1 /* 2 * Copyright (C) 2017 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 //#define LOG_NDEBUG 0 18 #undef LOG_TAG 19 #define LOG_TAG "BufferLayer" 20 #define ATRACE_TAG ATRACE_TAG_GRAPHICS 21 22 #include "BufferLayer.h" 23 24 #include <compositionengine/CompositionEngine.h> 25 #include <compositionengine/Display.h> 26 #include <compositionengine/Layer.h> 27 #include <compositionengine/LayerCreationArgs.h> 28 #include <compositionengine/OutputLayer.h> 29 #include <compositionengine/impl/LayerCompositionState.h> 30 #include <compositionengine/impl/OutputLayerCompositionState.h> 31 #include <cutils/compiler.h> 32 #include <cutils/native_handle.h> 33 #include <cutils/properties.h> 34 #include <gui/BufferItem.h> 35 #include <gui/BufferQueue.h> 36 #include <gui/LayerDebugInfo.h> 37 #include <gui/Surface.h> 38 #include <renderengine/RenderEngine.h> 39 #include <ui/DebugUtils.h> 40 #include <utils/Errors.h> 41 #include <utils/Log.h> 42 #include <utils/NativeHandle.h> 43 #include <utils/StopWatch.h> 44 #include <utils/Trace.h> 45 46 #include <cmath> 47 #include <cstdlib> 48 #include <mutex> 49 #include <sstream> 50 51 #include "Colorizer.h" 52 #include "DisplayDevice.h" 53 #include "LayerRejecter.h" 54 #include "TimeStats/TimeStats.h" 55 56 namespace android { 57 58 BufferLayer::BufferLayer(const LayerCreationArgs& args) 59 : Layer(args), 60 mTextureName(args.flinger->getNewTexture()), 61 mCompositionLayer{mFlinger->getCompositionEngine().createLayer( 62 compositionengine::LayerCreationArgs{this})} { 63 ALOGV("Creating Layer %s", args.name.string()); 64 65 mPremultipliedAlpha = !(args.flags & ISurfaceComposerClient::eNonPremultiplied); 66 67 mPotentialCursor = args.flags & ISurfaceComposerClient::eCursorWindow; 68 mProtectedByApp = args.flags & ISurfaceComposerClient::eProtectedByApp; 69 } 70 71 BufferLayer::~BufferLayer() { 72 mFlinger->deleteTextureAsync(mTextureName); 73 mFlinger->mTimeStats->onDestroy(getSequence()); 74 } 75 76 void BufferLayer::useSurfaceDamage() { 77 if (mFlinger->mForceFullDamage) { 78 surfaceDamageRegion = Region::INVALID_REGION; 79 } else { 80 surfaceDamageRegion = getDrawingSurfaceDamage(); 81 } 82 } 83 84 void BufferLayer::useEmptyDamage() { 85 surfaceDamageRegion.clear(); 86 } 87 88 bool BufferLayer::isOpaque(const Layer::State& s) const { 89 // if we don't have a buffer or sidebandStream yet, we're translucent regardless of the 90 // layer's opaque flag. 91 if ((mSidebandStream == nullptr) && (mActiveBuffer == nullptr)) { 92 return false; 93 } 94 95 // if the layer has the opaque flag, then we're always opaque, 96 // otherwise we use the current buffer's format. 97 return ((s.flags & layer_state_t::eLayerOpaque) != 0) || getOpacityForFormat(getPixelFormat()); 98 } 99 100 bool BufferLayer::isVisible() const { 101 bool visible = !(isHiddenByPolicy()) && getAlpha() > 0.0f && 102 (mActiveBuffer != nullptr || mSidebandStream != nullptr); 103 mFlinger->mScheduler->setLayerVisibility(mSchedulerLayerHandle, visible); 104 105 return visible; 106 } 107 108 bool BufferLayer::isFixedSize() const { 109 return getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE; 110 } 111 112 bool BufferLayer::usesSourceCrop() const { 113 return true; 114 } 115 116 static constexpr mat4 inverseOrientation(uint32_t transform) { 117 const mat4 flipH(-1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1); 118 const mat4 flipV(1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1); 119 const mat4 rot90(0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1); 120 mat4 tr; 121 122 if (transform & NATIVE_WINDOW_TRANSFORM_ROT_90) { 123 tr = tr * rot90; 124 } 125 if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_H) { 126 tr = tr * flipH; 127 } 128 if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_V) { 129 tr = tr * flipV; 130 } 131 return inverse(tr); 132 } 133 134 bool BufferLayer::prepareClientLayer(const RenderArea& renderArea, const Region& clip, 135 bool useIdentityTransform, Region& clearRegion, 136 const bool supportProtectedContent, 137 renderengine::LayerSettings& layer) { 138 ATRACE_CALL(); 139 Layer::prepareClientLayer(renderArea, clip, useIdentityTransform, clearRegion, 140 supportProtectedContent, layer); 141 if (CC_UNLIKELY(mActiveBuffer == 0)) { 142 // the texture has not been created yet, this Layer has 143 // in fact never been drawn into. This happens frequently with 144 // SurfaceView because the WindowManager can't know when the client 145 // has drawn the first time. 146 147 // If there is nothing under us, we paint the screen in black, otherwise 148 // we just skip this update. 149 150 // figure out if there is something below us 151 Region under; 152 bool finished = false; 153 mFlinger->mDrawingState.traverseInZOrder([&](Layer* layer) { 154 if (finished || layer == static_cast<BufferLayer const*>(this)) { 155 finished = true; 156 return; 157 } 158 under.orSelf(layer->visibleRegion); 159 }); 160 // if not everything below us is covered, we plug the holes! 161 Region holes(clip.subtract(under)); 162 if (!holes.isEmpty()) { 163 clearRegion.orSelf(holes); 164 } 165 return false; 166 } 167 bool blackOutLayer = 168 (isProtected() && !supportProtectedContent) || (isSecure() && !renderArea.isSecure()); 169 const State& s(getDrawingState()); 170 if (!blackOutLayer) { 171 layer.source.buffer.buffer = mActiveBuffer; 172 layer.source.buffer.isOpaque = isOpaque(s); 173 layer.source.buffer.fence = mActiveBufferFence; 174 layer.source.buffer.textureName = mTextureName; 175 layer.source.buffer.usePremultipliedAlpha = getPremultipledAlpha(); 176 layer.source.buffer.isY410BT2020 = isHdrY410(); 177 // TODO: we could be more subtle with isFixedSize() 178 const bool useFiltering = needsFiltering(renderArea.getDisplayDevice()) || 179 renderArea.needsFiltering() || isFixedSize(); 180 181 // Query the texture matrix given our current filtering mode. 182 float textureMatrix[16]; 183 setFilteringEnabled(useFiltering); 184 getDrawingTransformMatrix(textureMatrix); 185 186 if (getTransformToDisplayInverse()) { 187 /* 188 * the code below applies the primary display's inverse transform to 189 * the texture transform 190 */ 191 uint32_t transform = DisplayDevice::getPrimaryDisplayOrientationTransform(); 192 mat4 tr = inverseOrientation(transform); 193 194 /** 195 * TODO(b/36727915): This is basically a hack. 196 * 197 * Ensure that regardless of the parent transformation, 198 * this buffer is always transformed from native display 199 * orientation to display orientation. For example, in the case 200 * of a camera where the buffer remains in native orientation, 201 * we want the pixels to always be upright. 202 */ 203 sp<Layer> p = mDrawingParent.promote(); 204 if (p != nullptr) { 205 const auto parentTransform = p->getTransform(); 206 tr = tr * inverseOrientation(parentTransform.getOrientation()); 207 } 208 209 // and finally apply it to the original texture matrix 210 const mat4 texTransform(mat4(static_cast<const float*>(textureMatrix)) * tr); 211 memcpy(textureMatrix, texTransform.asArray(), sizeof(textureMatrix)); 212 } 213 214 const Rect win{getBounds()}; 215 float bufferWidth = getBufferSize(s).getWidth(); 216 float bufferHeight = getBufferSize(s).getHeight(); 217 218 // BufferStateLayers can have a "buffer size" of [0, 0, -1, -1] when no display frame has 219 // been set and there is no parent layer bounds. In that case, the scale is meaningless so 220 // ignore them. 221 if (!getBufferSize(s).isValid()) { 222 bufferWidth = float(win.right) - float(win.left); 223 bufferHeight = float(win.bottom) - float(win.top); 224 } 225 226 const float scaleHeight = (float(win.bottom) - float(win.top)) / bufferHeight; 227 const float scaleWidth = (float(win.right) - float(win.left)) / bufferWidth; 228 const float translateY = float(win.top) / bufferHeight; 229 const float translateX = float(win.left) / bufferWidth; 230 231 // Flip y-coordinates because GLConsumer expects OpenGL convention. 232 mat4 tr = mat4::translate(vec4(.5, .5, 0, 1)) * mat4::scale(vec4(1, -1, 1, 1)) * 233 mat4::translate(vec4(-.5, -.5, 0, 1)) * 234 mat4::translate(vec4(translateX, translateY, 0, 1)) * 235 mat4::scale(vec4(scaleWidth, scaleHeight, 1.0, 1.0)); 236 237 layer.source.buffer.useTextureFiltering = useFiltering; 238 layer.source.buffer.textureTransform = mat4(static_cast<const float*>(textureMatrix)) * tr; 239 } else { 240 // If layer is blacked out, force alpha to 1 so that we draw a black color 241 // layer. 242 layer.source.buffer.buffer = nullptr; 243 layer.alpha = 1.0; 244 } 245 246 return true; 247 } 248 249 bool BufferLayer::isHdrY410() const { 250 // pixel format is HDR Y410 masquerading as RGBA_1010102 251 return (mCurrentDataSpace == ui::Dataspace::BT2020_ITU_PQ && 252 getDrawingApi() == NATIVE_WINDOW_API_MEDIA && 253 mActiveBuffer->getPixelFormat() == HAL_PIXEL_FORMAT_RGBA_1010102); 254 } 255 256 void BufferLayer::setPerFrameData(const sp<const DisplayDevice>& displayDevice, 257 const ui::Transform& transform, const Rect& viewport, 258 int32_t supportedPerFrameMetadata, 259 const ui::Dataspace targetDataspace) { 260 RETURN_IF_NO_HWC_LAYER(displayDevice); 261 262 // Apply this display's projection's viewport to the visible region 263 // before giving it to the HWC HAL. 264 Region visible = transform.transform(visibleRegion.intersect(viewport)); 265 266 const auto outputLayer = findOutputLayerForDisplay(displayDevice); 267 LOG_FATAL_IF(!outputLayer || !outputLayer->getState().hwc); 268 269 auto& hwcLayer = (*outputLayer->getState().hwc).hwcLayer; 270 auto error = hwcLayer->setVisibleRegion(visible); 271 if (error != HWC2::Error::None) { 272 ALOGE("[%s] Failed to set visible region: %s (%d)", mName.string(), 273 to_string(error).c_str(), static_cast<int32_t>(error)); 274 visible.dump(LOG_TAG); 275 } 276 outputLayer->editState().visibleRegion = visible; 277 278 auto& layerCompositionState = getCompositionLayer()->editState().frontEnd; 279 280 error = hwcLayer->setSurfaceDamage(surfaceDamageRegion); 281 if (error != HWC2::Error::None) { 282 ALOGE("[%s] Failed to set surface damage: %s (%d)", mName.string(), 283 to_string(error).c_str(), static_cast<int32_t>(error)); 284 surfaceDamageRegion.dump(LOG_TAG); 285 } 286 layerCompositionState.surfaceDamage = surfaceDamageRegion; 287 288 // Sideband layers 289 if (layerCompositionState.sidebandStream.get()) { 290 setCompositionType(displayDevice, Hwc2::IComposerClient::Composition::SIDEBAND); 291 ALOGV("[%s] Requesting Sideband composition", mName.string()); 292 error = hwcLayer->setSidebandStream(layerCompositionState.sidebandStream->handle()); 293 if (error != HWC2::Error::None) { 294 ALOGE("[%s] Failed to set sideband stream %p: %s (%d)", mName.string(), 295 layerCompositionState.sidebandStream->handle(), to_string(error).c_str(), 296 static_cast<int32_t>(error)); 297 } 298 layerCompositionState.compositionType = Hwc2::IComposerClient::Composition::SIDEBAND; 299 return; 300 } 301 302 // Device or Cursor layers 303 if (mPotentialCursor) { 304 ALOGV("[%s] Requesting Cursor composition", mName.string()); 305 setCompositionType(displayDevice, Hwc2::IComposerClient::Composition::CURSOR); 306 } else { 307 ALOGV("[%s] Requesting Device composition", mName.string()); 308 setCompositionType(displayDevice, Hwc2::IComposerClient::Composition::DEVICE); 309 } 310 311 ui::Dataspace dataspace = isColorSpaceAgnostic() && targetDataspace != ui::Dataspace::UNKNOWN 312 ? targetDataspace 313 : mCurrentDataSpace; 314 error = hwcLayer->setDataspace(dataspace); 315 if (error != HWC2::Error::None) { 316 ALOGE("[%s] Failed to set dataspace %d: %s (%d)", mName.string(), dataspace, 317 to_string(error).c_str(), static_cast<int32_t>(error)); 318 } 319 320 const HdrMetadata& metadata = getDrawingHdrMetadata(); 321 error = hwcLayer->setPerFrameMetadata(supportedPerFrameMetadata, metadata); 322 if (error != HWC2::Error::None && error != HWC2::Error::Unsupported) { 323 ALOGE("[%s] Failed to set hdrMetadata: %s (%d)", mName.string(), 324 to_string(error).c_str(), static_cast<int32_t>(error)); 325 } 326 327 error = hwcLayer->setColorTransform(getColorTransform()); 328 if (error == HWC2::Error::Unsupported) { 329 // If per layer color transform is not supported, we use GPU composition. 330 setCompositionType(displayDevice, Hwc2::IComposerClient::Composition::CLIENT); 331 } else if (error != HWC2::Error::None) { 332 ALOGE("[%s] Failed to setColorTransform: %s (%d)", mName.string(), 333 to_string(error).c_str(), static_cast<int32_t>(error)); 334 } 335 layerCompositionState.dataspace = mCurrentDataSpace; 336 layerCompositionState.colorTransform = getColorTransform(); 337 layerCompositionState.hdrMetadata = metadata; 338 339 setHwcLayerBuffer(displayDevice); 340 } 341 342 bool BufferLayer::onPreComposition(nsecs_t refreshStartTime) { 343 if (mBufferLatched) { 344 Mutex::Autolock lock(mFrameEventHistoryMutex); 345 mFrameEventHistory.addPreComposition(mCurrentFrameNumber, refreshStartTime); 346 } 347 mRefreshPending = false; 348 return hasReadyFrame(); 349 } 350 351 bool BufferLayer::onPostComposition(const std::optional<DisplayId>& displayId, 352 const std::shared_ptr<FenceTime>& glDoneFence, 353 const std::shared_ptr<FenceTime>& presentFence, 354 const CompositorTiming& compositorTiming) { 355 // mFrameLatencyNeeded is true when a new frame was latched for the 356 // composition. 357 if (!mFrameLatencyNeeded) return false; 358 359 // Update mFrameEventHistory. 360 { 361 Mutex::Autolock lock(mFrameEventHistoryMutex); 362 mFrameEventHistory.addPostComposition(mCurrentFrameNumber, glDoneFence, presentFence, 363 compositorTiming); 364 } 365 366 // Update mFrameTracker. 367 nsecs_t desiredPresentTime = getDesiredPresentTime(); 368 mFrameTracker.setDesiredPresentTime(desiredPresentTime); 369 370 const int32_t layerID = getSequence(); 371 mFlinger->mTimeStats->setDesiredTime(layerID, mCurrentFrameNumber, desiredPresentTime); 372 373 std::shared_ptr<FenceTime> frameReadyFence = getCurrentFenceTime(); 374 if (frameReadyFence->isValid()) { 375 mFrameTracker.setFrameReadyFence(std::move(frameReadyFence)); 376 } else { 377 // There was no fence for this frame, so assume that it was ready 378 // to be presented at the desired present time. 379 mFrameTracker.setFrameReadyTime(desiredPresentTime); 380 } 381 382 if (presentFence->isValid()) { 383 mFlinger->mTimeStats->setPresentFence(layerID, mCurrentFrameNumber, presentFence); 384 mFrameTracker.setActualPresentFence(std::shared_ptr<FenceTime>(presentFence)); 385 } else if (displayId && mFlinger->getHwComposer().isConnected(*displayId)) { 386 // The HWC doesn't support present fences, so use the refresh 387 // timestamp instead. 388 const nsecs_t actualPresentTime = mFlinger->getHwComposer().getRefreshTimestamp(*displayId); 389 mFlinger->mTimeStats->setPresentTime(layerID, mCurrentFrameNumber, actualPresentTime); 390 mFrameTracker.setActualPresentTime(actualPresentTime); 391 } 392 393 mFrameTracker.advanceFrame(); 394 mFrameLatencyNeeded = false; 395 return true; 396 } 397 398 bool BufferLayer::latchBuffer(bool& recomputeVisibleRegions, nsecs_t latchTime) { 399 ATRACE_CALL(); 400 401 bool refreshRequired = latchSidebandStream(recomputeVisibleRegions); 402 403 if (refreshRequired) { 404 return refreshRequired; 405 } 406 407 if (!hasReadyFrame()) { 408 return false; 409 } 410 411 // if we've already called updateTexImage() without going through 412 // a composition step, we have to skip this layer at this point 413 // because we cannot call updateTeximage() without a corresponding 414 // compositionComplete() call. 415 // we'll trigger an update in onPreComposition(). 416 if (mRefreshPending) { 417 return false; 418 } 419 420 // If the head buffer's acquire fence hasn't signaled yet, return and 421 // try again later 422 if (!fenceHasSignaled()) { 423 ATRACE_NAME("!fenceHasSignaled()"); 424 mFlinger->signalLayerUpdate(); 425 return false; 426 } 427 428 // Capture the old state of the layer for comparisons later 429 const State& s(getDrawingState()); 430 const bool oldOpacity = isOpaque(s); 431 sp<GraphicBuffer> oldBuffer = mActiveBuffer; 432 433 if (!allTransactionsSignaled()) { 434 mFlinger->setTransactionFlags(eTraversalNeeded); 435 return false; 436 } 437 438 status_t err = updateTexImage(recomputeVisibleRegions, latchTime); 439 if (err != NO_ERROR) { 440 return false; 441 } 442 443 err = updateActiveBuffer(); 444 if (err != NO_ERROR) { 445 return false; 446 } 447 448 mBufferLatched = true; 449 450 err = updateFrameNumber(latchTime); 451 if (err != NO_ERROR) { 452 return false; 453 } 454 455 mRefreshPending = true; 456 mFrameLatencyNeeded = true; 457 if (oldBuffer == nullptr) { 458 // the first time we receive a buffer, we need to trigger a 459 // geometry invalidation. 460 recomputeVisibleRegions = true; 461 } 462 463 ui::Dataspace dataSpace = getDrawingDataSpace(); 464 // translate legacy dataspaces to modern dataspaces 465 switch (dataSpace) { 466 case ui::Dataspace::SRGB: 467 dataSpace = ui::Dataspace::V0_SRGB; 468 break; 469 case ui::Dataspace::SRGB_LINEAR: 470 dataSpace = ui::Dataspace::V0_SRGB_LINEAR; 471 break; 472 case ui::Dataspace::JFIF: 473 dataSpace = ui::Dataspace::V0_JFIF; 474 break; 475 case ui::Dataspace::BT601_625: 476 dataSpace = ui::Dataspace::V0_BT601_625; 477 break; 478 case ui::Dataspace::BT601_525: 479 dataSpace = ui::Dataspace::V0_BT601_525; 480 break; 481 case ui::Dataspace::BT709: 482 dataSpace = ui::Dataspace::V0_BT709; 483 break; 484 default: 485 break; 486 } 487 mCurrentDataSpace = dataSpace; 488 489 Rect crop(getDrawingCrop()); 490 const uint32_t transform(getDrawingTransform()); 491 const uint32_t scalingMode(getDrawingScalingMode()); 492 const bool transformToDisplayInverse(getTransformToDisplayInverse()); 493 if ((crop != mCurrentCrop) || (transform != mCurrentTransform) || 494 (scalingMode != mCurrentScalingMode) || 495 (transformToDisplayInverse != mTransformToDisplayInverse)) { 496 mCurrentCrop = crop; 497 mCurrentTransform = transform; 498 mCurrentScalingMode = scalingMode; 499 mTransformToDisplayInverse = transformToDisplayInverse; 500 recomputeVisibleRegions = true; 501 } 502 503 if (oldBuffer != nullptr) { 504 uint32_t bufWidth = mActiveBuffer->getWidth(); 505 uint32_t bufHeight = mActiveBuffer->getHeight(); 506 if (bufWidth != uint32_t(oldBuffer->width) || bufHeight != uint32_t(oldBuffer->height)) { 507 recomputeVisibleRegions = true; 508 } 509 } 510 511 if (oldOpacity != isOpaque(s)) { 512 recomputeVisibleRegions = true; 513 } 514 515 // Remove any sync points corresponding to the buffer which was just 516 // latched 517 { 518 Mutex::Autolock lock(mLocalSyncPointMutex); 519 auto point = mLocalSyncPoints.begin(); 520 while (point != mLocalSyncPoints.end()) { 521 if (!(*point)->frameIsAvailable() || !(*point)->transactionIsApplied()) { 522 // This sync point must have been added since we started 523 // latching. Don't drop it yet. 524 ++point; 525 continue; 526 } 527 528 if ((*point)->getFrameNumber() <= mCurrentFrameNumber) { 529 std::stringstream ss; 530 ss << "Dropping sync point " << (*point)->getFrameNumber(); 531 ATRACE_NAME(ss.str().c_str()); 532 point = mLocalSyncPoints.erase(point); 533 } else { 534 ++point; 535 } 536 } 537 } 538 539 return true; 540 } 541 542 // transaction 543 void BufferLayer::notifyAvailableFrames() { 544 const auto headFrameNumber = getHeadFrameNumber(); 545 const bool headFenceSignaled = fenceHasSignaled(); 546 const bool presentTimeIsCurrent = framePresentTimeIsCurrent(); 547 Mutex::Autolock lock(mLocalSyncPointMutex); 548 for (auto& point : mLocalSyncPoints) { 549 if (headFrameNumber >= point->getFrameNumber() && headFenceSignaled && 550 presentTimeIsCurrent) { 551 point->setFrameAvailable(); 552 sp<Layer> requestedSyncLayer = point->getRequestedSyncLayer(); 553 if (requestedSyncLayer) { 554 // Need to update the transaction flag to ensure the layer's pending transaction 555 // gets applied. 556 requestedSyncLayer->setTransactionFlags(eTransactionNeeded); 557 } 558 } 559 } 560 } 561 562 bool BufferLayer::hasReadyFrame() const { 563 return hasFrameUpdate() || getSidebandStreamChanged() || getAutoRefresh(); 564 } 565 566 uint32_t BufferLayer::getEffectiveScalingMode() const { 567 if (mOverrideScalingMode >= 0) { 568 return mOverrideScalingMode; 569 } 570 571 return mCurrentScalingMode; 572 } 573 574 bool BufferLayer::isProtected() const { 575 const sp<GraphicBuffer>& buffer(mActiveBuffer); 576 return (buffer != 0) && (buffer->getUsage() & GRALLOC_USAGE_PROTECTED); 577 } 578 579 bool BufferLayer::latchUnsignaledBuffers() { 580 static bool propertyLoaded = false; 581 static bool latch = false; 582 static std::mutex mutex; 583 std::lock_guard<std::mutex> lock(mutex); 584 if (!propertyLoaded) { 585 char value[PROPERTY_VALUE_MAX] = {}; 586 property_get("debug.sf.latch_unsignaled", value, "0"); 587 latch = atoi(value); 588 propertyLoaded = true; 589 } 590 return latch; 591 } 592 593 // h/w composer set-up 594 bool BufferLayer::allTransactionsSignaled() { 595 auto headFrameNumber = getHeadFrameNumber(); 596 bool matchingFramesFound = false; 597 bool allTransactionsApplied = true; 598 Mutex::Autolock lock(mLocalSyncPointMutex); 599 600 for (auto& point : mLocalSyncPoints) { 601 if (point->getFrameNumber() > headFrameNumber) { 602 break; 603 } 604 matchingFramesFound = true; 605 606 if (!point->frameIsAvailable()) { 607 // We haven't notified the remote layer that the frame for 608 // this point is available yet. Notify it now, and then 609 // abort this attempt to latch. 610 point->setFrameAvailable(); 611 allTransactionsApplied = false; 612 break; 613 } 614 615 allTransactionsApplied = allTransactionsApplied && point->transactionIsApplied(); 616 } 617 return !matchingFramesFound || allTransactionsApplied; 618 } 619 620 // As documented in libhardware header, formats in the range 621 // 0x100 - 0x1FF are specific to the HAL implementation, and 622 // are known to have no alpha channel 623 // TODO: move definition for device-specific range into 624 // hardware.h, instead of using hard-coded values here. 625 #define HARDWARE_IS_DEVICE_FORMAT(f) ((f) >= 0x100 && (f) <= 0x1FF) 626 627 bool BufferLayer::getOpacityForFormat(uint32_t format) { 628 if (HARDWARE_IS_DEVICE_FORMAT(format)) { 629 return true; 630 } 631 switch (format) { 632 case HAL_PIXEL_FORMAT_RGBA_8888: 633 case HAL_PIXEL_FORMAT_BGRA_8888: 634 case HAL_PIXEL_FORMAT_RGBA_FP16: 635 case HAL_PIXEL_FORMAT_RGBA_1010102: 636 return false; 637 } 638 // in all other case, we have no blending (also for unknown formats) 639 return true; 640 } 641 642 bool BufferLayer::needsFiltering(const sp<const DisplayDevice>& displayDevice) const { 643 // If we are not capturing based on the state of a known display device, we 644 // only return mNeedsFiltering 645 if (displayDevice == nullptr) { 646 return mNeedsFiltering; 647 } 648 649 const auto outputLayer = findOutputLayerForDisplay(displayDevice); 650 if (outputLayer == nullptr) { 651 return mNeedsFiltering; 652 } 653 654 const auto& compositionState = outputLayer->getState(); 655 const auto displayFrame = compositionState.displayFrame; 656 const auto sourceCrop = compositionState.sourceCrop; 657 return mNeedsFiltering || sourceCrop.getHeight() != displayFrame.getHeight() || 658 sourceCrop.getWidth() != displayFrame.getWidth(); 659 } 660 661 uint64_t BufferLayer::getHeadFrameNumber() const { 662 if (hasFrameUpdate()) { 663 return getFrameNumber(); 664 } else { 665 return mCurrentFrameNumber; 666 } 667 } 668 669 Rect BufferLayer::getBufferSize(const State& s) const { 670 // If we have a sideband stream, or we are scaling the buffer then return the layer size since 671 // we cannot determine the buffer size. 672 if ((s.sidebandStream != nullptr) || 673 (getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE)) { 674 return Rect(getActiveWidth(s), getActiveHeight(s)); 675 } 676 677 if (mActiveBuffer == nullptr) { 678 return Rect::INVALID_RECT; 679 } 680 681 uint32_t bufWidth = mActiveBuffer->getWidth(); 682 uint32_t bufHeight = mActiveBuffer->getHeight(); 683 684 // Undo any transformations on the buffer and return the result. 685 if (mCurrentTransform & ui::Transform::ROT_90) { 686 std::swap(bufWidth, bufHeight); 687 } 688 689 if (getTransformToDisplayInverse()) { 690 uint32_t invTransform = DisplayDevice::getPrimaryDisplayOrientationTransform(); 691 if (invTransform & ui::Transform::ROT_90) { 692 std::swap(bufWidth, bufHeight); 693 } 694 } 695 696 return Rect(bufWidth, bufHeight); 697 } 698 699 std::shared_ptr<compositionengine::Layer> BufferLayer::getCompositionLayer() const { 700 return mCompositionLayer; 701 } 702 703 FloatRect BufferLayer::computeSourceBounds(const FloatRect& parentBounds) const { 704 const State& s(getDrawingState()); 705 706 // If we have a sideband stream, or we are scaling the buffer then return the layer size since 707 // we cannot determine the buffer size. 708 if ((s.sidebandStream != nullptr) || 709 (getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE)) { 710 return FloatRect(0, 0, getActiveWidth(s), getActiveHeight(s)); 711 } 712 713 if (mActiveBuffer == nullptr) { 714 return parentBounds; 715 } 716 717 uint32_t bufWidth = mActiveBuffer->getWidth(); 718 uint32_t bufHeight = mActiveBuffer->getHeight(); 719 720 // Undo any transformations on the buffer and return the result. 721 if (mCurrentTransform & ui::Transform::ROT_90) { 722 std::swap(bufWidth, bufHeight); 723 } 724 725 if (getTransformToDisplayInverse()) { 726 uint32_t invTransform = DisplayDevice::getPrimaryDisplayOrientationTransform(); 727 if (invTransform & ui::Transform::ROT_90) { 728 std::swap(bufWidth, bufHeight); 729 } 730 } 731 732 return FloatRect(0, 0, bufWidth, bufHeight); 733 } 734 735 } // namespace android 736 737 #if defined(__gl_h_) 738 #error "don't include gl/gl.h in this file" 739 #endif 740 741 #if defined(__gl2_h_) 742 #error "don't include gl2/gl2.h in this file" 743 #endif 744