1 #include "hardware_composer.h" 2 3 #include <binder/IServiceManager.h> 4 #include <cutils/properties.h> 5 #include <cutils/sched_policy.h> 6 #include <fcntl.h> 7 #include <log/log.h> 8 #include <poll.h> 9 #include <stdint.h> 10 #include <sync/sync.h> 11 #include <sys/eventfd.h> 12 #include <sys/prctl.h> 13 #include <sys/resource.h> 14 #include <sys/system_properties.h> 15 #include <sys/timerfd.h> 16 #include <sys/types.h> 17 #include <time.h> 18 #include <unistd.h> 19 #include <utils/Trace.h> 20 21 #include <algorithm> 22 #include <chrono> 23 #include <functional> 24 #include <map> 25 #include <sstream> 26 #include <string> 27 #include <tuple> 28 29 #include <dvr/dvr_display_types.h> 30 #include <dvr/performance_client_api.h> 31 #include <private/dvr/clock_ns.h> 32 #include <private/dvr/ion_buffer.h> 33 34 using android::hardware::Return; 35 using android::hardware::Void; 36 using android::pdx::ErrorStatus; 37 using android::pdx::LocalHandle; 38 using android::pdx::Status; 39 using android::pdx::rpc::EmptyVariant; 40 using android::pdx::rpc::IfAnyOf; 41 42 using namespace std::chrono_literals; 43 44 namespace android { 45 namespace dvr { 46 47 namespace { 48 49 const char kDvrPerformanceProperty[] = "sys.dvr.performance"; 50 const char kDvrStandaloneProperty[] = "ro.boot.vr"; 51 52 const char kRightEyeOffsetProperty[] = "dvr.right_eye_offset_ns"; 53 54 const char kUseExternalDisplayProperty[] = "persist.vr.use_external_display"; 55 56 // Surface flinger uses "VSYNC-sf" and "VSYNC-app" for its version of these 57 // events. Name ours similarly. 58 const char kVsyncTraceEventName[] = "VSYNC-vrflinger"; 59 60 // How long to wait after boot finishes before we turn the display off. 61 constexpr int kBootFinishedDisplayOffTimeoutSec = 10; 62 63 constexpr int kDefaultDisplayWidth = 1920; 64 constexpr int kDefaultDisplayHeight = 1080; 65 constexpr int64_t kDefaultVsyncPeriodNs = 16666667; 66 // Hardware composer reports dpi as dots per thousand inches (dpi * 1000). 67 constexpr int kDefaultDpi = 400000; 68 69 // Get time offset from a vsync to when the pose for that vsync should be 70 // predicted out to. For example, if scanout gets halfway through the frame 71 // at the halfway point between vsyncs, then this could be half the period. 72 // With global shutter displays, this should be changed to the offset to when 73 // illumination begins. Low persistence adds a frame of latency, so we predict 74 // to the center of the next frame. 75 inline int64_t GetPosePredictionTimeOffset(int64_t vsync_period_ns) { 76 return (vsync_period_ns * 150) / 100; 77 } 78 79 // Attempts to set the scheduler class and partiton for the current thread. 80 // Returns true on success or false on failure. 81 bool SetThreadPolicy(const std::string& scheduler_class, 82 const std::string& partition) { 83 int error = dvrSetSchedulerClass(0, scheduler_class.c_str()); 84 if (error < 0) { 85 ALOGE( 86 "SetThreadPolicy: Failed to set scheduler class \"%s\" for " 87 "thread_id=%d: %s", 88 scheduler_class.c_str(), gettid(), strerror(-error)); 89 return false; 90 } 91 error = dvrSetCpuPartition(0, partition.c_str()); 92 if (error < 0) { 93 ALOGE( 94 "SetThreadPolicy: Failed to set cpu partiton \"%s\" for thread_id=%d: " 95 "%s", 96 partition.c_str(), gettid(), strerror(-error)); 97 return false; 98 } 99 return true; 100 } 101 102 // Utility to generate scoped tracers with arguments. 103 // TODO(eieio): Move/merge this into utils/Trace.h? 104 class TraceArgs { 105 public: 106 template <typename... Args> 107 explicit TraceArgs(const char* format, Args&&... args) { 108 std::array<char, 1024> buffer; 109 snprintf(buffer.data(), buffer.size(), format, std::forward<Args>(args)...); 110 atrace_begin(ATRACE_TAG, buffer.data()); 111 } 112 113 ~TraceArgs() { atrace_end(ATRACE_TAG); } 114 115 private: 116 TraceArgs(const TraceArgs&) = delete; 117 void operator=(const TraceArgs&) = delete; 118 }; 119 120 // Macro to define a scoped tracer with arguments. Uses PASTE(x, y) macro 121 // defined in utils/Trace.h. 122 #define TRACE_FORMAT(format, ...) \ 123 TraceArgs PASTE(__tracer, __LINE__) { format, ##__VA_ARGS__ } 124 125 // Returns "primary" or "external". Useful for writing more readable logs. 126 const char* GetDisplayName(bool is_primary) { 127 return is_primary ? "primary" : "external"; 128 } 129 130 } // anonymous namespace 131 132 HardwareComposer::HardwareComposer() 133 : initialized_(false), request_display_callback_(nullptr) {} 134 135 HardwareComposer::~HardwareComposer(void) { 136 UpdatePostThreadState(PostThreadState::Quit, true); 137 if (post_thread_.joinable()) 138 post_thread_.join(); 139 composer_callback_->SetVsyncService(nullptr); 140 } 141 142 bool HardwareComposer::Initialize( 143 Hwc2::Composer* composer, hwc2_display_t primary_display_id, 144 RequestDisplayCallback request_display_callback) { 145 if (initialized_) { 146 ALOGE("HardwareComposer::Initialize: already initialized."); 147 return false; 148 } 149 150 is_standalone_device_ = property_get_bool(kDvrStandaloneProperty, false); 151 152 request_display_callback_ = request_display_callback; 153 154 primary_display_ = GetDisplayParams(composer, primary_display_id, true); 155 156 vsync_service_ = new VsyncService; 157 sp<IServiceManager> sm(defaultServiceManager()); 158 auto result = sm->addService(String16(VsyncService::GetServiceName()), 159 vsync_service_, false); 160 LOG_ALWAYS_FATAL_IF(result != android::OK, 161 "addService(%s) failed", VsyncService::GetServiceName()); 162 163 post_thread_event_fd_.Reset(eventfd(0, EFD_CLOEXEC | EFD_NONBLOCK)); 164 LOG_ALWAYS_FATAL_IF( 165 !post_thread_event_fd_, 166 "HardwareComposer: Failed to create interrupt event fd : %s", 167 strerror(errno)); 168 169 post_thread_ = std::thread(&HardwareComposer::PostThread, this); 170 171 initialized_ = true; 172 173 return initialized_; 174 } 175 176 void HardwareComposer::Enable() { 177 UpdatePostThreadState(PostThreadState::Suspended, false); 178 } 179 180 void HardwareComposer::Disable() { 181 UpdatePostThreadState(PostThreadState::Suspended, true); 182 183 std::unique_lock<std::mutex> lock(post_thread_mutex_); 184 post_thread_ready_.wait(lock, [this] { 185 return !post_thread_resumed_; 186 }); 187 } 188 189 void HardwareComposer::OnBootFinished() { 190 std::lock_guard<std::mutex> lock(post_thread_mutex_); 191 if (boot_finished_) 192 return; 193 boot_finished_ = true; 194 post_thread_wait_.notify_one(); 195 if (is_standalone_device_) 196 request_display_callback_(true); 197 } 198 199 // Update the post thread quiescent state based on idle and suspended inputs. 200 void HardwareComposer::UpdatePostThreadState(PostThreadStateType state, 201 bool suspend) { 202 std::unique_lock<std::mutex> lock(post_thread_mutex_); 203 204 // Update the votes in the state variable before evaluating the effective 205 // quiescent state. Any bits set in post_thread_state_ indicate that the post 206 // thread should be suspended. 207 if (suspend) { 208 post_thread_state_ |= state; 209 } else { 210 post_thread_state_ &= ~state; 211 } 212 213 const bool quit = post_thread_state_ & PostThreadState::Quit; 214 const bool effective_suspend = post_thread_state_ != PostThreadState::Active; 215 if (quit) { 216 post_thread_quiescent_ = true; 217 eventfd_write(post_thread_event_fd_.Get(), 1); 218 post_thread_wait_.notify_one(); 219 } else if (effective_suspend && !post_thread_quiescent_) { 220 post_thread_quiescent_ = true; 221 eventfd_write(post_thread_event_fd_.Get(), 1); 222 } else if (!effective_suspend && post_thread_quiescent_) { 223 post_thread_quiescent_ = false; 224 eventfd_t value; 225 eventfd_read(post_thread_event_fd_.Get(), &value); 226 post_thread_wait_.notify_one(); 227 } 228 } 229 230 void HardwareComposer::CreateComposer() { 231 if (composer_) 232 return; 233 composer_.reset(new Hwc2::impl::Composer("default")); 234 composer_callback_ = new ComposerCallback; 235 composer_->registerCallback(composer_callback_); 236 LOG_ALWAYS_FATAL_IF(!composer_callback_->GotFirstHotplug(), 237 "Registered composer callback but didn't get hotplug for primary" 238 " display"); 239 composer_callback_->SetVsyncService(vsync_service_); 240 } 241 242 void HardwareComposer::OnPostThreadResumed() { 243 ALOGI("OnPostThreadResumed"); 244 EnableDisplay(*target_display_, true); 245 246 // Trigger target-specific performance mode change. 247 property_set(kDvrPerformanceProperty, "performance"); 248 } 249 250 void HardwareComposer::OnPostThreadPaused() { 251 ALOGI("OnPostThreadPaused"); 252 retire_fence_fds_.clear(); 253 layers_.clear(); 254 255 // Phones create a new composer client on resume and destroy it on pause. 256 // Standalones only create the composer client once and then use SetPowerMode 257 // to control the screen on pause/resume. 258 if (!is_standalone_device_) { 259 if (composer_callback_ != nullptr) { 260 composer_callback_->SetVsyncService(nullptr); 261 composer_callback_ = nullptr; 262 } 263 composer_.reset(nullptr); 264 } else { 265 EnableDisplay(*target_display_, false); 266 } 267 268 // Trigger target-specific performance mode change. 269 property_set(kDvrPerformanceProperty, "idle"); 270 } 271 272 bool HardwareComposer::PostThreadCondWait(std::unique_lock<std::mutex>& lock, 273 int timeout_sec, 274 const std::function<bool()>& pred) { 275 auto pred_with_quit = [&] { 276 return pred() || (post_thread_state_ & PostThreadState::Quit); 277 }; 278 if (timeout_sec >= 0) { 279 post_thread_wait_.wait_for(lock, std::chrono::seconds(timeout_sec), 280 pred_with_quit); 281 } else { 282 post_thread_wait_.wait(lock, pred_with_quit); 283 } 284 if (post_thread_state_ & PostThreadState::Quit) { 285 ALOGI("HardwareComposer::PostThread: Quitting."); 286 return true; 287 } 288 return false; 289 } 290 291 HWC::Error HardwareComposer::Validate(hwc2_display_t display) { 292 uint32_t num_types; 293 uint32_t num_requests; 294 HWC::Error error = 295 composer_->validateDisplay(display, &num_types, &num_requests); 296 297 if (error == HWC2_ERROR_HAS_CHANGES) { 298 ALOGE("Hardware composer has requested composition changes, " 299 "which we don't support."); 300 // Accept the changes anyway and see if we can get something on the screen. 301 error = composer_->acceptDisplayChanges(display); 302 } 303 304 return error; 305 } 306 307 bool HardwareComposer::EnableVsync(const DisplayParams& display, bool enabled) { 308 HWC::Error error = composer_->setVsyncEnabled(display.id, 309 (Hwc2::IComposerClient::Vsync)(enabled ? HWC2_VSYNC_ENABLE 310 : HWC2_VSYNC_DISABLE)); 311 if (error != HWC::Error::None) { 312 ALOGE("Error attempting to %s vsync on %s display: %s", 313 enabled ? "enable" : "disable", GetDisplayName(display.is_primary), 314 error.to_string().c_str()); 315 } 316 return error == HWC::Error::None; 317 } 318 319 bool HardwareComposer::SetPowerMode(const DisplayParams& display, bool active) { 320 ALOGI("Turning %s display %s", GetDisplayName(display.is_primary), 321 active ? "on" : "off"); 322 HWC::PowerMode power_mode = active ? HWC::PowerMode::On : HWC::PowerMode::Off; 323 HWC::Error error = composer_->setPowerMode(display.id, 324 power_mode.cast<Hwc2::IComposerClient::PowerMode>()); 325 if (error != HWC::Error::None) { 326 ALOGE("Error attempting to turn %s display %s: %s", 327 GetDisplayName(display.is_primary), active ? "on" : "off", 328 error.to_string().c_str()); 329 } 330 return error == HWC::Error::None; 331 } 332 333 bool HardwareComposer::EnableDisplay(const DisplayParams& display, 334 bool enabled) { 335 bool power_result; 336 bool vsync_result; 337 // When turning a display on, we set the power state then set vsync. When 338 // turning a display off we do it in the opposite order. 339 if (enabled) { 340 power_result = SetPowerMode(display, enabled); 341 vsync_result = EnableVsync(display, enabled); 342 } else { 343 vsync_result = EnableVsync(display, enabled); 344 power_result = SetPowerMode(display, enabled); 345 } 346 return power_result && vsync_result; 347 } 348 349 HWC::Error HardwareComposer::Present(hwc2_display_t display) { 350 int32_t present_fence; 351 HWC::Error error = composer_->presentDisplay(display, &present_fence); 352 353 // According to the documentation, this fence is signaled at the time of 354 // vsync/DMA for physical displays. 355 if (error == HWC::Error::None) { 356 retire_fence_fds_.emplace_back(present_fence); 357 } else { 358 ATRACE_INT("HardwareComposer: PresentResult", error); 359 } 360 361 return error; 362 } 363 364 DisplayParams HardwareComposer::GetDisplayParams( 365 Hwc2::Composer* composer, hwc2_display_t display, bool is_primary) { 366 DisplayParams params; 367 params.id = display; 368 params.is_primary = is_primary; 369 370 Hwc2::Config config; 371 HWC::Error error = composer->getActiveConfig(display, &config); 372 373 if (error == HWC::Error::None) { 374 auto get_attr = [&](hwc2_attribute_t attr, const char* attr_name) 375 -> std::optional<int32_t> { 376 int32_t val; 377 HWC::Error error = composer->getDisplayAttribute( 378 display, config, (Hwc2::IComposerClient::Attribute)attr, &val); 379 if (error != HWC::Error::None) { 380 ALOGE("Failed to get %s display attr %s: %s", 381 GetDisplayName(is_primary), attr_name, 382 error.to_string().c_str()); 383 return std::nullopt; 384 } 385 return val; 386 }; 387 388 auto width = get_attr(HWC2_ATTRIBUTE_WIDTH, "width"); 389 auto height = get_attr(HWC2_ATTRIBUTE_HEIGHT, "height"); 390 391 if (width && height) { 392 params.width = *width; 393 params.height = *height; 394 } else { 395 ALOGI("Failed to get width and/or height for %s display. Using default" 396 " size %dx%d.", GetDisplayName(is_primary), kDefaultDisplayWidth, 397 kDefaultDisplayHeight); 398 params.width = kDefaultDisplayWidth; 399 params.height = kDefaultDisplayHeight; 400 } 401 402 auto vsync_period = get_attr(HWC2_ATTRIBUTE_VSYNC_PERIOD, "vsync period"); 403 if (vsync_period) { 404 params.vsync_period_ns = *vsync_period; 405 } else { 406 ALOGI("Failed to get vsync period for %s display. Using default vsync" 407 " period %.2fms", GetDisplayName(is_primary), 408 static_cast<float>(kDefaultVsyncPeriodNs) / 1000000); 409 params.vsync_period_ns = kDefaultVsyncPeriodNs; 410 } 411 412 auto dpi_x = get_attr(HWC2_ATTRIBUTE_DPI_X, "DPI X"); 413 auto dpi_y = get_attr(HWC2_ATTRIBUTE_DPI_Y, "DPI Y"); 414 if (dpi_x && dpi_y) { 415 params.dpi.x = *dpi_x; 416 params.dpi.y = *dpi_y; 417 } else { 418 ALOGI("Failed to get dpi_x and/or dpi_y for %s display. Using default" 419 " dpi %d.", GetDisplayName(is_primary), kDefaultDpi); 420 params.dpi.x = kDefaultDpi; 421 params.dpi.y = kDefaultDpi; 422 } 423 } else { 424 ALOGE("HardwareComposer: Failed to get current %s display config: %d." 425 " Using default display values.", 426 GetDisplayName(is_primary), error.value); 427 params.width = kDefaultDisplayWidth; 428 params.height = kDefaultDisplayHeight; 429 params.dpi.x = kDefaultDpi; 430 params.dpi.y = kDefaultDpi; 431 params.vsync_period_ns = kDefaultVsyncPeriodNs; 432 } 433 434 ALOGI( 435 "HardwareComposer: %s display attributes: width=%d height=%d " 436 "vsync_period_ns=%d DPI=%dx%d", 437 GetDisplayName(is_primary), 438 params.width, 439 params.height, 440 params.vsync_period_ns, 441 params.dpi.x, 442 params.dpi.y); 443 444 return params; 445 } 446 447 std::string HardwareComposer::Dump() { 448 std::unique_lock<std::mutex> lock(post_thread_mutex_); 449 std::ostringstream stream; 450 451 auto print_display_metrics = [&](const DisplayParams& params) { 452 stream << GetDisplayName(params.is_primary) 453 << " display metrics: " << params.width << "x" 454 << params.height << " " << (params.dpi.x / 1000.0) 455 << "x" << (params.dpi.y / 1000.0) << " dpi @ " 456 << (1000000000.0 / params.vsync_period_ns) << " Hz" 457 << std::endl; 458 }; 459 460 print_display_metrics(primary_display_); 461 if (external_display_) 462 print_display_metrics(*external_display_); 463 464 stream << "Post thread resumed: " << post_thread_resumed_ << std::endl; 465 stream << "Active layers: " << layers_.size() << std::endl; 466 stream << std::endl; 467 468 for (size_t i = 0; i < layers_.size(); i++) { 469 stream << "Layer " << i << ":"; 470 stream << " type=" << layers_[i].GetCompositionType().to_string(); 471 stream << " surface_id=" << layers_[i].GetSurfaceId(); 472 stream << " buffer_id=" << layers_[i].GetBufferId(); 473 stream << std::endl; 474 } 475 stream << std::endl; 476 477 if (post_thread_resumed_) { 478 stream << "Hardware Composer Debug Info:" << std::endl; 479 stream << composer_->dumpDebugInfo(); 480 } 481 482 return stream.str(); 483 } 484 485 void HardwareComposer::PostLayers(hwc2_display_t display) { 486 ATRACE_NAME("HardwareComposer::PostLayers"); 487 488 // Setup the hardware composer layers with current buffers. 489 for (auto& layer : layers_) { 490 layer.Prepare(); 491 } 492 493 // Now that we have taken in a frame from the application, we have a chance 494 // to drop the frame before passing the frame along to HWC. 495 // If the display driver has become backed up, we detect it here and then 496 // react by skipping this frame to catch up latency. 497 while (!retire_fence_fds_.empty() && 498 (!retire_fence_fds_.front() || 499 sync_wait(retire_fence_fds_.front().Get(), 0) == 0)) { 500 // There are only 2 fences in here, no performance problem to shift the 501 // array of ints. 502 retire_fence_fds_.erase(retire_fence_fds_.begin()); 503 } 504 505 const bool is_fence_pending = static_cast<int32_t>(retire_fence_fds_.size()) > 506 post_thread_config_.allowed_pending_fence_count; 507 508 if (is_fence_pending) { 509 ATRACE_INT("frame_skip_count", ++frame_skip_count_); 510 511 ALOGW_IF(is_fence_pending, 512 "Warning: dropping a frame to catch up with HWC (pending = %zd)", 513 retire_fence_fds_.size()); 514 515 for (auto& layer : layers_) { 516 layer.Drop(); 517 } 518 return; 519 } else { 520 // Make the transition more obvious in systrace when the frame skip happens 521 // above. 522 ATRACE_INT("frame_skip_count", 0); 523 } 524 525 #if TRACE > 1 526 for (size_t i = 0; i < layers_.size(); i++) { 527 ALOGI("HardwareComposer::PostLayers: layer=%zu buffer_id=%d composition=%s", 528 i, layers_[i].GetBufferId(), 529 layers_[i].GetCompositionType().to_string().c_str()); 530 } 531 #endif 532 533 HWC::Error error = Validate(display); 534 if (error != HWC::Error::None) { 535 ALOGE("HardwareComposer::PostLayers: Validate failed: %s display=%" PRIu64, 536 error.to_string().c_str(), display); 537 return; 538 } 539 540 error = Present(display); 541 if (error != HWC::Error::None) { 542 ALOGE("HardwareComposer::PostLayers: Present failed: %s", 543 error.to_string().c_str()); 544 return; 545 } 546 547 std::vector<Hwc2::Layer> out_layers; 548 std::vector<int> out_fences; 549 error = composer_->getReleaseFences(display, 550 &out_layers, &out_fences); 551 ALOGE_IF(error != HWC::Error::None, 552 "HardwareComposer::PostLayers: Failed to get release fences: %s", 553 error.to_string().c_str()); 554 555 // Perform post-frame bookkeeping. 556 uint32_t num_elements = out_layers.size(); 557 for (size_t i = 0; i < num_elements; ++i) { 558 for (auto& layer : layers_) { 559 if (layer.GetLayerHandle() == out_layers[i]) { 560 layer.Finish(out_fences[i]); 561 } 562 } 563 } 564 } 565 566 void HardwareComposer::SetDisplaySurfaces( 567 std::vector<std::shared_ptr<DirectDisplaySurface>> surfaces) { 568 ALOGI("HardwareComposer::SetDisplaySurfaces: surface count=%zd", 569 surfaces.size()); 570 const bool display_idle = surfaces.size() == 0; 571 { 572 std::unique_lock<std::mutex> lock(post_thread_mutex_); 573 surfaces_ = std::move(surfaces); 574 surfaces_changed_ = true; 575 } 576 577 if (request_display_callback_ && !is_standalone_device_) 578 request_display_callback_(!display_idle); 579 580 // Set idle state based on whether there are any surfaces to handle. 581 UpdatePostThreadState(PostThreadState::Idle, display_idle); 582 } 583 584 int HardwareComposer::OnNewGlobalBuffer(DvrGlobalBufferKey key, 585 IonBuffer& ion_buffer) { 586 if (key == DvrGlobalBuffers::kVsyncBuffer) { 587 vsync_ring_ = std::make_unique<CPUMappedBroadcastRing<DvrVsyncRing>>( 588 &ion_buffer, CPUUsageMode::WRITE_OFTEN); 589 590 if (vsync_ring_->IsMapped() == false) { 591 return -EPERM; 592 } 593 } 594 595 if (key == DvrGlobalBuffers::kVrFlingerConfigBufferKey) { 596 return MapConfigBuffer(ion_buffer); 597 } 598 599 return 0; 600 } 601 602 void HardwareComposer::OnDeletedGlobalBuffer(DvrGlobalBufferKey key) { 603 if (key == DvrGlobalBuffers::kVrFlingerConfigBufferKey) { 604 ConfigBufferDeleted(); 605 } 606 } 607 608 int HardwareComposer::MapConfigBuffer(IonBuffer& ion_buffer) { 609 std::lock_guard<std::mutex> lock(shared_config_mutex_); 610 shared_config_ring_ = DvrConfigRing(); 611 612 if (ion_buffer.width() < DvrConfigRing::MemorySize()) { 613 ALOGE("HardwareComposer::MapConfigBuffer: invalid buffer size."); 614 return -EINVAL; 615 } 616 617 void* buffer_base = 0; 618 int result = ion_buffer.Lock(ion_buffer.usage(), 0, 0, ion_buffer.width(), 619 ion_buffer.height(), &buffer_base); 620 if (result != 0) { 621 ALOGE( 622 "HardwareComposer::MapConfigBuffer: Failed to map vrflinger config " 623 "buffer."); 624 return -EPERM; 625 } 626 627 shared_config_ring_ = DvrConfigRing::Create(buffer_base, ion_buffer.width()); 628 ion_buffer.Unlock(); 629 630 return 0; 631 } 632 633 void HardwareComposer::ConfigBufferDeleted() { 634 std::lock_guard<std::mutex> lock(shared_config_mutex_); 635 shared_config_ring_ = DvrConfigRing(); 636 } 637 638 void HardwareComposer::UpdateConfigBuffer() { 639 std::lock_guard<std::mutex> lock(shared_config_mutex_); 640 if (!shared_config_ring_.is_valid()) 641 return; 642 // Copy from latest record in shared_config_ring_ to local copy. 643 DvrConfig record; 644 if (shared_config_ring_.GetNewest(&shared_config_ring_sequence_, &record)) { 645 ALOGI("DvrConfig updated: sequence %u, post offset %d", 646 shared_config_ring_sequence_, record.frame_post_offset_ns); 647 ++shared_config_ring_sequence_; 648 post_thread_config_ = record; 649 } 650 } 651 652 int HardwareComposer::PostThreadPollInterruptible( 653 const pdx::LocalHandle& event_fd, int requested_events, int timeout_ms) { 654 pollfd pfd[2] = { 655 { 656 .fd = event_fd.Get(), 657 .events = static_cast<short>(requested_events), 658 .revents = 0, 659 }, 660 { 661 .fd = post_thread_event_fd_.Get(), 662 .events = POLLPRI | POLLIN, 663 .revents = 0, 664 }, 665 }; 666 int ret, error; 667 do { 668 ret = poll(pfd, 2, timeout_ms); 669 error = errno; 670 ALOGW_IF(ret < 0, 671 "HardwareComposer::PostThreadPollInterruptible: Error during " 672 "poll(): %s (%d)", 673 strerror(error), error); 674 } while (ret < 0 && error == EINTR); 675 676 if (ret < 0) { 677 return -error; 678 } else if (ret == 0) { 679 return -ETIMEDOUT; 680 } else if (pfd[0].revents != 0) { 681 return 0; 682 } else if (pfd[1].revents != 0) { 683 ALOGI("VrHwcPost thread interrupted: revents=%x", pfd[1].revents); 684 return kPostThreadInterrupted; 685 } else { 686 return 0; 687 } 688 } 689 690 // Sleep until the next predicted vsync, returning the predicted vsync 691 // timestamp. 692 Status<int64_t> HardwareComposer::WaitForPredictedVSync() { 693 const int64_t predicted_vsync_time = last_vsync_timestamp_ + 694 (target_display_->vsync_period_ns * vsync_prediction_interval_); 695 const int error = SleepUntil(predicted_vsync_time); 696 if (error < 0) { 697 ALOGE("HardwareComposer::WaifForVSync:: Failed to sleep: %s", 698 strerror(-error)); 699 return error; 700 } 701 return {predicted_vsync_time}; 702 } 703 704 int HardwareComposer::SleepUntil(int64_t wakeup_timestamp) { 705 const int timer_fd = vsync_sleep_timer_fd_.Get(); 706 const itimerspec wakeup_itimerspec = { 707 .it_interval = {.tv_sec = 0, .tv_nsec = 0}, 708 .it_value = NsToTimespec(wakeup_timestamp), 709 }; 710 int ret = 711 timerfd_settime(timer_fd, TFD_TIMER_ABSTIME, &wakeup_itimerspec, nullptr); 712 int error = errno; 713 if (ret < 0) { 714 ALOGE("HardwareComposer::SleepUntil: Failed to set timerfd: %s", 715 strerror(error)); 716 return -error; 717 } 718 719 return PostThreadPollInterruptible(vsync_sleep_timer_fd_, POLLIN, 720 /*timeout_ms*/ -1); 721 } 722 723 void HardwareComposer::PostThread() { 724 // NOLINTNEXTLINE(runtime/int) 725 prctl(PR_SET_NAME, reinterpret_cast<unsigned long>("VrHwcPost"), 0, 0, 0); 726 727 // Set the scheduler to SCHED_FIFO with high priority. If this fails here 728 // there may have been a startup timing issue between this thread and 729 // performanced. Try again later when this thread becomes active. 730 bool thread_policy_setup = 731 SetThreadPolicy("graphics:high", "/system/performance"); 732 733 // Create a timerfd based on CLOCK_MONOTINIC. 734 vsync_sleep_timer_fd_.Reset(timerfd_create(CLOCK_MONOTONIC, 0)); 735 LOG_ALWAYS_FATAL_IF( 736 !vsync_sleep_timer_fd_, 737 "HardwareComposer: Failed to create vsync sleep timerfd: %s", 738 strerror(errno)); 739 740 struct VsyncEyeOffsets { int64_t left_ns, right_ns; }; 741 bool was_running = false; 742 743 auto get_vsync_eye_offsets = [this]() -> VsyncEyeOffsets { 744 VsyncEyeOffsets offsets; 745 offsets.left_ns = 746 GetPosePredictionTimeOffset(target_display_->vsync_period_ns); 747 748 // TODO(jbates) Query vblank time from device, when such an API is 749 // available. This value (6.3%) was measured on A00 in low persistence mode. 750 int64_t vblank_ns = target_display_->vsync_period_ns * 63 / 1000; 751 offsets.right_ns = (target_display_->vsync_period_ns - vblank_ns) / 2; 752 753 // Check property for overriding right eye offset value. 754 offsets.right_ns = 755 property_get_int64(kRightEyeOffsetProperty, offsets.right_ns); 756 757 return offsets; 758 }; 759 760 VsyncEyeOffsets vsync_eye_offsets = get_vsync_eye_offsets(); 761 762 if (is_standalone_device_) { 763 // First, wait until boot finishes. 764 std::unique_lock<std::mutex> lock(post_thread_mutex_); 765 if (PostThreadCondWait(lock, -1, [this] { return boot_finished_; })) { 766 return; 767 } 768 769 // Then, wait until we're either leaving the quiescent state, or the boot 770 // finished display off timeout expires. 771 if (PostThreadCondWait(lock, kBootFinishedDisplayOffTimeoutSec, 772 [this] { return !post_thread_quiescent_; })) { 773 return; 774 } 775 776 LOG_ALWAYS_FATAL_IF(post_thread_state_ & PostThreadState::Suspended, 777 "Vr flinger should own the display by now."); 778 post_thread_resumed_ = true; 779 post_thread_ready_.notify_all(); 780 if (!composer_) 781 CreateComposer(); 782 } 783 784 while (1) { 785 ATRACE_NAME("HardwareComposer::PostThread"); 786 787 // Check for updated config once per vsync. 788 UpdateConfigBuffer(); 789 790 while (post_thread_quiescent_) { 791 std::unique_lock<std::mutex> lock(post_thread_mutex_); 792 ALOGI("HardwareComposer::PostThread: Entering quiescent state."); 793 794 if (was_running) { 795 vsync_trace_parity_ = false; 796 ATRACE_INT(kVsyncTraceEventName, 0); 797 } 798 799 // Tear down resources. 800 OnPostThreadPaused(); 801 was_running = false; 802 post_thread_resumed_ = false; 803 post_thread_ready_.notify_all(); 804 805 if (PostThreadCondWait(lock, -1, 806 [this] { return !post_thread_quiescent_; })) { 807 // A true return value means we've been asked to quit. 808 return; 809 } 810 811 post_thread_resumed_ = true; 812 post_thread_ready_.notify_all(); 813 814 ALOGI("HardwareComposer::PostThread: Exiting quiescent state."); 815 } 816 817 if (!composer_) 818 CreateComposer(); 819 820 bool target_display_changed = UpdateTargetDisplay(); 821 bool just_resumed_running = !was_running; 822 was_running = true; 823 824 if (target_display_changed) 825 vsync_eye_offsets = get_vsync_eye_offsets(); 826 827 if (just_resumed_running) { 828 OnPostThreadResumed(); 829 830 // Try to setup the scheduler policy if it failed during startup. Only 831 // attempt to do this on transitions from inactive to active to avoid 832 // spamming the system with RPCs and log messages. 833 if (!thread_policy_setup) { 834 thread_policy_setup = 835 SetThreadPolicy("graphics:high", "/system/performance"); 836 } 837 } 838 839 if (target_display_changed || just_resumed_running) { 840 // Initialize the last vsync timestamp with the current time. The 841 // predictor below uses this time + the vsync interval in absolute time 842 // units for the initial delay. Once the driver starts reporting vsync the 843 // predictor will sync up with the real vsync. 844 last_vsync_timestamp_ = GetSystemClockNs(); 845 vsync_prediction_interval_ = 1; 846 retire_fence_fds_.clear(); 847 } 848 849 int64_t vsync_timestamp = 0; 850 { 851 TRACE_FORMAT("wait_vsync|vsync=%u;last_timestamp=%" PRId64 852 ";prediction_interval=%d|", 853 vsync_count_ + 1, last_vsync_timestamp_, 854 vsync_prediction_interval_); 855 856 auto status = WaitForPredictedVSync(); 857 ALOGE_IF( 858 !status, 859 "HardwareComposer::PostThread: Failed to wait for vsync event: %s", 860 status.GetErrorMessage().c_str()); 861 862 // If there was an error either sleeping was interrupted due to pausing or 863 // there was an error getting the latest timestamp. 864 if (!status) 865 continue; 866 867 // Predicted vsync timestamp for this interval. This is stable because we 868 // use absolute time for the wakeup timer. 869 vsync_timestamp = status.get(); 870 } 871 872 vsync_trace_parity_ = !vsync_trace_parity_; 873 ATRACE_INT(kVsyncTraceEventName, vsync_trace_parity_ ? 1 : 0); 874 875 // Advance the vsync counter only if the system is keeping up with hardware 876 // vsync to give clients an indication of the delays. 877 if (vsync_prediction_interval_ == 1) 878 ++vsync_count_; 879 880 UpdateLayerConfig(); 881 882 // Publish the vsync event. 883 if (vsync_ring_) { 884 DvrVsync vsync; 885 vsync.vsync_count = vsync_count_; 886 vsync.vsync_timestamp_ns = vsync_timestamp; 887 vsync.vsync_left_eye_offset_ns = vsync_eye_offsets.left_ns; 888 vsync.vsync_right_eye_offset_ns = vsync_eye_offsets.right_ns; 889 vsync.vsync_period_ns = target_display_->vsync_period_ns; 890 891 vsync_ring_->Publish(vsync); 892 } 893 894 { 895 // Sleep until shortly before vsync. 896 ATRACE_NAME("sleep"); 897 898 const int64_t display_time_est_ns = 899 vsync_timestamp + target_display_->vsync_period_ns; 900 const int64_t now_ns = GetSystemClockNs(); 901 const int64_t sleep_time_ns = display_time_est_ns - now_ns - 902 post_thread_config_.frame_post_offset_ns; 903 const int64_t wakeup_time_ns = 904 display_time_est_ns - post_thread_config_.frame_post_offset_ns; 905 906 ATRACE_INT64("sleep_time_ns", sleep_time_ns); 907 if (sleep_time_ns > 0) { 908 int error = SleepUntil(wakeup_time_ns); 909 ALOGE_IF(error < 0 && error != kPostThreadInterrupted, 910 "HardwareComposer::PostThread: Failed to sleep: %s", 911 strerror(-error)); 912 // If the sleep was interrupted (error == kPostThreadInterrupted), 913 // we still go through and present this frame because we may have set 914 // layers earlier and we want to flush the Composer's internal command 915 // buffer by continuing through to validate and present. 916 } 917 } 918 919 { 920 auto status = composer_callback_->GetVsyncTime(target_display_->id); 921 922 // If we failed to read vsync there might be a problem with the driver. 923 // Since there's nothing we can do just behave as though we didn't get an 924 // updated vsync time and let the prediction continue. 925 const int64_t current_vsync_timestamp = 926 status ? status.get() : last_vsync_timestamp_; 927 928 const bool vsync_delayed = 929 last_vsync_timestamp_ == current_vsync_timestamp; 930 ATRACE_INT("vsync_delayed", vsync_delayed); 931 932 // If vsync was delayed advance the prediction interval and allow the 933 // fence logic in PostLayers() to skip the frame. 934 if (vsync_delayed) { 935 ALOGW( 936 "HardwareComposer::PostThread: VSYNC timestamp did not advance " 937 "since last frame: timestamp=%" PRId64 " prediction_interval=%d", 938 current_vsync_timestamp, vsync_prediction_interval_); 939 vsync_prediction_interval_++; 940 } else { 941 // We have an updated vsync timestamp, reset the prediction interval. 942 last_vsync_timestamp_ = current_vsync_timestamp; 943 vsync_prediction_interval_ = 1; 944 } 945 } 946 947 PostLayers(target_display_->id); 948 } 949 } 950 951 bool HardwareComposer::UpdateTargetDisplay() { 952 bool target_display_changed = false; 953 auto displays = composer_callback_->GetDisplays(); 954 if (displays.external_display_was_hotplugged) { 955 bool was_using_external_display = !target_display_->is_primary; 956 if (was_using_external_display) { 957 // The external display was hotplugged, so make sure to ignore any bad 958 // display errors as we destroy the layers. 959 for (auto& layer: layers_) 960 layer.IgnoreBadDisplayErrorsOnDestroy(true); 961 } 962 963 if (displays.external_display) { 964 // External display was connected 965 external_display_ = GetDisplayParams(composer_.get(), 966 *displays.external_display, /*is_primary*/ false); 967 968 if (property_get_bool(kUseExternalDisplayProperty, false)) { 969 ALOGI("External display connected. Switching to external display."); 970 target_display_ = &(*external_display_); 971 target_display_changed = true; 972 } else { 973 ALOGI("External display connected, but sysprop %s is unset, so" 974 " using primary display.", kUseExternalDisplayProperty); 975 if (was_using_external_display) { 976 target_display_ = &primary_display_; 977 target_display_changed = true; 978 } 979 } 980 } else { 981 // External display was disconnected 982 external_display_ = std::nullopt; 983 if (was_using_external_display) { 984 ALOGI("External display disconnected. Switching to primary display."); 985 target_display_ = &primary_display_; 986 target_display_changed = true; 987 } 988 } 989 } 990 991 if (target_display_changed) { 992 // If we're switching to the external display, turn the primary display off. 993 if (!target_display_->is_primary) { 994 EnableDisplay(primary_display_, false); 995 } 996 // If we're switching to the primary display, and the external display is 997 // still connected, turn the external display off. 998 else if (target_display_->is_primary && external_display_) { 999 EnableDisplay(*external_display_, false); 1000 } 1001 1002 // Turn the new target display on. 1003 EnableDisplay(*target_display_, true); 1004 1005 // When we switch displays we need to recreate all the layers, so clear the 1006 // current list, which will trigger layer recreation. 1007 layers_.clear(); 1008 } 1009 1010 return target_display_changed; 1011 } 1012 1013 // Checks for changes in the surface stack and updates the layer config to 1014 // accomodate the new stack. 1015 void HardwareComposer::UpdateLayerConfig() { 1016 std::vector<std::shared_ptr<DirectDisplaySurface>> surfaces; 1017 { 1018 std::unique_lock<std::mutex> lock(post_thread_mutex_); 1019 1020 if (!surfaces_changed_ && (!layers_.empty() || surfaces_.empty())) 1021 return; 1022 1023 surfaces = surfaces_; 1024 surfaces_changed_ = false; 1025 } 1026 1027 ATRACE_NAME("UpdateLayerConfig_HwLayers"); 1028 1029 // Sort the new direct surface list by z-order to determine the relative order 1030 // of the surfaces. This relative order is used for the HWC z-order value to 1031 // insulate VrFlinger and HWC z-order semantics from each other. 1032 std::sort(surfaces.begin(), surfaces.end(), [](const auto& a, const auto& b) { 1033 return a->z_order() < b->z_order(); 1034 }); 1035 1036 // Prepare a new layer stack, pulling in layers from the previous 1037 // layer stack that are still active and updating their attributes. 1038 std::vector<Layer> layers; 1039 size_t layer_index = 0; 1040 for (const auto& surface : surfaces) { 1041 // The bottom layer is opaque, other layers blend. 1042 HWC::BlendMode blending = 1043 layer_index == 0 ? HWC::BlendMode::None : HWC::BlendMode::Coverage; 1044 1045 // Try to find a layer for this surface in the set of active layers. 1046 auto search = 1047 std::lower_bound(layers_.begin(), layers_.end(), surface->surface_id()); 1048 const bool found = search != layers_.end() && 1049 search->GetSurfaceId() == surface->surface_id(); 1050 if (found) { 1051 // Update the attributes of the layer that may have changed. 1052 search->SetBlending(blending); 1053 search->SetZOrder(layer_index); // Relative z-order. 1054 1055 // Move the existing layer to the new layer set and remove the empty layer 1056 // object from the current set. 1057 layers.push_back(std::move(*search)); 1058 layers_.erase(search); 1059 } else { 1060 // Insert a layer for the new surface. 1061 layers.emplace_back(composer_.get(), *target_display_, surface, blending, 1062 HWC::Composition::Device, layer_index); 1063 } 1064 1065 ALOGI_IF( 1066 TRACE, 1067 "HardwareComposer::UpdateLayerConfig: layer_index=%zu surface_id=%d", 1068 layer_index, layers[layer_index].GetSurfaceId()); 1069 1070 layer_index++; 1071 } 1072 1073 // Sort the new layer stack by ascending surface id. 1074 std::sort(layers.begin(), layers.end()); 1075 1076 // Replace the previous layer set with the new layer set. The destructor of 1077 // the previous set will clean up the remaining Layers that are not moved to 1078 // the new layer set. 1079 layers_ = std::move(layers); 1080 1081 ALOGD_IF(TRACE, "HardwareComposer::UpdateLayerConfig: %zd active layers", 1082 layers_.size()); 1083 } 1084 1085 std::vector<sp<IVsyncCallback>>::const_iterator 1086 HardwareComposer::VsyncService::FindCallback( 1087 const sp<IVsyncCallback>& callback) const { 1088 sp<IBinder> binder = IInterface::asBinder(callback); 1089 return std::find_if(callbacks_.cbegin(), callbacks_.cend(), 1090 [&](const sp<IVsyncCallback>& callback) { 1091 return IInterface::asBinder(callback) == binder; 1092 }); 1093 } 1094 1095 status_t HardwareComposer::VsyncService::registerCallback( 1096 const sp<IVsyncCallback> callback) { 1097 std::lock_guard<std::mutex> autolock(mutex_); 1098 if (FindCallback(callback) == callbacks_.cend()) { 1099 callbacks_.push_back(callback); 1100 } 1101 return OK; 1102 } 1103 1104 status_t HardwareComposer::VsyncService::unregisterCallback( 1105 const sp<IVsyncCallback> callback) { 1106 std::lock_guard<std::mutex> autolock(mutex_); 1107 auto iter = FindCallback(callback); 1108 if (iter != callbacks_.cend()) { 1109 callbacks_.erase(iter); 1110 } 1111 return OK; 1112 } 1113 1114 void HardwareComposer::VsyncService::OnVsync(int64_t vsync_timestamp) { 1115 ATRACE_NAME("VsyncService::OnVsync"); 1116 std::lock_guard<std::mutex> autolock(mutex_); 1117 for (auto iter = callbacks_.begin(); iter != callbacks_.end();) { 1118 if ((*iter)->onVsync(vsync_timestamp) == android::DEAD_OBJECT) { 1119 iter = callbacks_.erase(iter); 1120 } else { 1121 ++iter; 1122 } 1123 } 1124 } 1125 1126 Return<void> HardwareComposer::ComposerCallback::onHotplug( 1127 Hwc2::Display display, IComposerCallback::Connection conn) { 1128 std::lock_guard<std::mutex> lock(mutex_); 1129 ALOGI("onHotplug display=%" PRIu64 " conn=%d", display, conn); 1130 1131 bool is_primary = !got_first_hotplug_ || display == primary_display_.id; 1132 1133 // Our first onHotplug callback is always for the primary display. 1134 if (!got_first_hotplug_) { 1135 LOG_ALWAYS_FATAL_IF(conn != IComposerCallback::Connection::CONNECTED, 1136 "Initial onHotplug callback should be primary display connected"); 1137 got_first_hotplug_ = true; 1138 } else if (is_primary) { 1139 ALOGE("Ignoring unexpected onHotplug() call for primary display"); 1140 return Void(); 1141 } 1142 1143 if (conn == IComposerCallback::Connection::CONNECTED) { 1144 if (!is_primary) 1145 external_display_ = DisplayInfo(); 1146 DisplayInfo& display_info = is_primary ? 1147 primary_display_ : *external_display_; 1148 display_info.id = display; 1149 1150 std::array<char, 1024> buffer; 1151 snprintf(buffer.data(), buffer.size(), 1152 "/sys/class/graphics/fb%" PRIu64 "/vsync_event", display); 1153 if (LocalHandle handle{buffer.data(), O_RDONLY}) { 1154 ALOGI( 1155 "HardwareComposer::ComposerCallback::onHotplug: Driver supports " 1156 "vsync_event node for display %" PRIu64, 1157 display); 1158 display_info.driver_vsync_event_fd = std::move(handle); 1159 } else { 1160 ALOGI( 1161 "HardwareComposer::ComposerCallback::onHotplug: Driver does not " 1162 "support vsync_event node for display %" PRIu64, 1163 display); 1164 } 1165 } else if (conn == IComposerCallback::Connection::DISCONNECTED) { 1166 external_display_ = std::nullopt; 1167 } 1168 1169 if (!is_primary) 1170 external_display_was_hotplugged_ = true; 1171 1172 return Void(); 1173 } 1174 1175 Return<void> HardwareComposer::ComposerCallback::onRefresh( 1176 Hwc2::Display /*display*/) { 1177 return hardware::Void(); 1178 } 1179 1180 Return<void> HardwareComposer::ComposerCallback::onVsync(Hwc2::Display display, 1181 int64_t timestamp) { 1182 TRACE_FORMAT("vsync_callback|display=%" PRIu64 ";timestamp=%" PRId64 "|", 1183 display, timestamp); 1184 std::lock_guard<std::mutex> lock(mutex_); 1185 DisplayInfo* display_info = GetDisplayInfo(display); 1186 if (display_info) { 1187 display_info->callback_vsync_timestamp = timestamp; 1188 } 1189 if (primary_display_.id == display && vsync_service_ != nullptr) { 1190 vsync_service_->OnVsync(timestamp); 1191 } 1192 1193 return Void(); 1194 } 1195 1196 void HardwareComposer::ComposerCallback::SetVsyncService( 1197 const sp<VsyncService>& vsync_service) { 1198 std::lock_guard<std::mutex> lock(mutex_); 1199 vsync_service_ = vsync_service; 1200 } 1201 1202 HardwareComposer::ComposerCallback::Displays 1203 HardwareComposer::ComposerCallback::GetDisplays() { 1204 std::lock_guard<std::mutex> lock(mutex_); 1205 Displays displays; 1206 displays.primary_display = primary_display_.id; 1207 if (external_display_) 1208 displays.external_display = external_display_->id; 1209 if (external_display_was_hotplugged_) { 1210 external_display_was_hotplugged_ = false; 1211 displays.external_display_was_hotplugged = true; 1212 } 1213 return displays; 1214 } 1215 1216 Status<int64_t> HardwareComposer::ComposerCallback::GetVsyncTime( 1217 hwc2_display_t display) { 1218 std::lock_guard<std::mutex> autolock(mutex_); 1219 DisplayInfo* display_info = GetDisplayInfo(display); 1220 if (!display_info) { 1221 ALOGW("Attempt to get vsync time for unknown display %" PRIu64, display); 1222 return ErrorStatus(EINVAL); 1223 } 1224 1225 // See if the driver supports direct vsync events. 1226 LocalHandle& event_fd = display_info->driver_vsync_event_fd; 1227 if (!event_fd) { 1228 // Fall back to returning the last timestamp returned by the vsync 1229 // callback. 1230 return display_info->callback_vsync_timestamp; 1231 } 1232 1233 // When the driver supports the vsync_event sysfs node we can use it to 1234 // determine the latest vsync timestamp, even if the HWC callback has been 1235 // delayed. 1236 1237 // The driver returns data in the form "VSYNC=<timestamp ns>". 1238 std::array<char, 32> data; 1239 data.fill('\0'); 1240 1241 // Seek back to the beginning of the event file. 1242 int ret = lseek(event_fd.Get(), 0, SEEK_SET); 1243 if (ret < 0) { 1244 const int error = errno; 1245 ALOGE( 1246 "HardwareComposer::ComposerCallback::GetVsyncTime: Failed to seek " 1247 "vsync event fd: %s", 1248 strerror(error)); 1249 return ErrorStatus(error); 1250 } 1251 1252 // Read the vsync event timestamp. 1253 ret = read(event_fd.Get(), data.data(), data.size()); 1254 if (ret < 0) { 1255 const int error = errno; 1256 ALOGE_IF(error != EAGAIN, 1257 "HardwareComposer::ComposerCallback::GetVsyncTime: Error " 1258 "while reading timestamp: %s", 1259 strerror(error)); 1260 return ErrorStatus(error); 1261 } 1262 1263 int64_t timestamp; 1264 ret = sscanf(data.data(), "VSYNC=%" PRIu64, 1265 reinterpret_cast<uint64_t*>(×tamp)); 1266 if (ret < 0) { 1267 const int error = errno; 1268 ALOGE( 1269 "HardwareComposer::ComposerCallback::GetVsyncTime: Error while " 1270 "parsing timestamp: %s", 1271 strerror(error)); 1272 return ErrorStatus(error); 1273 } 1274 1275 return {timestamp}; 1276 } 1277 1278 HardwareComposer::ComposerCallback::DisplayInfo* 1279 HardwareComposer::ComposerCallback::GetDisplayInfo(hwc2_display_t display) { 1280 if (display == primary_display_.id) { 1281 return &primary_display_; 1282 } else if (external_display_ && display == external_display_->id) { 1283 return &(*external_display_); 1284 } 1285 return nullptr; 1286 } 1287 1288 void Layer::Reset() { 1289 if (hardware_composer_layer_) { 1290 HWC::Error error = 1291 composer_->destroyLayer(display_params_.id, hardware_composer_layer_); 1292 if (error != HWC::Error::None && 1293 (!ignore_bad_display_errors_on_destroy_ || 1294 error != HWC::Error::BadDisplay)) { 1295 ALOGE("destroyLayer() failed for display %" PRIu64 ", layer %" PRIu64 1296 ". error: %s", display_params_.id, hardware_composer_layer_, 1297 error.to_string().c_str()); 1298 } 1299 hardware_composer_layer_ = 0; 1300 } 1301 1302 z_order_ = 0; 1303 blending_ = HWC::BlendMode::None; 1304 composition_type_ = HWC::Composition::Invalid; 1305 target_composition_type_ = composition_type_; 1306 source_ = EmptyVariant{}; 1307 acquire_fence_.Close(); 1308 surface_rect_functions_applied_ = false; 1309 pending_visibility_settings_ = true; 1310 cached_buffer_map_.clear(); 1311 ignore_bad_display_errors_on_destroy_ = false; 1312 } 1313 1314 Layer::Layer(Hwc2::Composer* composer, const DisplayParams& display_params, 1315 const std::shared_ptr<DirectDisplaySurface>& surface, 1316 HWC::BlendMode blending, HWC::Composition composition_type, 1317 size_t z_order) 1318 : composer_(composer), 1319 display_params_(display_params), 1320 z_order_{z_order}, 1321 blending_{blending}, 1322 target_composition_type_{composition_type}, 1323 source_{SourceSurface{surface}} { 1324 CommonLayerSetup(); 1325 } 1326 1327 Layer::Layer(Hwc2::Composer* composer, const DisplayParams& display_params, 1328 const std::shared_ptr<IonBuffer>& buffer, HWC::BlendMode blending, 1329 HWC::Composition composition_type, size_t z_order) 1330 : composer_(composer), 1331 display_params_(display_params), 1332 z_order_{z_order}, 1333 blending_{blending}, 1334 target_composition_type_{composition_type}, 1335 source_{SourceBuffer{buffer}} { 1336 CommonLayerSetup(); 1337 } 1338 1339 Layer::~Layer() { Reset(); } 1340 1341 Layer::Layer(Layer&& other) noexcept { *this = std::move(other); } 1342 1343 Layer& Layer::operator=(Layer&& other) noexcept { 1344 if (this != &other) { 1345 Reset(); 1346 using std::swap; 1347 swap(composer_, other.composer_); 1348 swap(display_params_, other.display_params_); 1349 swap(hardware_composer_layer_, other.hardware_composer_layer_); 1350 swap(z_order_, other.z_order_); 1351 swap(blending_, other.blending_); 1352 swap(composition_type_, other.composition_type_); 1353 swap(target_composition_type_, other.target_composition_type_); 1354 swap(source_, other.source_); 1355 swap(acquire_fence_, other.acquire_fence_); 1356 swap(surface_rect_functions_applied_, 1357 other.surface_rect_functions_applied_); 1358 swap(pending_visibility_settings_, other.pending_visibility_settings_); 1359 swap(cached_buffer_map_, other.cached_buffer_map_); 1360 swap(ignore_bad_display_errors_on_destroy_, 1361 other.ignore_bad_display_errors_on_destroy_); 1362 } 1363 return *this; 1364 } 1365 1366 void Layer::UpdateBuffer(const std::shared_ptr<IonBuffer>& buffer) { 1367 if (source_.is<SourceBuffer>()) 1368 std::get<SourceBuffer>(source_) = {buffer}; 1369 } 1370 1371 void Layer::SetBlending(HWC::BlendMode blending) { 1372 if (blending_ != blending) { 1373 blending_ = blending; 1374 pending_visibility_settings_ = true; 1375 } 1376 } 1377 1378 void Layer::SetZOrder(size_t z_order) { 1379 if (z_order_ != z_order) { 1380 z_order_ = z_order; 1381 pending_visibility_settings_ = true; 1382 } 1383 } 1384 1385 IonBuffer* Layer::GetBuffer() { 1386 struct Visitor { 1387 IonBuffer* operator()(SourceSurface& source) { return source.GetBuffer(); } 1388 IonBuffer* operator()(SourceBuffer& source) { return source.GetBuffer(); } 1389 IonBuffer* operator()(EmptyVariant) { return nullptr; } 1390 }; 1391 return source_.Visit(Visitor{}); 1392 } 1393 1394 void Layer::UpdateVisibilitySettings() { 1395 if (pending_visibility_settings_) { 1396 pending_visibility_settings_ = false; 1397 1398 HWC::Error error; 1399 1400 error = composer_->setLayerBlendMode( 1401 display_params_.id, hardware_composer_layer_, 1402 blending_.cast<Hwc2::IComposerClient::BlendMode>()); 1403 ALOGE_IF(error != HWC::Error::None, 1404 "Layer::UpdateLayerSettings: Error setting layer blend mode: %s", 1405 error.to_string().c_str()); 1406 1407 error = composer_->setLayerZOrder(display_params_.id, 1408 hardware_composer_layer_, z_order_); 1409 ALOGE_IF(error != HWC::Error::None, 1410 "Layer::UpdateLayerSettings: Error setting z_ order: %s", 1411 error.to_string().c_str()); 1412 } 1413 } 1414 1415 void Layer::UpdateLayerSettings() { 1416 HWC::Error error; 1417 1418 UpdateVisibilitySettings(); 1419 1420 // TODO(eieio): Use surface attributes or some other mechanism to control 1421 // the layer display frame. 1422 error = composer_->setLayerDisplayFrame( 1423 display_params_.id, hardware_composer_layer_, 1424 {0, 0, display_params_.width, display_params_.height}); 1425 ALOGE_IF(error != HWC::Error::None, 1426 "Layer::UpdateLayerSettings: Error setting layer display frame: %s", 1427 error.to_string().c_str()); 1428 1429 error = composer_->setLayerVisibleRegion( 1430 display_params_.id, hardware_composer_layer_, 1431 {{0, 0, display_params_.width, display_params_.height}}); 1432 ALOGE_IF(error != HWC::Error::None, 1433 "Layer::UpdateLayerSettings: Error setting layer visible region: %s", 1434 error.to_string().c_str()); 1435 1436 error = composer_->setLayerPlaneAlpha(display_params_.id, 1437 hardware_composer_layer_, 1.0f); 1438 ALOGE_IF(error != HWC::Error::None, 1439 "Layer::UpdateLayerSettings: Error setting layer plane alpha: %s", 1440 error.to_string().c_str()); 1441 } 1442 1443 void Layer::CommonLayerSetup() { 1444 HWC::Error error = composer_->createLayer(display_params_.id, 1445 &hardware_composer_layer_); 1446 ALOGE_IF(error != HWC::Error::None, 1447 "Layer::CommonLayerSetup: Failed to create layer on primary " 1448 "display: %s", 1449 error.to_string().c_str()); 1450 UpdateLayerSettings(); 1451 } 1452 1453 bool Layer::CheckAndUpdateCachedBuffer(std::size_t slot, int buffer_id) { 1454 auto search = cached_buffer_map_.find(slot); 1455 if (search != cached_buffer_map_.end() && search->second == buffer_id) 1456 return true; 1457 1458 // Assign or update the buffer slot. 1459 if (buffer_id >= 0) 1460 cached_buffer_map_[slot] = buffer_id; 1461 return false; 1462 } 1463 1464 void Layer::Prepare() { 1465 int right, bottom, id; 1466 sp<GraphicBuffer> handle; 1467 std::size_t slot; 1468 1469 // Acquire the next buffer according to the type of source. 1470 IfAnyOf<SourceSurface, SourceBuffer>::Call(&source_, [&](auto& source) { 1471 std::tie(right, bottom, id, handle, acquire_fence_, slot) = 1472 source.Acquire(); 1473 }); 1474 1475 TRACE_FORMAT("Layer::Prepare|buffer_id=%d;slot=%zu|", id, slot); 1476 1477 // Update any visibility (blending, z-order) changes that occurred since 1478 // last prepare. 1479 UpdateVisibilitySettings(); 1480 1481 // When a layer is first setup there may be some time before the first 1482 // buffer arrives. Setup the HWC layer as a solid color to stall for time 1483 // until the first buffer arrives. Once the first buffer arrives there will 1484 // always be a buffer for the frame even if it is old. 1485 if (!handle.get()) { 1486 if (composition_type_ == HWC::Composition::Invalid) { 1487 composition_type_ = HWC::Composition::SolidColor; 1488 composer_->setLayerCompositionType( 1489 display_params_.id, hardware_composer_layer_, 1490 composition_type_.cast<Hwc2::IComposerClient::Composition>()); 1491 Hwc2::IComposerClient::Color layer_color = {0, 0, 0, 0}; 1492 composer_->setLayerColor(display_params_.id, hardware_composer_layer_, 1493 layer_color); 1494 } else { 1495 // The composition type is already set. Nothing else to do until a 1496 // buffer arrives. 1497 } 1498 } else { 1499 if (composition_type_ != target_composition_type_) { 1500 composition_type_ = target_composition_type_; 1501 composer_->setLayerCompositionType( 1502 display_params_.id, hardware_composer_layer_, 1503 composition_type_.cast<Hwc2::IComposerClient::Composition>()); 1504 } 1505 1506 // See if the HWC cache already has this buffer. 1507 const bool cached = CheckAndUpdateCachedBuffer(slot, id); 1508 if (cached) 1509 handle = nullptr; 1510 1511 HWC::Error error{HWC::Error::None}; 1512 error = 1513 composer_->setLayerBuffer(display_params_.id, hardware_composer_layer_, 1514 slot, handle, acquire_fence_.Get()); 1515 1516 ALOGE_IF(error != HWC::Error::None, 1517 "Layer::Prepare: Error setting layer buffer: %s", 1518 error.to_string().c_str()); 1519 1520 if (!surface_rect_functions_applied_) { 1521 const float float_right = right; 1522 const float float_bottom = bottom; 1523 error = composer_->setLayerSourceCrop(display_params_.id, 1524 hardware_composer_layer_, 1525 {0, 0, float_right, float_bottom}); 1526 1527 ALOGE_IF(error != HWC::Error::None, 1528 "Layer::Prepare: Error setting layer source crop: %s", 1529 error.to_string().c_str()); 1530 1531 surface_rect_functions_applied_ = true; 1532 } 1533 } 1534 } 1535 1536 void Layer::Finish(int release_fence_fd) { 1537 IfAnyOf<SourceSurface, SourceBuffer>::Call( 1538 &source_, [release_fence_fd](auto& source) { 1539 source.Finish(LocalHandle(release_fence_fd)); 1540 }); 1541 } 1542 1543 void Layer::Drop() { acquire_fence_.Close(); } 1544 1545 } // namespace dvr 1546 } // namespace android 1547