1 /* 2 * Copyright (C) 2007 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 //#define LOG_NDEBUG 0 18 #undef LOG_TAG 19 #define LOG_TAG "Layer" 20 #define ATRACE_TAG ATRACE_TAG_GRAPHICS 21 22 #include "Layer.h" 23 24 #include <android-base/stringprintf.h> 25 #include <compositionengine/Display.h> 26 #include <compositionengine/Layer.h> 27 #include <compositionengine/LayerFECompositionState.h> 28 #include <compositionengine/OutputLayer.h> 29 #include <compositionengine/impl/LayerCompositionState.h> 30 #include <compositionengine/impl/OutputLayerCompositionState.h> 31 #include <cutils/compiler.h> 32 #include <cutils/native_handle.h> 33 #include <cutils/properties.h> 34 #include <gui/BufferItem.h> 35 #include <gui/LayerDebugInfo.h> 36 #include <gui/Surface.h> 37 #include <math.h> 38 #include <renderengine/RenderEngine.h> 39 #include <stdint.h> 40 #include <stdlib.h> 41 #include <sys/types.h> 42 #include <ui/DebugUtils.h> 43 #include <ui/GraphicBuffer.h> 44 #include <ui/PixelFormat.h> 45 #include <utils/Errors.h> 46 #include <utils/Log.h> 47 #include <utils/NativeHandle.h> 48 #include <utils/StopWatch.h> 49 #include <utils/Trace.h> 50 51 #include <algorithm> 52 #include <mutex> 53 #include <sstream> 54 55 #include "BufferLayer.h" 56 #include "ColorLayer.h" 57 #include "Colorizer.h" 58 #include "DisplayDevice.h" 59 #include "DisplayHardware/HWComposer.h" 60 #include "LayerProtoHelper.h" 61 #include "LayerRejecter.h" 62 #include "MonitoredProducer.h" 63 #include "SurfaceFlinger.h" 64 #include "TimeStats/TimeStats.h" 65 66 #define DEBUG_RESIZE 0 67 68 namespace android { 69 70 using base::StringAppendF; 71 72 std::atomic<int32_t> Layer::sSequence{1}; 73 74 Layer::Layer(const LayerCreationArgs& args) 75 : mFlinger(args.flinger), 76 mName(args.name), 77 mClientRef(args.client), 78 mWindowType(args.metadata.getInt32(METADATA_WINDOW_TYPE, 0)) { 79 mCurrentCrop.makeInvalid(); 80 81 uint32_t layerFlags = 0; 82 if (args.flags & ISurfaceComposerClient::eHidden) layerFlags |= layer_state_t::eLayerHidden; 83 if (args.flags & ISurfaceComposerClient::eOpaque) layerFlags |= layer_state_t::eLayerOpaque; 84 if (args.flags & ISurfaceComposerClient::eSecure) layerFlags |= layer_state_t::eLayerSecure; 85 86 mTransactionName = String8("TX - ") + mName; 87 88 mCurrentState.active_legacy.w = args.w; 89 mCurrentState.active_legacy.h = args.h; 90 mCurrentState.flags = layerFlags; 91 mCurrentState.active_legacy.transform.set(0, 0); 92 mCurrentState.crop_legacy.makeInvalid(); 93 mCurrentState.requestedCrop_legacy = mCurrentState.crop_legacy; 94 mCurrentState.z = 0; 95 mCurrentState.color.a = 1.0f; 96 mCurrentState.layerStack = 0; 97 mCurrentState.sequence = 0; 98 mCurrentState.requested_legacy = mCurrentState.active_legacy; 99 mCurrentState.active.w = UINT32_MAX; 100 mCurrentState.active.h = UINT32_MAX; 101 mCurrentState.active.transform.set(0, 0); 102 mCurrentState.transform = 0; 103 mCurrentState.transformToDisplayInverse = false; 104 mCurrentState.crop.makeInvalid(); 105 mCurrentState.acquireFence = new Fence(-1); 106 mCurrentState.dataspace = ui::Dataspace::UNKNOWN; 107 mCurrentState.hdrMetadata.validTypes = 0; 108 mCurrentState.surfaceDamageRegion.clear(); 109 mCurrentState.cornerRadius = 0.0f; 110 mCurrentState.api = -1; 111 mCurrentState.hasColorTransform = false; 112 mCurrentState.colorSpaceAgnostic = false; 113 mCurrentState.metadata = args.metadata; 114 115 // drawing state & current state are identical 116 mDrawingState = mCurrentState; 117 118 CompositorTiming compositorTiming; 119 args.flinger->getCompositorTiming(&compositorTiming); 120 mFrameEventHistory.initializeCompositorTiming(compositorTiming); 121 mFrameTracker.setDisplayRefreshPeriod(compositorTiming.interval); 122 123 mSchedulerLayerHandle = mFlinger->mScheduler->registerLayer(mName.c_str(), mWindowType); 124 125 mFlinger->onLayerCreated(); 126 } 127 128 Layer::~Layer() { 129 sp<Client> c(mClientRef.promote()); 130 if (c != 0) { 131 c->detachLayer(this); 132 } 133 134 mFrameTracker.logAndResetStats(mName); 135 mFlinger->onLayerDestroyed(this); 136 } 137 138 // --------------------------------------------------------------------------- 139 // callbacks 140 // --------------------------------------------------------------------------- 141 142 /* 143 * onLayerDisplayed is only meaningful for BufferLayer, but, is called through 144 * Layer. So, the implementation is done in BufferLayer. When called on a 145 * ColorLayer object, it's essentially a NOP. 146 */ 147 void Layer::onLayerDisplayed(const sp<Fence>& /*releaseFence*/) {} 148 149 void Layer::removeRemoteSyncPoints() { 150 for (auto& point : mRemoteSyncPoints) { 151 point->setTransactionApplied(); 152 } 153 mRemoteSyncPoints.clear(); 154 155 { 156 Mutex::Autolock pendingStateLock(mPendingStateMutex); 157 for (State pendingState : mPendingStates) { 158 pendingState.barrierLayer_legacy = nullptr; 159 } 160 } 161 } 162 163 void Layer::removeRelativeZ(const std::vector<Layer*>& layersInTree) { 164 if (mCurrentState.zOrderRelativeOf == nullptr) { 165 return; 166 } 167 168 sp<Layer> strongRelative = mCurrentState.zOrderRelativeOf.promote(); 169 if (strongRelative == nullptr) { 170 setZOrderRelativeOf(nullptr); 171 return; 172 } 173 174 if (!std::binary_search(layersInTree.begin(), layersInTree.end(), strongRelative.get())) { 175 strongRelative->removeZOrderRelative(this); 176 mFlinger->setTransactionFlags(eTraversalNeeded); 177 setZOrderRelativeOf(nullptr); 178 } 179 } 180 181 void Layer::removeFromCurrentState() { 182 mRemovedFromCurrentState = true; 183 184 // Since we are no longer reachable from CurrentState SurfaceFlinger 185 // will no longer invoke doTransaction for us, and so we will 186 // never finish applying transactions. We signal the sync point 187 // now so that another layer will not become indefinitely 188 // blocked. 189 removeRemoteSyncPoints(); 190 191 { 192 Mutex::Autolock syncLock(mLocalSyncPointMutex); 193 for (auto& point : mLocalSyncPoints) { 194 point->setFrameAvailable(); 195 } 196 mLocalSyncPoints.clear(); 197 } 198 199 mFlinger->markLayerPendingRemovalLocked(this); 200 } 201 202 void Layer::onRemovedFromCurrentState() { 203 auto layersInTree = getLayersInTree(LayerVector::StateSet::Current); 204 std::sort(layersInTree.begin(), layersInTree.end()); 205 for (const auto& layer : layersInTree) { 206 layer->removeFromCurrentState(); 207 layer->removeRelativeZ(layersInTree); 208 } 209 } 210 211 void Layer::addToCurrentState() { 212 mRemovedFromCurrentState = false; 213 214 for (const auto& child : mCurrentChildren) { 215 child->addToCurrentState(); 216 } 217 } 218 219 // --------------------------------------------------------------------------- 220 // set-up 221 // --------------------------------------------------------------------------- 222 223 const String8& Layer::getName() const { 224 return mName; 225 } 226 227 bool Layer::getPremultipledAlpha() const { 228 return mPremultipliedAlpha; 229 } 230 231 sp<IBinder> Layer::getHandle() { 232 Mutex::Autolock _l(mLock); 233 if (mGetHandleCalled) { 234 ALOGE("Get handle called twice" ); 235 return nullptr; 236 } 237 mGetHandleCalled = true; 238 return new Handle(mFlinger, this); 239 } 240 241 // --------------------------------------------------------------------------- 242 // h/w composer set-up 243 // --------------------------------------------------------------------------- 244 245 bool Layer::hasHwcLayer(const sp<const DisplayDevice>& displayDevice) { 246 auto outputLayer = findOutputLayerForDisplay(displayDevice); 247 LOG_FATAL_IF(!outputLayer); 248 return outputLayer->getState().hwc && (*outputLayer->getState().hwc).hwcLayer != nullptr; 249 } 250 251 HWC2::Layer* Layer::getHwcLayer(const sp<const DisplayDevice>& displayDevice) { 252 auto outputLayer = findOutputLayerForDisplay(displayDevice); 253 if (!outputLayer || !outputLayer->getState().hwc) { 254 return nullptr; 255 } 256 return (*outputLayer->getState().hwc).hwcLayer.get(); 257 } 258 259 Rect Layer::getContentCrop() const { 260 // this is the crop rectangle that applies to the buffer 261 // itself (as opposed to the window) 262 Rect crop; 263 if (!mCurrentCrop.isEmpty()) { 264 // if the buffer crop is defined, we use that 265 crop = mCurrentCrop; 266 } else if (mActiveBuffer != nullptr) { 267 // otherwise we use the whole buffer 268 crop = mActiveBuffer->getBounds(); 269 } else { 270 // if we don't have a buffer yet, we use an empty/invalid crop 271 crop.makeInvalid(); 272 } 273 return crop; 274 } 275 276 static Rect reduce(const Rect& win, const Region& exclude) { 277 if (CC_LIKELY(exclude.isEmpty())) { 278 return win; 279 } 280 if (exclude.isRect()) { 281 return win.reduce(exclude.getBounds()); 282 } 283 return Region(win).subtract(exclude).getBounds(); 284 } 285 286 static FloatRect reduce(const FloatRect& win, const Region& exclude) { 287 if (CC_LIKELY(exclude.isEmpty())) { 288 return win; 289 } 290 // Convert through Rect (by rounding) for lack of FloatRegion 291 return Region(Rect{win}).subtract(exclude).getBounds().toFloatRect(); 292 } 293 294 Rect Layer::getScreenBounds(bool reduceTransparentRegion) const { 295 if (!reduceTransparentRegion) { 296 return Rect{mScreenBounds}; 297 } 298 299 FloatRect bounds = getBounds(); 300 ui::Transform t = getTransform(); 301 // Transform to screen space. 302 bounds = t.transform(bounds); 303 return Rect{bounds}; 304 } 305 306 FloatRect Layer::getBounds() const { 307 const State& s(getDrawingState()); 308 return getBounds(getActiveTransparentRegion(s)); 309 } 310 311 FloatRect Layer::getBounds(const Region& activeTransparentRegion) const { 312 // Subtract the transparent region and snap to the bounds. 313 return reduce(mBounds, activeTransparentRegion); 314 } 315 316 ui::Transform Layer::getBufferScaleTransform() const { 317 // If the layer is not using NATIVE_WINDOW_SCALING_MODE_FREEZE (e.g. 318 // it isFixedSize) then there may be additional scaling not accounted 319 // for in the layer transform. 320 if (!isFixedSize() || !mActiveBuffer) { 321 return {}; 322 } 323 324 // If the layer is a buffer state layer, the active width and height 325 // could be infinite. In that case, return the effective transform. 326 const uint32_t activeWidth = getActiveWidth(getDrawingState()); 327 const uint32_t activeHeight = getActiveHeight(getDrawingState()); 328 if (activeWidth >= UINT32_MAX && activeHeight >= UINT32_MAX) { 329 return {}; 330 } 331 332 int bufferWidth = mActiveBuffer->getWidth(); 333 int bufferHeight = mActiveBuffer->getHeight(); 334 335 if (mCurrentTransform & NATIVE_WINDOW_TRANSFORM_ROT_90) { 336 std::swap(bufferWidth, bufferHeight); 337 } 338 339 float sx = activeWidth / static_cast<float>(bufferWidth); 340 float sy = activeHeight / static_cast<float>(bufferHeight); 341 342 ui::Transform extraParentScaling; 343 extraParentScaling.set(sx, 0, 0, sy); 344 return extraParentScaling; 345 } 346 347 ui::Transform Layer::getTransformWithScale(const ui::Transform& bufferScaleTransform) const { 348 // We need to mirror this scaling to child surfaces or we will break the contract where WM can 349 // treat child surfaces as pixels in the parent surface. 350 if (!isFixedSize() || !mActiveBuffer) { 351 return mEffectiveTransform; 352 } 353 return mEffectiveTransform * bufferScaleTransform; 354 } 355 356 FloatRect Layer::getBoundsPreScaling(const ui::Transform& bufferScaleTransform) const { 357 // We need the pre scaled layer bounds when computing child bounds to make sure the child is 358 // cropped to its parent layer after any buffer transform scaling is applied. 359 if (!isFixedSize() || !mActiveBuffer) { 360 return mBounds; 361 } 362 return bufferScaleTransform.inverse().transform(mBounds); 363 } 364 365 void Layer::computeBounds(FloatRect parentBounds, ui::Transform parentTransform) { 366 const State& s(getDrawingState()); 367 368 // Calculate effective layer transform 369 mEffectiveTransform = parentTransform * getActiveTransform(s); 370 371 // Transform parent bounds to layer space 372 parentBounds = getActiveTransform(s).inverse().transform(parentBounds); 373 374 // Calculate source bounds 375 mSourceBounds = computeSourceBounds(parentBounds); 376 377 // Calculate bounds by croping diplay frame with layer crop and parent bounds 378 FloatRect bounds = mSourceBounds; 379 const Rect layerCrop = getCrop(s); 380 if (!layerCrop.isEmpty()) { 381 bounds = mSourceBounds.intersect(layerCrop.toFloatRect()); 382 } 383 bounds = bounds.intersect(parentBounds); 384 385 mBounds = bounds; 386 mScreenBounds = mEffectiveTransform.transform(mBounds); 387 388 // Add any buffer scaling to the layer's children. 389 ui::Transform bufferScaleTransform = getBufferScaleTransform(); 390 for (const sp<Layer>& child : mDrawingChildren) { 391 child->computeBounds(getBoundsPreScaling(bufferScaleTransform), 392 getTransformWithScale(bufferScaleTransform)); 393 } 394 } 395 396 Rect Layer::getCroppedBufferSize(const State& s) const { 397 Rect size = getBufferSize(s); 398 Rect crop = getCrop(s); 399 if (!crop.isEmpty() && size.isValid()) { 400 size.intersect(crop, &size); 401 } else if (!crop.isEmpty()) { 402 size = crop; 403 } 404 return size; 405 } 406 407 void Layer::setupRoundedCornersCropCoordinates(Rect win, 408 const FloatRect& roundedCornersCrop) const { 409 // Translate win by the rounded corners rect coordinates, to have all values in 410 // layer coordinate space. 411 win.left -= roundedCornersCrop.left; 412 win.right -= roundedCornersCrop.left; 413 win.top -= roundedCornersCrop.top; 414 win.bottom -= roundedCornersCrop.top; 415 } 416 417 void Layer::latchGeometry(compositionengine::LayerFECompositionState& compositionState) const { 418 const auto& drawingState{getDrawingState()}; 419 auto alpha = static_cast<float>(getAlpha()); 420 auto blendMode = HWC2::BlendMode::None; 421 if (!isOpaque(drawingState) || alpha != 1.0f) { 422 blendMode = 423 mPremultipliedAlpha ? HWC2::BlendMode::Premultiplied : HWC2::BlendMode::Coverage; 424 } 425 426 int type = drawingState.metadata.getInt32(METADATA_WINDOW_TYPE, 0); 427 int appId = drawingState.metadata.getInt32(METADATA_OWNER_UID, 0); 428 sp<Layer> parent = mDrawingParent.promote(); 429 if (parent.get()) { 430 auto& parentState = parent->getDrawingState(); 431 const int parentType = parentState.metadata.getInt32(METADATA_WINDOW_TYPE, 0); 432 const int parentAppId = parentState.metadata.getInt32(METADATA_OWNER_UID, 0); 433 if (parentType >= 0 || parentAppId >= 0) { 434 type = parentType; 435 appId = parentAppId; 436 } 437 } 438 439 compositionState.geomLayerTransform = getTransform(); 440 compositionState.geomInverseLayerTransform = compositionState.geomLayerTransform.inverse(); 441 compositionState.geomBufferSize = getBufferSize(drawingState); 442 compositionState.geomContentCrop = getContentCrop(); 443 compositionState.geomCrop = getCrop(drawingState); 444 compositionState.geomBufferTransform = mCurrentTransform; 445 compositionState.geomBufferUsesDisplayInverseTransform = getTransformToDisplayInverse(); 446 compositionState.geomActiveTransparentRegion = getActiveTransparentRegion(drawingState); 447 compositionState.geomLayerBounds = mBounds; 448 compositionState.geomUsesSourceCrop = usesSourceCrop(); 449 compositionState.isSecure = isSecure(); 450 451 compositionState.blendMode = static_cast<Hwc2::IComposerClient::BlendMode>(blendMode); 452 compositionState.alpha = alpha; 453 compositionState.type = type; 454 compositionState.appId = appId; 455 } 456 457 void Layer::latchCompositionState(compositionengine::LayerFECompositionState& compositionState, 458 bool includeGeometry) const { 459 if (includeGeometry) { 460 latchGeometry(compositionState); 461 } 462 } 463 464 const char* Layer::getDebugName() const { 465 return mName.string(); 466 } 467 468 void Layer::forceClientComposition(const sp<DisplayDevice>& display) { 469 const auto outputLayer = findOutputLayerForDisplay(display); 470 LOG_FATAL_IF(!outputLayer); 471 outputLayer->editState().forceClientComposition = true; 472 } 473 474 bool Layer::getForceClientComposition(const sp<DisplayDevice>& display) { 475 const auto outputLayer = findOutputLayerForDisplay(display); 476 LOG_FATAL_IF(!outputLayer); 477 return outputLayer->getState().forceClientComposition; 478 } 479 480 void Layer::updateCursorPosition(const sp<const DisplayDevice>& display) { 481 const auto outputLayer = findOutputLayerForDisplay(display); 482 LOG_FATAL_IF(!outputLayer); 483 484 if (!outputLayer->getState().hwc || 485 (*outputLayer->getState().hwc).hwcCompositionType != 486 Hwc2::IComposerClient::Composition::CURSOR) { 487 return; 488 } 489 490 // This gives us only the "orientation" component of the transform 491 const State& s(getDrawingState()); 492 493 // Apply the layer's transform, followed by the display's global transform 494 // Here we're guaranteed that the layer's transform preserves rects 495 Rect win = getCroppedBufferSize(s); 496 // Subtract the transparent region and snap to the bounds 497 Rect bounds = reduce(win, getActiveTransparentRegion(s)); 498 Rect frame(getTransform().transform(bounds)); 499 frame.intersect(display->getViewport(), &frame); 500 auto& displayTransform = display->getTransform(); 501 auto position = displayTransform.transform(frame); 502 503 auto error = 504 (*outputLayer->getState().hwc).hwcLayer->setCursorPosition(position.left, position.top); 505 ALOGE_IF(error != HWC2::Error::None, 506 "[%s] Failed to set cursor position " 507 "to (%d, %d): %s (%d)", 508 mName.string(), position.left, position.top, to_string(error).c_str(), 509 static_cast<int32_t>(error)); 510 } 511 512 // --------------------------------------------------------------------------- 513 // drawing... 514 // --------------------------------------------------------------------------- 515 516 bool Layer::prepareClientLayer(const RenderArea& renderArea, const Region& clip, 517 Region& clearRegion, const bool supportProtectedContent, 518 renderengine::LayerSettings& layer) { 519 return prepareClientLayer(renderArea, clip, false, clearRegion, supportProtectedContent, layer); 520 } 521 522 bool Layer::prepareClientLayer(const RenderArea& renderArea, bool useIdentityTransform, 523 Region& clearRegion, const bool supportProtectedContent, 524 renderengine::LayerSettings& layer) { 525 return prepareClientLayer(renderArea, Region(renderArea.getBounds()), useIdentityTransform, 526 clearRegion, supportProtectedContent, layer); 527 } 528 529 bool Layer::prepareClientLayer(const RenderArea& /*renderArea*/, const Region& /*clip*/, 530 bool useIdentityTransform, Region& /*clearRegion*/, 531 const bool /*supportProtectedContent*/, 532 renderengine::LayerSettings& layer) { 533 FloatRect bounds = getBounds(); 534 half alpha = getAlpha(); 535 layer.geometry.boundaries = bounds; 536 if (useIdentityTransform) { 537 layer.geometry.positionTransform = mat4(); 538 } else { 539 const ui::Transform transform = getTransform(); 540 mat4 m; 541 m[0][0] = transform[0][0]; 542 m[0][1] = transform[0][1]; 543 m[0][3] = transform[0][2]; 544 m[1][0] = transform[1][0]; 545 m[1][1] = transform[1][1]; 546 m[1][3] = transform[1][2]; 547 m[3][0] = transform[2][0]; 548 m[3][1] = transform[2][1]; 549 m[3][3] = transform[2][2]; 550 layer.geometry.positionTransform = m; 551 } 552 553 if (hasColorTransform()) { 554 layer.colorTransform = getColorTransform(); 555 } 556 557 const auto roundedCornerState = getRoundedCornerState(); 558 layer.geometry.roundedCornersRadius = roundedCornerState.radius; 559 layer.geometry.roundedCornersCrop = roundedCornerState.cropRect; 560 561 layer.alpha = alpha; 562 layer.sourceDataspace = mCurrentDataSpace; 563 return true; 564 } 565 566 void Layer::setCompositionType(const sp<const DisplayDevice>& display, 567 Hwc2::IComposerClient::Composition type) { 568 const auto outputLayer = findOutputLayerForDisplay(display); 569 LOG_FATAL_IF(!outputLayer); 570 LOG_FATAL_IF(!outputLayer->getState().hwc); 571 auto& compositionState = outputLayer->editState(); 572 573 ALOGV("setCompositionType(%" PRIx64 ", %s, %d)", ((*compositionState.hwc).hwcLayer)->getId(), 574 toString(type).c_str(), 1); 575 if ((*compositionState.hwc).hwcCompositionType != type) { 576 ALOGV(" actually setting"); 577 (*compositionState.hwc).hwcCompositionType = type; 578 579 auto error = (*compositionState.hwc) 580 .hwcLayer->setCompositionType(static_cast<HWC2::Composition>(type)); 581 ALOGE_IF(error != HWC2::Error::None, 582 "[%s] Failed to set " 583 "composition type %s: %s (%d)", 584 mName.string(), toString(type).c_str(), to_string(error).c_str(), 585 static_cast<int32_t>(error)); 586 } 587 } 588 589 Hwc2::IComposerClient::Composition Layer::getCompositionType( 590 const sp<const DisplayDevice>& display) const { 591 const auto outputLayer = findOutputLayerForDisplay(display); 592 LOG_FATAL_IF(!outputLayer); 593 return outputLayer->getState().hwc ? (*outputLayer->getState().hwc).hwcCompositionType 594 : Hwc2::IComposerClient::Composition::CLIENT; 595 } 596 597 bool Layer::getClearClientTarget(const sp<const DisplayDevice>& display) const { 598 const auto outputLayer = findOutputLayerForDisplay(display); 599 LOG_FATAL_IF(!outputLayer); 600 return outputLayer->getState().clearClientTarget; 601 } 602 603 bool Layer::addSyncPoint(const std::shared_ptr<SyncPoint>& point) { 604 if (point->getFrameNumber() <= mCurrentFrameNumber) { 605 // Don't bother with a SyncPoint, since we've already latched the 606 // relevant frame 607 return false; 608 } 609 if (isRemovedFromCurrentState()) { 610 return false; 611 } 612 613 Mutex::Autolock lock(mLocalSyncPointMutex); 614 mLocalSyncPoints.push_back(point); 615 return true; 616 } 617 618 // ---------------------------------------------------------------------------- 619 // local state 620 // ---------------------------------------------------------------------------- 621 622 void Layer::computeGeometry(const RenderArea& renderArea, 623 renderengine::Mesh& mesh, 624 bool useIdentityTransform) const { 625 const ui::Transform renderAreaTransform(renderArea.getTransform()); 626 FloatRect win = getBounds(); 627 628 vec2 lt = vec2(win.left, win.top); 629 vec2 lb = vec2(win.left, win.bottom); 630 vec2 rb = vec2(win.right, win.bottom); 631 vec2 rt = vec2(win.right, win.top); 632 633 ui::Transform layerTransform = getTransform(); 634 if (!useIdentityTransform) { 635 lt = layerTransform.transform(lt); 636 lb = layerTransform.transform(lb); 637 rb = layerTransform.transform(rb); 638 rt = layerTransform.transform(rt); 639 } 640 641 renderengine::Mesh::VertexArray<vec2> position(mesh.getPositionArray<vec2>()); 642 position[0] = renderAreaTransform.transform(lt); 643 position[1] = renderAreaTransform.transform(lb); 644 position[2] = renderAreaTransform.transform(rb); 645 position[3] = renderAreaTransform.transform(rt); 646 } 647 648 bool Layer::isSecure() const { 649 const State& s(mDrawingState); 650 return (s.flags & layer_state_t::eLayerSecure); 651 } 652 653 void Layer::setVisibleRegion(const Region& visibleRegion) { 654 // always called from main thread 655 this->visibleRegion = visibleRegion; 656 } 657 658 void Layer::setCoveredRegion(const Region& coveredRegion) { 659 // always called from main thread 660 this->coveredRegion = coveredRegion; 661 } 662 663 void Layer::setVisibleNonTransparentRegion(const Region& setVisibleNonTransparentRegion) { 664 // always called from main thread 665 this->visibleNonTransparentRegion = setVisibleNonTransparentRegion; 666 } 667 668 void Layer::clearVisibilityRegions() { 669 visibleRegion.clear(); 670 visibleNonTransparentRegion.clear(); 671 coveredRegion.clear(); 672 } 673 674 // ---------------------------------------------------------------------------- 675 // transaction 676 // ---------------------------------------------------------------------------- 677 678 void Layer::pushPendingState() { 679 if (!mCurrentState.modified) { 680 return; 681 } 682 ATRACE_CALL(); 683 684 // If this transaction is waiting on the receipt of a frame, generate a sync 685 // point and send it to the remote layer. 686 // We don't allow installing sync points after we are removed from the current state 687 // as we won't be able to signal our end. 688 if (mCurrentState.barrierLayer_legacy != nullptr && !isRemovedFromCurrentState()) { 689 sp<Layer> barrierLayer = mCurrentState.barrierLayer_legacy.promote(); 690 if (barrierLayer == nullptr) { 691 ALOGE("[%s] Unable to promote barrier Layer.", mName.string()); 692 // If we can't promote the layer we are intended to wait on, 693 // then it is expired or otherwise invalid. Allow this transaction 694 // to be applied as per normal (no synchronization). 695 mCurrentState.barrierLayer_legacy = nullptr; 696 } else { 697 auto syncPoint = std::make_shared<SyncPoint>(mCurrentState.frameNumber_legacy, this); 698 if (barrierLayer->addSyncPoint(syncPoint)) { 699 std::stringstream ss; 700 ss << "Adding sync point " << mCurrentState.frameNumber_legacy; 701 ATRACE_NAME(ss.str().c_str()); 702 mRemoteSyncPoints.push_back(std::move(syncPoint)); 703 } else { 704 // We already missed the frame we're supposed to synchronize 705 // on, so go ahead and apply the state update 706 mCurrentState.barrierLayer_legacy = nullptr; 707 } 708 } 709 710 // Wake us up to check if the frame has been received 711 setTransactionFlags(eTransactionNeeded); 712 mFlinger->setTransactionFlags(eTraversalNeeded); 713 } 714 mPendingStates.push_back(mCurrentState); 715 ATRACE_INT(mTransactionName.string(), mPendingStates.size()); 716 } 717 718 void Layer::popPendingState(State* stateToCommit) { 719 ATRACE_CALL(); 720 *stateToCommit = mPendingStates[0]; 721 722 mPendingStates.removeAt(0); 723 ATRACE_INT(mTransactionName.string(), mPendingStates.size()); 724 } 725 726 bool Layer::applyPendingStates(State* stateToCommit) { 727 bool stateUpdateAvailable = false; 728 while (!mPendingStates.empty()) { 729 if (mPendingStates[0].barrierLayer_legacy != nullptr) { 730 if (mRemoteSyncPoints.empty()) { 731 // If we don't have a sync point for this, apply it anyway. It 732 // will be visually wrong, but it should keep us from getting 733 // into too much trouble. 734 ALOGE("[%s] No local sync point found", mName.string()); 735 popPendingState(stateToCommit); 736 stateUpdateAvailable = true; 737 continue; 738 } 739 740 if (mRemoteSyncPoints.front()->getFrameNumber() != 741 mPendingStates[0].frameNumber_legacy) { 742 ALOGE("[%s] Unexpected sync point frame number found", mName.string()); 743 744 // Signal our end of the sync point and then dispose of it 745 mRemoteSyncPoints.front()->setTransactionApplied(); 746 mRemoteSyncPoints.pop_front(); 747 continue; 748 } 749 750 if (mRemoteSyncPoints.front()->frameIsAvailable()) { 751 ATRACE_NAME("frameIsAvailable"); 752 // Apply the state update 753 popPendingState(stateToCommit); 754 stateUpdateAvailable = true; 755 756 // Signal our end of the sync point and then dispose of it 757 mRemoteSyncPoints.front()->setTransactionApplied(); 758 mRemoteSyncPoints.pop_front(); 759 } else { 760 ATRACE_NAME("!frameIsAvailable"); 761 break; 762 } 763 } else { 764 popPendingState(stateToCommit); 765 stateUpdateAvailable = true; 766 } 767 } 768 769 // If we still have pending updates, wake SurfaceFlinger back up and point 770 // it at this layer so we can process them 771 if (!mPendingStates.empty()) { 772 setTransactionFlags(eTransactionNeeded); 773 mFlinger->setTransactionFlags(eTraversalNeeded); 774 } 775 776 mCurrentState.modified = false; 777 return stateUpdateAvailable; 778 } 779 780 uint32_t Layer::doTransactionResize(uint32_t flags, State* stateToCommit) { 781 const State& s(getDrawingState()); 782 783 const bool sizeChanged = (stateToCommit->requested_legacy.w != s.requested_legacy.w) || 784 (stateToCommit->requested_legacy.h != s.requested_legacy.h); 785 786 if (sizeChanged) { 787 // the size changed, we need to ask our client to request a new buffer 788 ALOGD_IF(DEBUG_RESIZE, 789 "doTransaction: geometry (layer=%p '%s'), tr=%02x, scalingMode=%d\n" 790 " current={ active ={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }\n" 791 " requested={ wh={%4u,%4u} }}\n" 792 " drawing={ active ={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }\n" 793 " requested={ wh={%4u,%4u} }}\n", 794 this, getName().string(), mCurrentTransform, getEffectiveScalingMode(), 795 stateToCommit->active_legacy.w, stateToCommit->active_legacy.h, 796 stateToCommit->crop_legacy.left, stateToCommit->crop_legacy.top, 797 stateToCommit->crop_legacy.right, stateToCommit->crop_legacy.bottom, 798 stateToCommit->crop_legacy.getWidth(), stateToCommit->crop_legacy.getHeight(), 799 stateToCommit->requested_legacy.w, stateToCommit->requested_legacy.h, 800 s.active_legacy.w, s.active_legacy.h, s.crop_legacy.left, s.crop_legacy.top, 801 s.crop_legacy.right, s.crop_legacy.bottom, s.crop_legacy.getWidth(), 802 s.crop_legacy.getHeight(), s.requested_legacy.w, s.requested_legacy.h); 803 } 804 805 // Don't let Layer::doTransaction update the drawing state 806 // if we have a pending resize, unless we are in fixed-size mode. 807 // the drawing state will be updated only once we receive a buffer 808 // with the correct size. 809 // 810 // In particular, we want to make sure the clip (which is part 811 // of the geometry state) is latched together with the size but is 812 // latched immediately when no resizing is involved. 813 // 814 // If a sideband stream is attached, however, we want to skip this 815 // optimization so that transactions aren't missed when a buffer 816 // never arrives 817 // 818 // In the case that we don't have a buffer we ignore other factors 819 // and avoid entering the resizePending state. At a high level the 820 // resizePending state is to avoid applying the state of the new buffer 821 // to the old buffer. However in the state where we don't have an old buffer 822 // there is no such concern but we may still be being used as a parent layer. 823 const bool resizePending = 824 ((stateToCommit->requested_legacy.w != stateToCommit->active_legacy.w) || 825 (stateToCommit->requested_legacy.h != stateToCommit->active_legacy.h)) && 826 (mActiveBuffer != nullptr); 827 if (!isFixedSize()) { 828 if (resizePending && mSidebandStream == nullptr) { 829 flags |= eDontUpdateGeometryState; 830 } 831 } 832 833 // Here we apply various requested geometry states, depending on our 834 // latching configuration. See Layer.h for a detailed discussion of 835 // how geometry latching is controlled. 836 if (!(flags & eDontUpdateGeometryState)) { 837 State& editCurrentState(getCurrentState()); 838 839 // If mFreezeGeometryUpdates is true we are in the setGeometryAppliesWithResize 840 // mode, which causes attributes which normally latch regardless of scaling mode, 841 // to be delayed. We copy the requested state to the active state making sure 842 // to respect these rules (again see Layer.h for a detailed discussion). 843 // 844 // There is an awkward asymmetry in the handling of the crop states in the position 845 // states, as can be seen below. Largely this arises from position and transform 846 // being stored in the same data structure while having different latching rules. 847 // b/38182305 848 // 849 // Careful that "stateToCommit" and editCurrentState may not begin as equivalent due to 850 // applyPendingStates in the presence of deferred transactions. 851 if (mFreezeGeometryUpdates) { 852 float tx = stateToCommit->active_legacy.transform.tx(); 853 float ty = stateToCommit->active_legacy.transform.ty(); 854 stateToCommit->active_legacy = stateToCommit->requested_legacy; 855 stateToCommit->active_legacy.transform.set(tx, ty); 856 editCurrentState.active_legacy = stateToCommit->active_legacy; 857 } else { 858 editCurrentState.active_legacy = editCurrentState.requested_legacy; 859 stateToCommit->active_legacy = stateToCommit->requested_legacy; 860 } 861 } 862 863 return flags; 864 } 865 866 uint32_t Layer::doTransaction(uint32_t flags) { 867 ATRACE_CALL(); 868 869 if (mLayerDetached) { 870 return flags; 871 } 872 873 if (mChildrenChanged) { 874 flags |= eVisibleRegion; 875 mChildrenChanged = false; 876 } 877 878 pushPendingState(); 879 State c = getCurrentState(); 880 if (!applyPendingStates(&c)) { 881 return flags; 882 } 883 884 flags = doTransactionResize(flags, &c); 885 886 const State& s(getDrawingState()); 887 888 if (getActiveGeometry(c) != getActiveGeometry(s)) { 889 // invalidate and recompute the visible regions if needed 890 flags |= Layer::eVisibleRegion; 891 } 892 893 if (c.sequence != s.sequence) { 894 // invalidate and recompute the visible regions if needed 895 flags |= eVisibleRegion; 896 this->contentDirty = true; 897 898 // we may use linear filtering, if the matrix scales us 899 const uint8_t type = getActiveTransform(c).getType(); 900 mNeedsFiltering = (!getActiveTransform(c).preserveRects() || type >= ui::Transform::SCALE); 901 } 902 903 if (mCurrentState.inputInfoChanged) { 904 flags |= eInputInfoChanged; 905 mCurrentState.inputInfoChanged = false; 906 } 907 908 // Commit the transaction 909 commitTransaction(c); 910 mCurrentState.callbackHandles = {}; 911 return flags; 912 } 913 914 void Layer::commitTransaction(const State& stateToCommit) { 915 mDrawingState = stateToCommit; 916 } 917 918 uint32_t Layer::getTransactionFlags(uint32_t flags) { 919 return mTransactionFlags.fetch_and(~flags) & flags; 920 } 921 922 uint32_t Layer::setTransactionFlags(uint32_t flags) { 923 return mTransactionFlags.fetch_or(flags); 924 } 925 926 bool Layer::setPosition(float x, float y, bool immediate) { 927 if (mCurrentState.requested_legacy.transform.tx() == x && 928 mCurrentState.requested_legacy.transform.ty() == y) 929 return false; 930 mCurrentState.sequence++; 931 932 // We update the requested and active position simultaneously because 933 // we want to apply the position portion of the transform matrix immediately, 934 // but still delay scaling when resizing a SCALING_MODE_FREEZE layer. 935 mCurrentState.requested_legacy.transform.set(x, y); 936 if (immediate && !mFreezeGeometryUpdates) { 937 // Here we directly update the active state 938 // unlike other setters, because we store it within 939 // the transform, but use different latching rules. 940 // b/38182305 941 mCurrentState.active_legacy.transform.set(x, y); 942 } 943 mFreezeGeometryUpdates = mFreezeGeometryUpdates || !immediate; 944 945 mCurrentState.modified = true; 946 setTransactionFlags(eTransactionNeeded); 947 return true; 948 } 949 950 bool Layer::setChildLayer(const sp<Layer>& childLayer, int32_t z) { 951 ssize_t idx = mCurrentChildren.indexOf(childLayer); 952 if (idx < 0) { 953 return false; 954 } 955 if (childLayer->setLayer(z)) { 956 mCurrentChildren.removeAt(idx); 957 mCurrentChildren.add(childLayer); 958 return true; 959 } 960 return false; 961 } 962 963 bool Layer::setChildRelativeLayer(const sp<Layer>& childLayer, 964 const sp<IBinder>& relativeToHandle, int32_t relativeZ) { 965 ssize_t idx = mCurrentChildren.indexOf(childLayer); 966 if (idx < 0) { 967 return false; 968 } 969 if (childLayer->setRelativeLayer(relativeToHandle, relativeZ)) { 970 mCurrentChildren.removeAt(idx); 971 mCurrentChildren.add(childLayer); 972 return true; 973 } 974 return false; 975 } 976 977 bool Layer::setLayer(int32_t z) { 978 if (mCurrentState.z == z && !usingRelativeZ(LayerVector::StateSet::Current)) return false; 979 mCurrentState.sequence++; 980 mCurrentState.z = z; 981 mCurrentState.modified = true; 982 983 // Discard all relative layering. 984 if (mCurrentState.zOrderRelativeOf != nullptr) { 985 sp<Layer> strongRelative = mCurrentState.zOrderRelativeOf.promote(); 986 if (strongRelative != nullptr) { 987 strongRelative->removeZOrderRelative(this); 988 } 989 setZOrderRelativeOf(nullptr); 990 } 991 setTransactionFlags(eTransactionNeeded); 992 return true; 993 } 994 995 void Layer::removeZOrderRelative(const wp<Layer>& relative) { 996 mCurrentState.zOrderRelatives.remove(relative); 997 mCurrentState.sequence++; 998 mCurrentState.modified = true; 999 setTransactionFlags(eTransactionNeeded); 1000 } 1001 1002 void Layer::addZOrderRelative(const wp<Layer>& relative) { 1003 mCurrentState.zOrderRelatives.add(relative); 1004 mCurrentState.modified = true; 1005 mCurrentState.sequence++; 1006 setTransactionFlags(eTransactionNeeded); 1007 } 1008 1009 void Layer::setZOrderRelativeOf(const wp<Layer>& relativeOf) { 1010 mCurrentState.zOrderRelativeOf = relativeOf; 1011 mCurrentState.sequence++; 1012 mCurrentState.modified = true; 1013 setTransactionFlags(eTransactionNeeded); 1014 } 1015 1016 bool Layer::setRelativeLayer(const sp<IBinder>& relativeToHandle, int32_t relativeZ) { 1017 sp<Handle> handle = static_cast<Handle*>(relativeToHandle.get()); 1018 if (handle == nullptr) { 1019 return false; 1020 } 1021 sp<Layer> relative = handle->owner.promote(); 1022 if (relative == nullptr) { 1023 return false; 1024 } 1025 1026 if (mCurrentState.z == relativeZ && usingRelativeZ(LayerVector::StateSet::Current) && 1027 mCurrentState.zOrderRelativeOf == relative) { 1028 return false; 1029 } 1030 1031 mCurrentState.sequence++; 1032 mCurrentState.modified = true; 1033 mCurrentState.z = relativeZ; 1034 1035 auto oldZOrderRelativeOf = mCurrentState.zOrderRelativeOf.promote(); 1036 if (oldZOrderRelativeOf != nullptr) { 1037 oldZOrderRelativeOf->removeZOrderRelative(this); 1038 } 1039 setZOrderRelativeOf(relative); 1040 relative->addZOrderRelative(this); 1041 1042 setTransactionFlags(eTransactionNeeded); 1043 1044 return true; 1045 } 1046 1047 bool Layer::setSize(uint32_t w, uint32_t h) { 1048 if (mCurrentState.requested_legacy.w == w && mCurrentState.requested_legacy.h == h) 1049 return false; 1050 mCurrentState.requested_legacy.w = w; 1051 mCurrentState.requested_legacy.h = h; 1052 mCurrentState.modified = true; 1053 setTransactionFlags(eTransactionNeeded); 1054 1055 // record the new size, from this point on, when the client request 1056 // a buffer, it'll get the new size. 1057 setDefaultBufferSize(mCurrentState.requested_legacy.w, mCurrentState.requested_legacy.h); 1058 return true; 1059 } 1060 bool Layer::setAlpha(float alpha) { 1061 if (mCurrentState.color.a == alpha) return false; 1062 mCurrentState.sequence++; 1063 mCurrentState.color.a = alpha; 1064 mCurrentState.modified = true; 1065 setTransactionFlags(eTransactionNeeded); 1066 return true; 1067 } 1068 1069 bool Layer::setBackgroundColor(const half3& color, float alpha, ui::Dataspace dataspace) { 1070 if (!mCurrentState.bgColorLayer && alpha == 0) { 1071 return false; 1072 } 1073 mCurrentState.sequence++; 1074 mCurrentState.modified = true; 1075 setTransactionFlags(eTransactionNeeded); 1076 1077 if (!mCurrentState.bgColorLayer && alpha != 0) { 1078 // create background color layer if one does not yet exist 1079 uint32_t flags = ISurfaceComposerClient::eFXSurfaceColor; 1080 const String8& name = mName + "BackgroundColorLayer"; 1081 mCurrentState.bgColorLayer = new ColorLayer( 1082 LayerCreationArgs(mFlinger.get(), nullptr, name, 0, 0, flags, LayerMetadata())); 1083 1084 // add to child list 1085 addChild(mCurrentState.bgColorLayer); 1086 mFlinger->mLayersAdded = true; 1087 // set up SF to handle added color layer 1088 if (isRemovedFromCurrentState()) { 1089 mCurrentState.bgColorLayer->onRemovedFromCurrentState(); 1090 } 1091 mFlinger->setTransactionFlags(eTransactionNeeded); 1092 } else if (mCurrentState.bgColorLayer && alpha == 0) { 1093 mCurrentState.bgColorLayer->reparent(nullptr); 1094 mCurrentState.bgColorLayer = nullptr; 1095 return true; 1096 } 1097 1098 mCurrentState.bgColorLayer->setColor(color); 1099 mCurrentState.bgColorLayer->setLayer(std::numeric_limits<int32_t>::min()); 1100 mCurrentState.bgColorLayer->setAlpha(alpha); 1101 mCurrentState.bgColorLayer->setDataspace(dataspace); 1102 1103 return true; 1104 } 1105 1106 bool Layer::setCornerRadius(float cornerRadius) { 1107 if (mCurrentState.cornerRadius == cornerRadius) return false; 1108 1109 mCurrentState.sequence++; 1110 mCurrentState.cornerRadius = cornerRadius; 1111 mCurrentState.modified = true; 1112 setTransactionFlags(eTransactionNeeded); 1113 return true; 1114 } 1115 1116 bool Layer::setMatrix(const layer_state_t::matrix22_t& matrix, 1117 bool allowNonRectPreservingTransforms) { 1118 ui::Transform t; 1119 t.set(matrix.dsdx, matrix.dtdy, matrix.dtdx, matrix.dsdy); 1120 1121 if (!allowNonRectPreservingTransforms && !t.preserveRects()) { 1122 ALOGW("Attempt to set rotation matrix without permission ACCESS_SURFACE_FLINGER ignored"); 1123 return false; 1124 } 1125 mCurrentState.sequence++; 1126 mCurrentState.requested_legacy.transform.set(matrix.dsdx, matrix.dtdy, matrix.dtdx, 1127 matrix.dsdy); 1128 mCurrentState.modified = true; 1129 setTransactionFlags(eTransactionNeeded); 1130 return true; 1131 } 1132 1133 bool Layer::setTransparentRegionHint(const Region& transparent) { 1134 mCurrentState.requestedTransparentRegion_legacy = transparent; 1135 mCurrentState.modified = true; 1136 setTransactionFlags(eTransactionNeeded); 1137 return true; 1138 } 1139 bool Layer::setFlags(uint8_t flags, uint8_t mask) { 1140 const uint32_t newFlags = (mCurrentState.flags & ~mask) | (flags & mask); 1141 if (mCurrentState.flags == newFlags) return false; 1142 mCurrentState.sequence++; 1143 mCurrentState.flags = newFlags; 1144 mCurrentState.modified = true; 1145 setTransactionFlags(eTransactionNeeded); 1146 return true; 1147 } 1148 1149 bool Layer::setCrop_legacy(const Rect& crop, bool immediate) { 1150 if (mCurrentState.requestedCrop_legacy == crop) return false; 1151 mCurrentState.sequence++; 1152 mCurrentState.requestedCrop_legacy = crop; 1153 if (immediate && !mFreezeGeometryUpdates) { 1154 mCurrentState.crop_legacy = crop; 1155 } 1156 mFreezeGeometryUpdates = mFreezeGeometryUpdates || !immediate; 1157 1158 mCurrentState.modified = true; 1159 setTransactionFlags(eTransactionNeeded); 1160 return true; 1161 } 1162 1163 bool Layer::setOverrideScalingMode(int32_t scalingMode) { 1164 if (scalingMode == mOverrideScalingMode) return false; 1165 mOverrideScalingMode = scalingMode; 1166 setTransactionFlags(eTransactionNeeded); 1167 return true; 1168 } 1169 1170 bool Layer::setMetadata(const LayerMetadata& data) { 1171 if (!mCurrentState.metadata.merge(data, true /* eraseEmpty */)) return false; 1172 mCurrentState.sequence++; 1173 mCurrentState.modified = true; 1174 setTransactionFlags(eTransactionNeeded); 1175 return true; 1176 } 1177 1178 bool Layer::setLayerStack(uint32_t layerStack) { 1179 if (mCurrentState.layerStack == layerStack) return false; 1180 mCurrentState.sequence++; 1181 mCurrentState.layerStack = layerStack; 1182 mCurrentState.modified = true; 1183 setTransactionFlags(eTransactionNeeded); 1184 return true; 1185 } 1186 1187 bool Layer::setColorSpaceAgnostic(const bool agnostic) { 1188 if (mCurrentState.colorSpaceAgnostic == agnostic) { 1189 return false; 1190 } 1191 mCurrentState.sequence++; 1192 mCurrentState.colorSpaceAgnostic = agnostic; 1193 mCurrentState.modified = true; 1194 setTransactionFlags(eTransactionNeeded); 1195 return true; 1196 } 1197 1198 uint32_t Layer::getLayerStack() const { 1199 auto p = mDrawingParent.promote(); 1200 if (p == nullptr) { 1201 return getDrawingState().layerStack; 1202 } 1203 return p->getLayerStack(); 1204 } 1205 1206 void Layer::deferTransactionUntil_legacy(const sp<Layer>& barrierLayer, uint64_t frameNumber) { 1207 ATRACE_CALL(); 1208 mCurrentState.barrierLayer_legacy = barrierLayer; 1209 mCurrentState.frameNumber_legacy = frameNumber; 1210 // We don't set eTransactionNeeded, because just receiving a deferral 1211 // request without any other state updates shouldn't actually induce a delay 1212 mCurrentState.modified = true; 1213 pushPendingState(); 1214 mCurrentState.barrierLayer_legacy = nullptr; 1215 mCurrentState.frameNumber_legacy = 0; 1216 mCurrentState.modified = false; 1217 } 1218 1219 void Layer::deferTransactionUntil_legacy(const sp<IBinder>& barrierHandle, uint64_t frameNumber) { 1220 sp<Handle> handle = static_cast<Handle*>(barrierHandle.get()); 1221 deferTransactionUntil_legacy(handle->owner.promote(), frameNumber); 1222 } 1223 1224 // ---------------------------------------------------------------------------- 1225 // pageflip handling... 1226 // ---------------------------------------------------------------------------- 1227 1228 bool Layer::isHiddenByPolicy() const { 1229 const State& s(mDrawingState); 1230 const auto& parent = mDrawingParent.promote(); 1231 if (parent != nullptr && parent->isHiddenByPolicy()) { 1232 return true; 1233 } 1234 if (usingRelativeZ(LayerVector::StateSet::Drawing)) { 1235 auto zOrderRelativeOf = mDrawingState.zOrderRelativeOf.promote(); 1236 if (zOrderRelativeOf != nullptr) { 1237 if (zOrderRelativeOf->isHiddenByPolicy()) { 1238 return true; 1239 } 1240 } 1241 } 1242 return s.flags & layer_state_t::eLayerHidden; 1243 } 1244 1245 uint32_t Layer::getEffectiveUsage(uint32_t usage) const { 1246 // TODO: should we do something special if mSecure is set? 1247 if (mProtectedByApp) { 1248 // need a hardware-protected path to external video sink 1249 usage |= GraphicBuffer::USAGE_PROTECTED; 1250 } 1251 if (mPotentialCursor) { 1252 usage |= GraphicBuffer::USAGE_CURSOR; 1253 } 1254 usage |= GraphicBuffer::USAGE_HW_COMPOSER; 1255 return usage; 1256 } 1257 1258 void Layer::updateTransformHint(const sp<const DisplayDevice>& display) const { 1259 uint32_t orientation = 0; 1260 // Disable setting transform hint if the debug flag is set. 1261 if (!mFlinger->mDebugDisableTransformHint) { 1262 // The transform hint is used to improve performance, but we can 1263 // only have a single transform hint, it cannot 1264 // apply to all displays. 1265 const ui::Transform& planeTransform = display->getTransform(); 1266 orientation = planeTransform.getOrientation(); 1267 if (orientation & ui::Transform::ROT_INVALID) { 1268 orientation = 0; 1269 } 1270 } 1271 setTransformHint(orientation); 1272 } 1273 1274 // ---------------------------------------------------------------------------- 1275 // debugging 1276 // ---------------------------------------------------------------------------- 1277 1278 // TODO(marissaw): add new layer state info to layer debugging 1279 LayerDebugInfo Layer::getLayerDebugInfo() const { 1280 LayerDebugInfo info; 1281 const State& ds = getDrawingState(); 1282 info.mName = getName(); 1283 sp<Layer> parent = getParent(); 1284 info.mParentName = (parent == nullptr ? std::string("none") : parent->getName().string()); 1285 info.mType = std::string(getTypeId()); 1286 info.mTransparentRegion = ds.activeTransparentRegion_legacy; 1287 info.mVisibleRegion = visibleRegion; 1288 info.mSurfaceDamageRegion = surfaceDamageRegion; 1289 info.mLayerStack = getLayerStack(); 1290 info.mX = ds.active_legacy.transform.tx(); 1291 info.mY = ds.active_legacy.transform.ty(); 1292 info.mZ = ds.z; 1293 info.mWidth = ds.active_legacy.w; 1294 info.mHeight = ds.active_legacy.h; 1295 info.mCrop = ds.crop_legacy; 1296 info.mColor = ds.color; 1297 info.mFlags = ds.flags; 1298 info.mPixelFormat = getPixelFormat(); 1299 info.mDataSpace = static_cast<android_dataspace>(mCurrentDataSpace); 1300 info.mMatrix[0][0] = ds.active_legacy.transform[0][0]; 1301 info.mMatrix[0][1] = ds.active_legacy.transform[0][1]; 1302 info.mMatrix[1][0] = ds.active_legacy.transform[1][0]; 1303 info.mMatrix[1][1] = ds.active_legacy.transform[1][1]; 1304 { 1305 sp<const GraphicBuffer> buffer = mActiveBuffer; 1306 if (buffer != 0) { 1307 info.mActiveBufferWidth = buffer->getWidth(); 1308 info.mActiveBufferHeight = buffer->getHeight(); 1309 info.mActiveBufferStride = buffer->getStride(); 1310 info.mActiveBufferFormat = buffer->format; 1311 } else { 1312 info.mActiveBufferWidth = 0; 1313 info.mActiveBufferHeight = 0; 1314 info.mActiveBufferStride = 0; 1315 info.mActiveBufferFormat = 0; 1316 } 1317 } 1318 info.mNumQueuedFrames = getQueuedFrameCount(); 1319 info.mRefreshPending = isBufferLatched(); 1320 info.mIsOpaque = isOpaque(ds); 1321 info.mContentDirty = contentDirty; 1322 return info; 1323 } 1324 1325 void Layer::miniDumpHeader(std::string& result) { 1326 result.append("-------------------------------"); 1327 result.append("-------------------------------"); 1328 result.append("-----------------------------\n"); 1329 result.append(" Layer name\n"); 1330 result.append(" Z | "); 1331 result.append(" Window Type | "); 1332 result.append(" Comp Type | "); 1333 result.append(" Transform | "); 1334 result.append(" Disp Frame (LTRB) | "); 1335 result.append(" Source Crop (LTRB)\n"); 1336 result.append("-------------------------------"); 1337 result.append("-------------------------------"); 1338 result.append("-----------------------------\n"); 1339 } 1340 1341 void Layer::miniDump(std::string& result, const sp<DisplayDevice>& displayDevice) const { 1342 auto outputLayer = findOutputLayerForDisplay(displayDevice); 1343 if (!outputLayer) { 1344 return; 1345 } 1346 1347 std::string name; 1348 if (mName.length() > 77) { 1349 std::string shortened; 1350 shortened.append(mName.string(), 36); 1351 shortened.append("[...]"); 1352 shortened.append(mName.string() + (mName.length() - 36), 36); 1353 name = shortened; 1354 } else { 1355 name = std::string(mName.string(), mName.size()); 1356 } 1357 1358 StringAppendF(&result, " %s\n", name.c_str()); 1359 1360 const State& layerState(getDrawingState()); 1361 const auto& compositionState = outputLayer->getState(); 1362 1363 if (layerState.zOrderRelativeOf != nullptr || mDrawingParent != nullptr) { 1364 StringAppendF(&result, " rel %6d | ", layerState.z); 1365 } else { 1366 StringAppendF(&result, " %10d | ", layerState.z); 1367 } 1368 StringAppendF(&result, " %10d | ", mWindowType); 1369 StringAppendF(&result, "%10s | ", toString(getCompositionType(displayDevice)).c_str()); 1370 StringAppendF(&result, "%10s | ", 1371 toString(getCompositionLayer() ? compositionState.bufferTransform 1372 : static_cast<Hwc2::Transform>(0)) 1373 .c_str()); 1374 const Rect& frame = compositionState.displayFrame; 1375 StringAppendF(&result, "%4d %4d %4d %4d | ", frame.left, frame.top, frame.right, frame.bottom); 1376 const FloatRect& crop = compositionState.sourceCrop; 1377 StringAppendF(&result, "%6.1f %6.1f %6.1f %6.1f\n", crop.left, crop.top, crop.right, 1378 crop.bottom); 1379 1380 result.append("- - - - - - - - - - - - - - - -"); 1381 result.append("- - - - - - - - - - - - - - - -"); 1382 result.append("- - - - - - - - - - - - - - -\n"); 1383 } 1384 1385 void Layer::dumpFrameStats(std::string& result) const { 1386 mFrameTracker.dumpStats(result); 1387 } 1388 1389 void Layer::clearFrameStats() { 1390 mFrameTracker.clearStats(); 1391 } 1392 1393 void Layer::logFrameStats() { 1394 mFrameTracker.logAndResetStats(mName); 1395 } 1396 1397 void Layer::getFrameStats(FrameStats* outStats) const { 1398 mFrameTracker.getStats(outStats); 1399 } 1400 1401 void Layer::dumpFrameEvents(std::string& result) { 1402 StringAppendF(&result, "- Layer %s (%s, %p)\n", getName().string(), getTypeId(), this); 1403 Mutex::Autolock lock(mFrameEventHistoryMutex); 1404 mFrameEventHistory.checkFencesForCompletion(); 1405 mFrameEventHistory.dump(result); 1406 } 1407 1408 void Layer::onDisconnect() { 1409 Mutex::Autolock lock(mFrameEventHistoryMutex); 1410 mFrameEventHistory.onDisconnect(); 1411 mFlinger->mTimeStats->onDestroy(getSequence()); 1412 } 1413 1414 void Layer::addAndGetFrameTimestamps(const NewFrameEventsEntry* newTimestamps, 1415 FrameEventHistoryDelta* outDelta) { 1416 if (newTimestamps) { 1417 mFlinger->mTimeStats->setPostTime(getSequence(), newTimestamps->frameNumber, 1418 getName().c_str(), newTimestamps->postedTime); 1419 } 1420 1421 Mutex::Autolock lock(mFrameEventHistoryMutex); 1422 if (newTimestamps) { 1423 // If there are any unsignaled fences in the aquire timeline at this 1424 // point, the previously queued frame hasn't been latched yet. Go ahead 1425 // and try to get the signal time here so the syscall is taken out of 1426 // the main thread's critical path. 1427 mAcquireTimeline.updateSignalTimes(); 1428 // Push the new fence after updating since it's likely still pending. 1429 mAcquireTimeline.push(newTimestamps->acquireFence); 1430 mFrameEventHistory.addQueue(*newTimestamps); 1431 } 1432 1433 if (outDelta) { 1434 mFrameEventHistory.getAndResetDelta(outDelta); 1435 } 1436 } 1437 1438 size_t Layer::getChildrenCount() const { 1439 size_t count = 0; 1440 for (const sp<Layer>& child : mCurrentChildren) { 1441 count += 1 + child->getChildrenCount(); 1442 } 1443 return count; 1444 } 1445 1446 void Layer::addChild(const sp<Layer>& layer) { 1447 mChildrenChanged = true; 1448 setTransactionFlags(eTransactionNeeded); 1449 1450 mCurrentChildren.add(layer); 1451 layer->setParent(this); 1452 } 1453 1454 ssize_t Layer::removeChild(const sp<Layer>& layer) { 1455 mChildrenChanged = true; 1456 setTransactionFlags(eTransactionNeeded); 1457 1458 layer->setParent(nullptr); 1459 return mCurrentChildren.remove(layer); 1460 } 1461 1462 bool Layer::reparentChildren(const sp<IBinder>& newParentHandle) { 1463 sp<Handle> handle = nullptr; 1464 sp<Layer> newParent = nullptr; 1465 if (newParentHandle == nullptr) { 1466 return false; 1467 } 1468 handle = static_cast<Handle*>(newParentHandle.get()); 1469 newParent = handle->owner.promote(); 1470 if (newParent == nullptr) { 1471 ALOGE("Unable to promote Layer handle"); 1472 return false; 1473 } 1474 1475 if (attachChildren()) { 1476 setTransactionFlags(eTransactionNeeded); 1477 } 1478 for (const sp<Layer>& child : mCurrentChildren) { 1479 newParent->addChild(child); 1480 } 1481 mCurrentChildren.clear(); 1482 1483 return true; 1484 } 1485 1486 void Layer::setChildrenDrawingParent(const sp<Layer>& newParent) { 1487 for (const sp<Layer>& child : mDrawingChildren) { 1488 child->mDrawingParent = newParent; 1489 child->computeBounds(newParent->mBounds, 1490 newParent->getTransformWithScale( 1491 newParent->getBufferScaleTransform())); 1492 } 1493 } 1494 1495 bool Layer::reparent(const sp<IBinder>& newParentHandle) { 1496 bool callSetTransactionFlags = false; 1497 1498 // While layers are detached, we allow most operations 1499 // and simply halt performing the actual transaction. However 1500 // for reparent != null we would enter the mRemovedFromCurrentState 1501 // state, regardless of whether doTransaction was called, and 1502 // so we need to prevent the update here. 1503 if (mLayerDetached && newParentHandle == nullptr) { 1504 return false; 1505 } 1506 1507 sp<Layer> newParent; 1508 if (newParentHandle != nullptr) { 1509 auto handle = static_cast<Handle*>(newParentHandle.get()); 1510 newParent = handle->owner.promote(); 1511 if (newParent == nullptr) { 1512 ALOGE("Unable to promote Layer handle"); 1513 return false; 1514 } 1515 if (newParent == this) { 1516 ALOGE("Invalid attempt to reparent Layer (%s) to itself", getName().c_str()); 1517 return false; 1518 } 1519 } 1520 1521 sp<Layer> parent = getParent(); 1522 if (parent != nullptr) { 1523 parent->removeChild(this); 1524 } 1525 1526 if (newParentHandle != nullptr) { 1527 newParent->addChild(this); 1528 if (!newParent->isRemovedFromCurrentState()) { 1529 addToCurrentState(); 1530 } else { 1531 onRemovedFromCurrentState(); 1532 } 1533 1534 if (mLayerDetached) { 1535 mLayerDetached = false; 1536 callSetTransactionFlags = true; 1537 } 1538 } else { 1539 onRemovedFromCurrentState(); 1540 } 1541 1542 if (callSetTransactionFlags || attachChildren()) { 1543 setTransactionFlags(eTransactionNeeded); 1544 } 1545 return true; 1546 } 1547 1548 bool Layer::detachChildren() { 1549 for (const sp<Layer>& child : mCurrentChildren) { 1550 sp<Client> parentClient = mClientRef.promote(); 1551 sp<Client> client(child->mClientRef.promote()); 1552 if (client != nullptr && parentClient != client) { 1553 child->mLayerDetached = true; 1554 child->detachChildren(); 1555 child->removeRemoteSyncPoints(); 1556 } 1557 } 1558 1559 return true; 1560 } 1561 1562 bool Layer::attachChildren() { 1563 bool changed = false; 1564 for (const sp<Layer>& child : mCurrentChildren) { 1565 sp<Client> parentClient = mClientRef.promote(); 1566 sp<Client> client(child->mClientRef.promote()); 1567 if (client != nullptr && parentClient != client) { 1568 if (child->mLayerDetached) { 1569 child->mLayerDetached = false; 1570 changed = true; 1571 } 1572 changed |= child->attachChildren(); 1573 } 1574 } 1575 1576 return changed; 1577 } 1578 1579 bool Layer::setColorTransform(const mat4& matrix) { 1580 static const mat4 identityMatrix = mat4(); 1581 1582 if (mCurrentState.colorTransform == matrix) { 1583 return false; 1584 } 1585 ++mCurrentState.sequence; 1586 mCurrentState.colorTransform = matrix; 1587 mCurrentState.hasColorTransform = matrix != identityMatrix; 1588 mCurrentState.modified = true; 1589 setTransactionFlags(eTransactionNeeded); 1590 return true; 1591 } 1592 1593 mat4 Layer::getColorTransform() const { 1594 mat4 colorTransform = mat4(getDrawingState().colorTransform); 1595 if (sp<Layer> parent = mDrawingParent.promote(); parent != nullptr) { 1596 colorTransform = parent->getColorTransform() * colorTransform; 1597 } 1598 return colorTransform; 1599 } 1600 1601 bool Layer::hasColorTransform() const { 1602 bool hasColorTransform = getDrawingState().hasColorTransform; 1603 if (sp<Layer> parent = mDrawingParent.promote(); parent != nullptr) { 1604 hasColorTransform = hasColorTransform || parent->hasColorTransform(); 1605 } 1606 return hasColorTransform; 1607 } 1608 1609 bool Layer::isLegacyDataSpace() const { 1610 // return true when no higher bits are set 1611 return !(mCurrentDataSpace & (ui::Dataspace::STANDARD_MASK | 1612 ui::Dataspace::TRANSFER_MASK | ui::Dataspace::RANGE_MASK)); 1613 } 1614 1615 void Layer::setParent(const sp<Layer>& layer) { 1616 mCurrentParent = layer; 1617 } 1618 1619 int32_t Layer::getZ() const { 1620 return mDrawingState.z; 1621 } 1622 1623 bool Layer::usingRelativeZ(LayerVector::StateSet stateSet) const { 1624 const bool useDrawing = stateSet == LayerVector::StateSet::Drawing; 1625 const State& state = useDrawing ? mDrawingState : mCurrentState; 1626 return state.zOrderRelativeOf != nullptr; 1627 } 1628 1629 __attribute__((no_sanitize("unsigned-integer-overflow"))) LayerVector Layer::makeTraversalList( 1630 LayerVector::StateSet stateSet, bool* outSkipRelativeZUsers) { 1631 LOG_ALWAYS_FATAL_IF(stateSet == LayerVector::StateSet::Invalid, 1632 "makeTraversalList received invalid stateSet"); 1633 const bool useDrawing = stateSet == LayerVector::StateSet::Drawing; 1634 const LayerVector& children = useDrawing ? mDrawingChildren : mCurrentChildren; 1635 const State& state = useDrawing ? mDrawingState : mCurrentState; 1636 1637 if (state.zOrderRelatives.size() == 0) { 1638 *outSkipRelativeZUsers = true; 1639 return children; 1640 } 1641 1642 LayerVector traverse(stateSet); 1643 for (const wp<Layer>& weakRelative : state.zOrderRelatives) { 1644 sp<Layer> strongRelative = weakRelative.promote(); 1645 if (strongRelative != nullptr) { 1646 traverse.add(strongRelative); 1647 } 1648 } 1649 1650 for (const sp<Layer>& child : children) { 1651 const State& childState = useDrawing ? child->mDrawingState : child->mCurrentState; 1652 if (childState.zOrderRelativeOf != nullptr) { 1653 continue; 1654 } 1655 traverse.add(child); 1656 } 1657 1658 return traverse; 1659 } 1660 1661 /** 1662 * Negatively signed relatives are before 'this' in Z-order. 1663 */ 1664 void Layer::traverseInZOrder(LayerVector::StateSet stateSet, const LayerVector::Visitor& visitor) { 1665 // In the case we have other layers who are using a relative Z to us, makeTraversalList will 1666 // produce a new list for traversing, including our relatives, and not including our children 1667 // who are relatives of another surface. In the case that there are no relative Z, 1668 // makeTraversalList returns our children directly to avoid significant overhead. 1669 // However in this case we need to take the responsibility for filtering children which 1670 // are relatives of another surface here. 1671 bool skipRelativeZUsers = false; 1672 const LayerVector list = makeTraversalList(stateSet, &skipRelativeZUsers); 1673 1674 size_t i = 0; 1675 for (; i < list.size(); i++) { 1676 const auto& relative = list[i]; 1677 if (skipRelativeZUsers && relative->usingRelativeZ(stateSet)) { 1678 continue; 1679 } 1680 1681 if (relative->getZ() >= 0) { 1682 break; 1683 } 1684 relative->traverseInZOrder(stateSet, visitor); 1685 } 1686 1687 visitor(this); 1688 for (; i < list.size(); i++) { 1689 const auto& relative = list[i]; 1690 1691 if (skipRelativeZUsers && relative->usingRelativeZ(stateSet)) { 1692 continue; 1693 } 1694 relative->traverseInZOrder(stateSet, visitor); 1695 } 1696 } 1697 1698 /** 1699 * Positively signed relatives are before 'this' in reverse Z-order. 1700 */ 1701 void Layer::traverseInReverseZOrder(LayerVector::StateSet stateSet, 1702 const LayerVector::Visitor& visitor) { 1703 // See traverseInZOrder for documentation. 1704 bool skipRelativeZUsers = false; 1705 LayerVector list = makeTraversalList(stateSet, &skipRelativeZUsers); 1706 1707 int32_t i = 0; 1708 for (i = int32_t(list.size()) - 1; i >= 0; i--) { 1709 const auto& relative = list[i]; 1710 1711 if (skipRelativeZUsers && relative->usingRelativeZ(stateSet)) { 1712 continue; 1713 } 1714 1715 if (relative->getZ() < 0) { 1716 break; 1717 } 1718 relative->traverseInReverseZOrder(stateSet, visitor); 1719 } 1720 visitor(this); 1721 for (; i >= 0; i--) { 1722 const auto& relative = list[i]; 1723 1724 if (skipRelativeZUsers && relative->usingRelativeZ(stateSet)) { 1725 continue; 1726 } 1727 1728 relative->traverseInReverseZOrder(stateSet, visitor); 1729 } 1730 } 1731 1732 LayerVector Layer::makeChildrenTraversalList(LayerVector::StateSet stateSet, 1733 const std::vector<Layer*>& layersInTree) { 1734 LOG_ALWAYS_FATAL_IF(stateSet == LayerVector::StateSet::Invalid, 1735 "makeTraversalList received invalid stateSet"); 1736 const bool useDrawing = stateSet == LayerVector::StateSet::Drawing; 1737 const LayerVector& children = useDrawing ? mDrawingChildren : mCurrentChildren; 1738 const State& state = useDrawing ? mDrawingState : mCurrentState; 1739 1740 LayerVector traverse(stateSet); 1741 for (const wp<Layer>& weakRelative : state.zOrderRelatives) { 1742 sp<Layer> strongRelative = weakRelative.promote(); 1743 // Only add relative layers that are also descendents of the top most parent of the tree. 1744 // If a relative layer is not a descendent, then it should be ignored. 1745 if (std::binary_search(layersInTree.begin(), layersInTree.end(), strongRelative.get())) { 1746 traverse.add(strongRelative); 1747 } 1748 } 1749 1750 for (const sp<Layer>& child : children) { 1751 const State& childState = useDrawing ? child->mDrawingState : child->mCurrentState; 1752 // If a layer has a relativeOf layer, only ignore if the layer it's relative to is a 1753 // descendent of the top most parent of the tree. If it's not a descendent, then just add 1754 // the child here since it won't be added later as a relative. 1755 if (std::binary_search(layersInTree.begin(), layersInTree.end(), 1756 childState.zOrderRelativeOf.promote().get())) { 1757 continue; 1758 } 1759 traverse.add(child); 1760 } 1761 1762 return traverse; 1763 } 1764 1765 void Layer::traverseChildrenInZOrderInner(const std::vector<Layer*>& layersInTree, 1766 LayerVector::StateSet stateSet, 1767 const LayerVector::Visitor& visitor) { 1768 const LayerVector list = makeChildrenTraversalList(stateSet, layersInTree); 1769 1770 size_t i = 0; 1771 for (; i < list.size(); i++) { 1772 const auto& relative = list[i]; 1773 if (relative->getZ() >= 0) { 1774 break; 1775 } 1776 relative->traverseChildrenInZOrderInner(layersInTree, stateSet, visitor); 1777 } 1778 1779 visitor(this); 1780 for (; i < list.size(); i++) { 1781 const auto& relative = list[i]; 1782 relative->traverseChildrenInZOrderInner(layersInTree, stateSet, visitor); 1783 } 1784 } 1785 1786 std::vector<Layer*> Layer::getLayersInTree(LayerVector::StateSet stateSet) { 1787 const bool useDrawing = stateSet == LayerVector::StateSet::Drawing; 1788 const LayerVector& children = useDrawing ? mDrawingChildren : mCurrentChildren; 1789 1790 std::vector<Layer*> layersInTree = {this}; 1791 for (size_t i = 0; i < children.size(); i++) { 1792 const auto& child = children[i]; 1793 std::vector<Layer*> childLayers = child->getLayersInTree(stateSet); 1794 layersInTree.insert(layersInTree.end(), childLayers.cbegin(), childLayers.cend()); 1795 } 1796 1797 return layersInTree; 1798 } 1799 1800 void Layer::traverseChildrenInZOrder(LayerVector::StateSet stateSet, 1801 const LayerVector::Visitor& visitor) { 1802 std::vector<Layer*> layersInTree = getLayersInTree(stateSet); 1803 std::sort(layersInTree.begin(), layersInTree.end()); 1804 traverseChildrenInZOrderInner(layersInTree, stateSet, visitor); 1805 } 1806 1807 ui::Transform Layer::getTransform() const { 1808 return mEffectiveTransform; 1809 } 1810 1811 half Layer::getAlpha() const { 1812 const auto& p = mDrawingParent.promote(); 1813 1814 half parentAlpha = (p != nullptr) ? p->getAlpha() : 1.0_hf; 1815 return parentAlpha * getDrawingState().color.a; 1816 } 1817 1818 half4 Layer::getColor() const { 1819 const half4 color(getDrawingState().color); 1820 return half4(color.r, color.g, color.b, getAlpha()); 1821 } 1822 1823 Layer::RoundedCornerState Layer::getRoundedCornerState() const { 1824 const auto& p = mDrawingParent.promote(); 1825 if (p != nullptr) { 1826 RoundedCornerState parentState = p->getRoundedCornerState(); 1827 if (parentState.radius > 0) { 1828 ui::Transform t = getActiveTransform(getDrawingState()); 1829 t = t.inverse(); 1830 parentState.cropRect = t.transform(parentState.cropRect); 1831 // The rounded corners shader only accepts 1 corner radius for performance reasons, 1832 // but a transform matrix can define horizontal and vertical scales. 1833 // Let's take the average between both of them and pass into the shader, practically we 1834 // never do this type of transformation on windows anyway. 1835 parentState.radius *= (t[0][0] + t[1][1]) / 2.0f; 1836 return parentState; 1837 } 1838 } 1839 const float radius = getDrawingState().cornerRadius; 1840 return radius > 0 && getCrop(getDrawingState()).isValid() 1841 ? RoundedCornerState(getCrop(getDrawingState()).toFloatRect(), radius) 1842 : RoundedCornerState(); 1843 } 1844 1845 void Layer::commitChildList() { 1846 for (size_t i = 0; i < mCurrentChildren.size(); i++) { 1847 const auto& child = mCurrentChildren[i]; 1848 child->commitChildList(); 1849 } 1850 mDrawingChildren = mCurrentChildren; 1851 mDrawingParent = mCurrentParent; 1852 } 1853 1854 static wp<Layer> extractLayerFromBinder(const wp<IBinder>& weakBinderHandle) { 1855 if (weakBinderHandle == nullptr) { 1856 return nullptr; 1857 } 1858 sp<IBinder> binderHandle = weakBinderHandle.promote(); 1859 if (binderHandle == nullptr) { 1860 return nullptr; 1861 } 1862 sp<Layer::Handle> handle = static_cast<Layer::Handle*>(binderHandle.get()); 1863 if (handle == nullptr) { 1864 return nullptr; 1865 } 1866 return handle->owner; 1867 } 1868 1869 void Layer::setInputInfo(const InputWindowInfo& info) { 1870 mCurrentState.inputInfo = info; 1871 mCurrentState.touchableRegionCrop = extractLayerFromBinder(info.touchableRegionCropHandle); 1872 mCurrentState.modified = true; 1873 mCurrentState.inputInfoChanged = true; 1874 setTransactionFlags(eTransactionNeeded); 1875 } 1876 1877 void Layer::writeToProto(LayerProto* layerInfo, LayerVector::StateSet stateSet, 1878 uint32_t traceFlags) { 1879 const bool useDrawing = stateSet == LayerVector::StateSet::Drawing; 1880 const LayerVector& children = useDrawing ? mDrawingChildren : mCurrentChildren; 1881 const State& state = useDrawing ? mDrawingState : mCurrentState; 1882 1883 ui::Transform requestedTransform = state.active_legacy.transform; 1884 ui::Transform transform = getTransform(); 1885 1886 if (traceFlags & SurfaceTracing::TRACE_CRITICAL) { 1887 layerInfo->set_id(sequence); 1888 layerInfo->set_name(getName().c_str()); 1889 layerInfo->set_type(String8(getTypeId())); 1890 1891 for (const auto& child : children) { 1892 layerInfo->add_children(child->sequence); 1893 } 1894 1895 for (const wp<Layer>& weakRelative : state.zOrderRelatives) { 1896 sp<Layer> strongRelative = weakRelative.promote(); 1897 if (strongRelative != nullptr) { 1898 layerInfo->add_relatives(strongRelative->sequence); 1899 } 1900 } 1901 1902 LayerProtoHelper::writeToProto(state.activeTransparentRegion_legacy, 1903 [&]() { return layerInfo->mutable_transparent_region(); }); 1904 LayerProtoHelper::writeToProto(visibleRegion, 1905 [&]() { return layerInfo->mutable_visible_region(); }); 1906 LayerProtoHelper::writeToProto(surfaceDamageRegion, 1907 [&]() { return layerInfo->mutable_damage_region(); }); 1908 1909 layerInfo->set_layer_stack(getLayerStack()); 1910 layerInfo->set_z(state.z); 1911 1912 LayerProtoHelper::writePositionToProto(transform.tx(), transform.ty(), 1913 [&]() { return layerInfo->mutable_position(); }); 1914 1915 LayerProtoHelper::writePositionToProto(requestedTransform.tx(), requestedTransform.ty(), 1916 [&]() { 1917 return layerInfo->mutable_requested_position(); 1918 }); 1919 1920 LayerProtoHelper::writeSizeToProto(state.active_legacy.w, state.active_legacy.h, 1921 [&]() { return layerInfo->mutable_size(); }); 1922 1923 LayerProtoHelper::writeToProto(state.crop_legacy, 1924 [&]() { return layerInfo->mutable_crop(); }); 1925 layerInfo->set_corner_radius(getRoundedCornerState().radius); 1926 1927 layerInfo->set_is_opaque(isOpaque(state)); 1928 layerInfo->set_invalidate(contentDirty); 1929 layerInfo->set_is_protected(isProtected()); 1930 1931 // XXX (b/79210409) mCurrentDataSpace is not protected 1932 layerInfo->set_dataspace( 1933 dataspaceDetails(static_cast<android_dataspace>(mCurrentDataSpace))); 1934 1935 layerInfo->set_pixel_format(decodePixelFormat(getPixelFormat())); 1936 LayerProtoHelper::writeToProto(getColor(), [&]() { return layerInfo->mutable_color(); }); 1937 LayerProtoHelper::writeToProto(state.color, 1938 [&]() { return layerInfo->mutable_requested_color(); }); 1939 layerInfo->set_flags(state.flags); 1940 1941 LayerProtoHelper::writeToProto(transform, layerInfo->mutable_transform()); 1942 LayerProtoHelper::writeToProto(requestedTransform, 1943 layerInfo->mutable_requested_transform()); 1944 1945 auto parent = useDrawing ? mDrawingParent.promote() : mCurrentParent.promote(); 1946 if (parent != nullptr) { 1947 layerInfo->set_parent(parent->sequence); 1948 } else { 1949 layerInfo->set_parent(-1); 1950 } 1951 1952 auto zOrderRelativeOf = state.zOrderRelativeOf.promote(); 1953 if (zOrderRelativeOf != nullptr) { 1954 layerInfo->set_z_order_relative_of(zOrderRelativeOf->sequence); 1955 } else { 1956 layerInfo->set_z_order_relative_of(-1); 1957 } 1958 1959 auto buffer = mActiveBuffer; 1960 if (buffer != nullptr) { 1961 LayerProtoHelper::writeToProto(buffer, 1962 [&]() { return layerInfo->mutable_active_buffer(); }); 1963 LayerProtoHelper::writeToProto(ui::Transform(mCurrentTransform), 1964 layerInfo->mutable_buffer_transform()); 1965 } 1966 1967 layerInfo->set_queued_frames(getQueuedFrameCount()); 1968 layerInfo->set_refresh_pending(isBufferLatched()); 1969 layerInfo->set_curr_frame(mCurrentFrameNumber); 1970 layerInfo->set_effective_scaling_mode(getEffectiveScalingMode()); 1971 1972 for (const auto& pendingState : mPendingStates) { 1973 auto barrierLayer = pendingState.barrierLayer_legacy.promote(); 1974 if (barrierLayer != nullptr) { 1975 BarrierLayerProto* barrierLayerProto = layerInfo->add_barrier_layer(); 1976 barrierLayerProto->set_id(barrierLayer->sequence); 1977 barrierLayerProto->set_frame_number(pendingState.frameNumber_legacy); 1978 } 1979 } 1980 LayerProtoHelper::writeToProto(mBounds, [&]() { return layerInfo->mutable_bounds(); }); 1981 } 1982 1983 if (traceFlags & SurfaceTracing::TRACE_INPUT) { 1984 LayerProtoHelper::writeToProto(state.inputInfo, state.touchableRegionCrop, 1985 [&]() { return layerInfo->mutable_input_window_info(); }); 1986 } 1987 1988 if (traceFlags & SurfaceTracing::TRACE_EXTRA) { 1989 auto protoMap = layerInfo->mutable_metadata(); 1990 for (const auto& entry : state.metadata.mMap) { 1991 (*protoMap)[entry.first] = std::string(entry.second.cbegin(), entry.second.cend()); 1992 } 1993 LayerProtoHelper::writeToProto(mEffectiveTransform, 1994 layerInfo->mutable_effective_transform()); 1995 LayerProtoHelper::writeToProto(mSourceBounds, 1996 [&]() { return layerInfo->mutable_source_bounds(); }); 1997 LayerProtoHelper::writeToProto(mScreenBounds, 1998 [&]() { return layerInfo->mutable_screen_bounds(); }); 1999 } 2000 } 2001 2002 void Layer::writeToProto(LayerProto* layerInfo, const sp<DisplayDevice>& displayDevice, 2003 uint32_t traceFlags) { 2004 auto outputLayer = findOutputLayerForDisplay(displayDevice); 2005 if (!outputLayer) { 2006 return; 2007 } 2008 2009 writeToProto(layerInfo, LayerVector::StateSet::Drawing, traceFlags); 2010 2011 const auto& compositionState = outputLayer->getState(); 2012 2013 const Rect& frame = compositionState.displayFrame; 2014 LayerProtoHelper::writeToProto(frame, [&]() { return layerInfo->mutable_hwc_frame(); }); 2015 2016 const FloatRect& crop = compositionState.sourceCrop; 2017 LayerProtoHelper::writeToProto(crop, [&]() { return layerInfo->mutable_hwc_crop(); }); 2018 2019 const int32_t transform = 2020 getCompositionLayer() ? static_cast<int32_t>(compositionState.bufferTransform) : 0; 2021 layerInfo->set_hwc_transform(transform); 2022 2023 const int32_t compositionType = 2024 static_cast<int32_t>(compositionState.hwc ? (*compositionState.hwc).hwcCompositionType 2025 : Hwc2::IComposerClient::Composition::CLIENT); 2026 layerInfo->set_hwc_composition_type(compositionType); 2027 2028 if (std::strcmp(getTypeId(), "BufferLayer") == 0 && 2029 static_cast<BufferLayer*>(this)->isProtected()) { 2030 layerInfo->set_is_protected(true); 2031 } else { 2032 layerInfo->set_is_protected(false); 2033 } 2034 } 2035 2036 bool Layer::isRemovedFromCurrentState() const { 2037 return mRemovedFromCurrentState; 2038 } 2039 2040 InputWindowInfo Layer::fillInputInfo() { 2041 InputWindowInfo info = mDrawingState.inputInfo; 2042 2043 if (info.displayId == ADISPLAY_ID_NONE) { 2044 info.displayId = mDrawingState.layerStack; 2045 } 2046 2047 ui::Transform t = getTransform(); 2048 const float xScale = t.sx(); 2049 const float yScale = t.sy(); 2050 float xSurfaceInset = info.surfaceInset; 2051 float ySurfaceInset = info.surfaceInset; 2052 if (xScale != 1.0f || yScale != 1.0f) { 2053 info.windowXScale *= 1.0f / xScale; 2054 info.windowYScale *= 1.0f / yScale; 2055 info.touchableRegion.scaleSelf(xScale, yScale); 2056 xSurfaceInset *= xScale; 2057 ySurfaceInset *= yScale; 2058 } 2059 2060 // Transform layer size to screen space and inset it by surface insets. 2061 // If this is a portal window, set the touchableRegion to the layerBounds. 2062 Rect layerBounds = info.portalToDisplayId == ADISPLAY_ID_NONE 2063 ? getBufferSize(getDrawingState()) 2064 : info.touchableRegion.getBounds(); 2065 if (!layerBounds.isValid()) { 2066 layerBounds = getCroppedBufferSize(getDrawingState()); 2067 } 2068 layerBounds = t.transform(layerBounds); 2069 layerBounds.inset(xSurfaceInset, ySurfaceInset, xSurfaceInset, ySurfaceInset); 2070 2071 // Input coordinate should match the layer bounds. 2072 info.frameLeft = layerBounds.left; 2073 info.frameTop = layerBounds.top; 2074 info.frameRight = layerBounds.right; 2075 info.frameBottom = layerBounds.bottom; 2076 2077 // Position the touchable region relative to frame screen location and restrict it to frame 2078 // bounds. 2079 info.touchableRegion = info.touchableRegion.translate(info.frameLeft, info.frameTop); 2080 info.visible = canReceiveInput(); 2081 2082 auto cropLayer = mDrawingState.touchableRegionCrop.promote(); 2083 if (info.replaceTouchableRegionWithCrop) { 2084 if (cropLayer == nullptr) { 2085 info.touchableRegion = Region(Rect{mScreenBounds}); 2086 } else { 2087 info.touchableRegion = Region(Rect{cropLayer->mScreenBounds}); 2088 } 2089 } else if (cropLayer != nullptr) { 2090 info.touchableRegion = info.touchableRegion.intersect(Rect{cropLayer->mScreenBounds}); 2091 } 2092 2093 return info; 2094 } 2095 2096 bool Layer::hasInput() const { 2097 return mDrawingState.inputInfo.token != nullptr; 2098 } 2099 2100 std::shared_ptr<compositionengine::Layer> Layer::getCompositionLayer() const { 2101 return nullptr; 2102 } 2103 2104 bool Layer::canReceiveInput() const { 2105 return isVisible(); 2106 } 2107 2108 compositionengine::OutputLayer* Layer::findOutputLayerForDisplay( 2109 const sp<const DisplayDevice>& display) const { 2110 return display->getCompositionDisplay()->getOutputLayerForLayer(getCompositionLayer().get()); 2111 } 2112 2113 // --------------------------------------------------------------------------- 2114 2115 }; // namespace android 2116 2117 #if defined(__gl_h_) 2118 #error "don't include gl/gl.h in this file" 2119 #endif 2120 2121 #if defined(__gl2_h_) 2122 #error "don't include gl2/gl2.h in this file" 2123 #endif 2124