {
    332     // our 3x3 matrix is always of the form of a 2x2 transformation
    333     // followed by a translation: T*M, therefore:
    334     // (T*M)^-1 = M^-1 * T^-1
    335     Transform result;
    336     if (mType <= TRANSLATE) {
    337         // 1 0 0
    338         // 0 1 0
    339         // x y 1
    340         result = *this;
    341         result.mMatrix[2][0] = -result.mMatrix[2][0];
    342         result.mMatrix[2][1] = -result.mMatrix[2][1];
    343     } else {
    344         // a c 0
    345         // b d 0
    346         // x y 1
    347         const mat33& M(mMatrix);
    348         const float a = M[0][0];
    349         const float b = M[1][0];
    350         const float c = M[0][1];
    351         const float d = M[1][1];
    352         const float x = M[2][0];
    353         const float y = M[2][1];
    354 
    355         const float idet = 1.0f / (a*d - b*c);
    356         result.mMatrix[0][0] =  d*idet;
    357         result.mMatrix[0][1] = -c*idet;
    358         result.mMatrix[1][0] = -b*idet;
    359         result.mMatrix[1][1] =  a*idet;
    360         result.mType = mType;
    361 
    362         vec2 T(-x, -y);
    363         T = result.transform(T);
    364         result.mMatrix[2][0] = T[0];
    365         result.mMatrix[2][1] = T[1];
    366     }
    367     return result;
    368 }
    369 
    370 uint32_t Transform::getType() const {
    371     return type() & 0xFF;
    372 }
    373 
    374 uint32_t Transform::getOrientation() const
    375 {
    376     return (type() >> 8) & 0xFF;
    377 }
    378 
    379 bool Transform::preserveRects() const
    380 {
    381     return (getOrientation() & ROT_INVALID) ? false : true;
    382 }
    383 
    384 mat4 Transform::asMatrix4() const {
    385     // Internally Transform uses a 3x3 matrix since the transform is meant for
    386     // two-dimensional values. An equivalent 4x4 matrix means inserting an extra
    387     // row and column which adds as an identity transform on the third
    388     // dimension.
    389 
    390     mat4 m = mat4{mat4::NO_INIT}; // NO_INIT since we explicitly set every element
    391 
    392     m[0][0] = mMatrix[0][0];
    393     m[0][1] = mMatrix[0][1];
    394     m[0][2] = 0.f;
    395     m[0][3] = mMatrix[0][2];
    396 
    397     m[1][0] = mMatrix[1][0];
    398     m[1][1] = mMatrix[1][1];
    399     m[1][2] = 0.f;
    400     m[1][3] = mMatrix[1][2];
    401 
    402     m[2][0] = 0.f;
    403     m[2][1] = 0.f;
    404     m[2][2] = 1.f;
    405     m[2][3] = 0.f;
    406 
    407     m[3][0] = mMatrix[2][0];
    408     m[3][1] = mMatrix[2][1];
    409     m[3][2] = 0.f;
    410     m[3][3] = mMatrix[2][2];
    411 
    412     return m;
    413 }
    414 
    415 void Transform::dump(std::string& out, const char* name) const {
    416     using android::base::StringAppendF;
    417 
    418     type(); // Ensure the information in mType is up to date
    419 
    420     const uint32_t type = mType;
    421     const uint32_t orient = type >> 8;
    422 
    423     StringAppendF(&out, "%s 0x%08x (", name, orient);
    424 
    425     if (orient & ROT_INVALID) {
    426         out.append("ROT_INVALID ");
    427     } else {
    428         if (orient & ROT_90) {
    429             out.append("ROT_90 ");
    430         } else {
    431             out.append("ROT_0 ");
    432         }
    433         if (orient & FLIP_V) out.append("FLIP_V ");
    434         if (orient & FLIP_H) out.append("FLIP_H ");
    435     }
    436 
    437     StringAppendF(&out, ") 0x%02x (", type);
    438 
    439     if (!(type & (SCALE | ROTATE | TRANSLATE))) out.append("IDENTITY ");
    440     if (type & SCALE) out.append("SCALE ");
    441     if (type & ROTATE) out.append("ROTATE ");
    442     if (type & TRANSLATE) out.append("TRANSLATE ");
    443 
    444     out.append(")\n");
    445 
    446     for (size_t i = 0; i < 3; i++) {
    447         StringAppendF(&out, "    %.4f  %.4f  %.4f\n", static_cast<double>(mMatrix[0][i]),
    448                       static_cast<double>(mMatrix[1][i]), static_cast<double>(mMatrix[2][i]));
    449     }
    450 }
    451 
    452 void Transform::dump(const char* name) const {
    453     std::string out;
    454     dump(out, name);
    455     ALOGD("%s", out.c_str());
    456 }
    457 
    458 }  // namespace ui
    459 }  // namespace android
    460