Home | History | Annotate | Download | only in qemu
      1 /*
      2  * defines common to all virtual CPUs
      3  *
      4  *  Copyright (c) 2003 Fabrice Bellard
      5  *
      6  * This library is free software; you can redistribute it and/or
      7  * modify it under the terms of the GNU Lesser General Public
      8  * License as published by the Free Software Foundation; either
      9  * version 2 of the License, or (at your option) any later version.
     10  *
     11  * This library is distributed in the hope that it will be useful,
     12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
     13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     14  * Lesser General Public License for more details.
     15  *
     16  * You should have received a copy of the GNU Lesser General Public
     17  * License along with this library; if not, write to the Free Software
     18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA  02110-1301 USA
     19  */
     20 #ifndef CPU_ALL_H
     21 #define CPU_ALL_H
     22 
     23 #include "qemu-common.h"
     24 #include "cpu-common.h"
     25 
     26 /* some important defines:
     27  *
     28  * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
     29  * memory accesses.
     30  *
     31  * WORDS_BIGENDIAN : if defined, the host cpu is big endian and
     32  * otherwise little endian.
     33  *
     34  * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
     35  *
     36  * TARGET_WORDS_BIGENDIAN : same for target cpu
     37  */
     38 
     39 #include "softfloat.h"
     40 
     41 #if defined(WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
     42 #define BSWAP_NEEDED
     43 #endif
     44 
     45 #ifdef BSWAP_NEEDED
     46 
     47 static inline uint16_t tswap16(uint16_t s)
     48 {
     49     return bswap16(s);
     50 }
     51 
     52 static inline uint32_t tswap32(uint32_t s)
     53 {
     54     return bswap32(s);
     55 }
     56 
     57 static inline uint64_t tswap64(uint64_t s)
     58 {
     59     return bswap64(s);
     60 }
     61 
     62 static inline void tswap16s(uint16_t *s)
     63 {
     64     *s = bswap16(*s);
     65 }
     66 
     67 static inline void tswap32s(uint32_t *s)
     68 {
     69     *s = bswap32(*s);
     70 }
     71 
     72 static inline void tswap64s(uint64_t *s)
     73 {
     74     *s = bswap64(*s);
     75 }
     76 
     77 #else
     78 
     79 static inline uint16_t tswap16(uint16_t s)
     80 {
     81     return s;
     82 }
     83 
     84 static inline uint32_t tswap32(uint32_t s)
     85 {
     86     return s;
     87 }
     88 
     89 static inline uint64_t tswap64(uint64_t s)
     90 {
     91     return s;
     92 }
     93 
     94 static inline void tswap16s(uint16_t *s)
     95 {
     96 }
     97 
     98 static inline void tswap32s(uint32_t *s)
     99 {
    100 }
    101 
    102 static inline void tswap64s(uint64_t *s)
    103 {
    104 }
    105 
    106 #endif
    107 
    108 #if TARGET_LONG_SIZE == 4
    109 #define tswapl(s) tswap32(s)
    110 #define tswapls(s) tswap32s((uint32_t *)(s))
    111 #define bswaptls(s) bswap32s(s)
    112 #else
    113 #define tswapl(s) tswap64(s)
    114 #define tswapls(s) tswap64s((uint64_t *)(s))
    115 #define bswaptls(s) bswap64s(s)
    116 #endif
    117 
    118 typedef union {
    119     float32 f;
    120     uint32_t l;
    121 } CPU_FloatU;
    122 
    123 /* NOTE: arm FPA is horrible as double 32 bit words are stored in big
    124    endian ! */
    125 typedef union {
    126     float64 d;
    127 #if defined(WORDS_BIGENDIAN) \
    128     || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
    129     struct {
    130         uint32_t upper;
    131         uint32_t lower;
    132     } l;
    133 #else
    134     struct {
    135         uint32_t lower;
    136         uint32_t upper;
    137     } l;
    138 #endif
    139     uint64_t ll;
    140 } CPU_DoubleU;
    141 
    142 #ifdef TARGET_SPARC
    143 typedef union {
    144     float128 q;
    145 #if defined(WORDS_BIGENDIAN) \
    146     || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
    147     struct {
    148         uint32_t upmost;
    149         uint32_t upper;
    150         uint32_t lower;
    151         uint32_t lowest;
    152     } l;
    153     struct {
    154         uint64_t upper;
    155         uint64_t lower;
    156     } ll;
    157 #else
    158     struct {
    159         uint32_t lowest;
    160         uint32_t lower;
    161         uint32_t upper;
    162         uint32_t upmost;
    163     } l;
    164     struct {
    165         uint64_t lower;
    166         uint64_t upper;
    167     } ll;
    168 #endif
    169 } CPU_QuadU;
    170 #endif
    171 
    172 /* CPU memory access without any memory or io remapping */
    173 
    174 /*
    175  * the generic syntax for the memory accesses is:
    176  *
    177  * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
    178  *
    179  * store: st{type}{size}{endian}_{access_type}(ptr, val)
    180  *
    181  * type is:
    182  * (empty): integer access
    183  *   f    : float access
    184  *
    185  * sign is:
    186  * (empty): for floats or 32 bit size
    187  *   u    : unsigned
    188  *   s    : signed
    189  *
    190  * size is:
    191  *   b: 8 bits
    192  *   w: 16 bits
    193  *   l: 32 bits
    194  *   q: 64 bits
    195  *
    196  * endian is:
    197  * (empty): target cpu endianness or 8 bit access
    198  *   r    : reversed target cpu endianness (not implemented yet)
    199  *   be   : big endian (not implemented yet)
    200  *   le   : little endian (not implemented yet)
    201  *
    202  * access_type is:
    203  *   raw    : host memory access
    204  *   user   : user mode access using soft MMU
    205  *   kernel : kernel mode access using soft MMU
    206  */
    207 static inline int ldub_p(const void *ptr)
    208 {
    209     return *(uint8_t *)ptr;
    210 }
    211 
    212 static inline int ldsb_p(const void *ptr)
    213 {
    214     return *(int8_t *)ptr;
    215 }
    216 
    217 static inline void stb_p(void *ptr, int v)
    218 {
    219     *(uint8_t *)ptr = v;
    220 }
    221 
    222 /* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
    223    kernel handles unaligned load/stores may give better results, but
    224    it is a system wide setting : bad */
    225 #if defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
    226 
    227 /* conservative code for little endian unaligned accesses */
    228 static inline int lduw_le_p(const void *ptr)
    229 {
    230 #ifdef _ARCH_PPC
    231     int val;
    232     __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
    233     return val;
    234 #else
    235     const uint8_t *p = ptr;
    236     return p[0] | (p[1] << 8);
    237 #endif
    238 }
    239 
    240 static inline int ldsw_le_p(const void *ptr)
    241 {
    242 #ifdef _ARCH_PPC
    243     int val;
    244     __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
    245     return (int16_t)val;
    246 #else
    247     const uint8_t *p = ptr;
    248     return (int16_t)(p[0] | (p[1] << 8));
    249 #endif
    250 }
    251 
    252 static inline int ldl_le_p(const void *ptr)
    253 {
    254 #ifdef _ARCH_PPC
    255     int val;
    256     __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
    257     return val;
    258 #else
    259     const uint8_t *p = ptr;
    260     return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
    261 #endif
    262 }
    263 
    264 static inline uint64_t ldq_le_p(const void *ptr)
    265 {
    266     const uint8_t *p = ptr;
    267     uint32_t v1, v2;
    268     v1 = ldl_le_p(p);
    269     v2 = ldl_le_p(p + 4);
    270     return v1 | ((uint64_t)v2 << 32);
    271 }
    272 
    273 static inline void stw_le_p(void *ptr, int v)
    274 {
    275 #ifdef _ARCH_PPC
    276     __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
    277 #else
    278     uint8_t *p = ptr;
    279     p[0] = v;
    280     p[1] = v >> 8;
    281 #endif
    282 }
    283 
    284 static inline void stl_le_p(void *ptr, int v)
    285 {
    286 #ifdef _ARCH_PPC
    287     __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
    288 #else
    289     uint8_t *p = ptr;
    290     p[0] = v;
    291     p[1] = v >> 8;
    292     p[2] = v >> 16;
    293     p[3] = v >> 24;
    294 #endif
    295 }
    296 
    297 static inline void stq_le_p(void *ptr, uint64_t v)
    298 {
    299     uint8_t *p = ptr;
    300     stl_le_p(p, (uint32_t)v);
    301     stl_le_p(p + 4, v >> 32);
    302 }
    303 
    304 /* float access */
    305 
    306 static inline float32 ldfl_le_p(const void *ptr)
    307 {
    308     union {
    309         float32 f;
    310         uint32_t i;
    311     } u;
    312     u.i = ldl_le_p(ptr);
    313     return u.f;
    314 }
    315 
    316 static inline void stfl_le_p(void *ptr, float32 v)
    317 {
    318     union {
    319         float32 f;
    320         uint32_t i;
    321     } u;
    322     u.f = v;
    323     stl_le_p(ptr, u.i);
    324 }
    325 
    326 static inline float64 ldfq_le_p(const void *ptr)
    327 {
    328     CPU_DoubleU u;
    329     u.l.lower = ldl_le_p(ptr);
    330     u.l.upper = ldl_le_p(ptr + 4);
    331     return u.d;
    332 }
    333 
    334 static inline void stfq_le_p(void *ptr, float64 v)
    335 {
    336     CPU_DoubleU u;
    337     u.d = v;
    338     stl_le_p(ptr, u.l.lower);
    339     stl_le_p(ptr + 4, u.l.upper);
    340 }
    341 
    342 #else
    343 
    344 static inline int lduw_le_p(const void *ptr)
    345 {
    346     return *(uint16_t *)ptr;
    347 }
    348 
    349 static inline int ldsw_le_p(const void *ptr)
    350 {
    351     return *(int16_t *)ptr;
    352 }
    353 
    354 static inline int ldl_le_p(const void *ptr)
    355 {
    356     return *(uint32_t *)ptr;
    357 }
    358 
    359 static inline uint64_t ldq_le_p(const void *ptr)
    360 {
    361     return *(uint64_t *)ptr;
    362 }
    363 
    364 static inline void stw_le_p(void *ptr, int v)
    365 {
    366     *(uint16_t *)ptr = v;
    367 }
    368 
    369 static inline void stl_le_p(void *ptr, int v)
    370 {
    371     *(uint32_t *)ptr = v;
    372 }
    373 
    374 static inline void stq_le_p(void *ptr, uint64_t v)
    375 {
    376     *(uint64_t *)ptr = v;
    377 }
    378 
    379 /* float access */
    380 
    381 static inline float32 ldfl_le_p(const void *ptr)
    382 {
    383     return *(float32 *)ptr;
    384 }
    385 
    386 static inline float64 ldfq_le_p(const void *ptr)
    387 {
    388     return *(float64 *)ptr;
    389 }
    390 
    391 static inline void stfl_le_p(void *ptr, float32 v)
    392 {
    393     *(float32 *)ptr = v;
    394 }
    395 
    396 static inline void stfq_le_p(void *ptr, float64 v)
    397 {
    398     *(float64 *)ptr = v;
    399 }
    400 #endif
    401 
    402 #if !defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
    403 
    404 static inline int lduw_be_p(const void *ptr)
    405 {
    406 #if defined(__i386__)
    407     int val;
    408     asm volatile ("movzwl %1, %0\n"
    409                   "xchgb %b0, %h0\n"
    410                   : "=q" (val)
    411                   : "m" (*(uint16_t *)ptr));
    412     return val;
    413 #else
    414     const uint8_t *b = ptr;
    415     return ((b[0] << 8) | b[1]);
    416 #endif
    417 }
    418 
    419 static inline int ldsw_be_p(const void *ptr)
    420 {
    421 #if defined(__i386__)
    422     int val;
    423     asm volatile ("movzwl %1, %0\n"
    424                   "xchgb %b0, %h0\n"
    425                   : "=q" (val)
    426                   : "m" (*(uint16_t *)ptr));
    427     return (int16_t)val;
    428 #else
    429     const uint8_t *b = ptr;
    430     return (int16_t)((b[0] << 8) | b[1]);
    431 #endif
    432 }
    433 
    434 static inline int ldl_be_p(const void *ptr)
    435 {
    436 #if defined(__i386__) || defined(__x86_64__)
    437     int val;
    438     asm volatile ("movl %1, %0\n"
    439                   "bswap %0\n"
    440                   : "=r" (val)
    441                   : "m" (*(uint32_t *)ptr));
    442     return val;
    443 #else
    444     const uint8_t *b = ptr;
    445     return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
    446 #endif
    447 }
    448 
    449 static inline uint64_t ldq_be_p(const void *ptr)
    450 {
    451     uint32_t a,b;
    452     a = ldl_be_p(ptr);
    453     b = ldl_be_p((uint8_t *)ptr + 4);
    454     return (((uint64_t)a<<32)|b);
    455 }
    456 
    457 static inline void stw_be_p(void *ptr, int v)
    458 {
    459 #if defined(__i386__)
    460     asm volatile ("xchgb %b0, %h0\n"
    461                   "movw %w0, %1\n"
    462                   : "=q" (v)
    463                   : "m" (*(uint16_t *)ptr), "0" (v));
    464 #else
    465     uint8_t *d = (uint8_t *) ptr;
    466     d[0] = v >> 8;
    467     d[1] = v;
    468 #endif
    469 }
    470 
    471 static inline void stl_be_p(void *ptr, int v)
    472 {
    473 #if defined(__i386__) || defined(__x86_64__)
    474     asm volatile ("bswap %0\n"
    475                   "movl %0, %1\n"
    476                   : "=r" (v)
    477                   : "m" (*(uint32_t *)ptr), "0" (v));
    478 #else
    479     uint8_t *d = (uint8_t *) ptr;
    480     d[0] = v >> 24;
    481     d[1] = v >> 16;
    482     d[2] = v >> 8;
    483     d[3] = v;
    484 #endif
    485 }
    486 
    487 static inline void stq_be_p(void *ptr, uint64_t v)
    488 {
    489     stl_be_p(ptr, v >> 32);
    490     stl_be_p((uint8_t *)ptr + 4, v);
    491 }
    492 
    493 /* float access */
    494 
    495 static inline float32 ldfl_be_p(const void *ptr)
    496 {
    497     union {
    498         float32 f;
    499         uint32_t i;
    500     } u;
    501     u.i = ldl_be_p(ptr);
    502     return u.f;
    503 }
    504 
    505 static inline void stfl_be_p(void *ptr, float32 v)
    506 {
    507     union {
    508         float32 f;
    509         uint32_t i;
    510     } u;
    511     u.f = v;
    512     stl_be_p(ptr, u.i);
    513 }
    514 
    515 static inline float64 ldfq_be_p(const void *ptr)
    516 {
    517     CPU_DoubleU u;
    518     u.l.upper = ldl_be_p(ptr);
    519     u.l.lower = ldl_be_p((uint8_t *)ptr + 4);
    520     return u.d;
    521 }
    522 
    523 static inline void stfq_be_p(void *ptr, float64 v)
    524 {
    525     CPU_DoubleU u;
    526     u.d = v;
    527     stl_be_p(ptr, u.l.upper);
    528     stl_be_p((uint8_t *)ptr + 4, u.l.lower);
    529 }
    530 
    531 #else
    532 
    533 static inline int lduw_be_p(const void *ptr)
    534 {
    535     return *(uint16_t *)ptr;
    536 }
    537 
    538 static inline int ldsw_be_p(const void *ptr)
    539 {
    540     return *(int16_t *)ptr;
    541 }
    542 
    543 static inline int ldl_be_p(const void *ptr)
    544 {
    545     return *(uint32_t *)ptr;
    546 }
    547 
    548 static inline uint64_t ldq_be_p(const void *ptr)
    549 {
    550     return *(uint64_t *)ptr;
    551 }
    552 
    553 static inline void stw_be_p(void *ptr, int v)
    554 {
    555     *(uint16_t *)ptr = v;
    556 }
    557 
    558 static inline void stl_be_p(void *ptr, int v)
    559 {
    560     *(uint32_t *)ptr = v;
    561 }
    562 
    563 static inline void stq_be_p(void *ptr, uint64_t v)
    564 {
    565     *(uint64_t *)ptr = v;
    566 }
    567 
    568 /* float access */
    569 
    570 static inline float32 ldfl_be_p(const void *ptr)
    571 {
    572     return *(float32 *)ptr;
    573 }
    574 
    575 static inline float64 ldfq_be_p(const void *ptr)
    576 {
    577     return *(float64 *)ptr;
    578 }
    579 
    580 static inline void stfl_be_p(void *ptr, float32 v)
    581 {
    582     *(float32 *)ptr = v;
    583 }
    584 
    585 static inline void stfq_be_p(void *ptr, float64 v)
    586 {
    587     *(float64 *)ptr = v;
    588 }
    589 
    590 #endif
    591 
    592 /* target CPU memory access functions */
    593 #if defined(TARGET_WORDS_BIGENDIAN)
    594 #define lduw_p(p) lduw_be_p(p)
    595 #define ldsw_p(p) ldsw_be_p(p)
    596 #define ldl_p(p) ldl_be_p(p)
    597 #define ldq_p(p) ldq_be_p(p)
    598 #define ldfl_p(p) ldfl_be_p(p)
    599 #define ldfq_p(p) ldfq_be_p(p)
    600 #define stw_p(p, v) stw_be_p(p, v)
    601 #define stl_p(p, v) stl_be_p(p, v)
    602 #define stq_p(p, v) stq_be_p(p, v)
    603 #define stfl_p(p, v) stfl_be_p(p, v)
    604 #define stfq_p(p, v) stfq_be_p(p, v)
    605 #else
    606 #define lduw_p(p) lduw_le_p(p)
    607 #define ldsw_p(p) ldsw_le_p(p)
    608 #define ldl_p(p) ldl_le_p(p)
    609 #define ldq_p(p) ldq_le_p(p)
    610 #define ldfl_p(p) ldfl_le_p(p)
    611 #define ldfq_p(p) ldfq_le_p(p)
    612 #define stw_p(p, v) stw_le_p(p, v)
    613 #define stl_p(p, v) stl_le_p(p, v)
    614 #define stq_p(p, v) stq_le_p(p, v)
    615 #define stfl_p(p, v) stfl_le_p(p, v)
    616 #define stfq_p(p, v) stfq_le_p(p, v)
    617 #endif
    618 
    619 /* MMU memory access macros */
    620 
    621 #if defined(CONFIG_USER_ONLY)
    622 #include <assert.h>
    623 #include "qemu-types.h"
    624 
    625 /* On some host systems the guest address space is reserved on the host.
    626  * This allows the guest address space to be offset to a convenient location.
    627  */
    628 //#define GUEST_BASE 0x20000000
    629 #define GUEST_BASE 0
    630 
    631 /* All direct uses of g2h and h2g need to go away for usermode softmmu.  */
    632 #define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
    633 #define h2g(x) ({ \
    634     unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \
    635     /* Check if given address fits target address space */ \
    636     assert(__ret == (abi_ulong)__ret); \
    637     (abi_ulong)__ret; \
    638 })
    639 #define h2g_valid(x) ({ \
    640     unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \
    641     (__guest == (abi_ulong)__guest); \
    642 })
    643 
    644 #define saddr(x) g2h(x)
    645 #define laddr(x) g2h(x)
    646 
    647 #else /* !CONFIG_USER_ONLY */
    648 /* NOTE: we use double casts if pointers and target_ulong have
    649    different sizes */
    650 #define saddr(x) (uint8_t *)(long)(x)
    651 #define laddr(x) (uint8_t *)(long)(x)
    652 #endif
    653 
    654 #define ldub_raw(p) ldub_p(laddr((p)))
    655 #define ldsb_raw(p) ldsb_p(laddr((p)))
    656 #define lduw_raw(p) lduw_p(laddr((p)))
    657 #define ldsw_raw(p) ldsw_p(laddr((p)))
    658 #define ldl_raw(p) ldl_p(laddr((p)))
    659 #define ldq_raw(p) ldq_p(laddr((p)))
    660 #define ldfl_raw(p) ldfl_p(laddr((p)))
    661 #define ldfq_raw(p) ldfq_p(laddr((p)))
    662 #define stb_raw(p, v) stb_p(saddr((p)), v)
    663 #define stw_raw(p, v) stw_p(saddr((p)), v)
    664 #define stl_raw(p, v) stl_p(saddr((p)), v)
    665 #define stq_raw(p, v) stq_p(saddr((p)), v)
    666 #define stfl_raw(p, v) stfl_p(saddr((p)), v)
    667 #define stfq_raw(p, v) stfq_p(saddr((p)), v)
    668 
    669 
    670 #if defined(CONFIG_USER_ONLY)
    671 
    672 /* if user mode, no other memory access functions */
    673 #define ldub(p) ldub_raw(p)
    674 #define ldsb(p) ldsb_raw(p)
    675 #define lduw(p) lduw_raw(p)
    676 #define ldsw(p) ldsw_raw(p)
    677 #define ldl(p) ldl_raw(p)
    678 #define ldq(p) ldq_raw(p)
    679 #define ldfl(p) ldfl_raw(p)
    680 #define ldfq(p) ldfq_raw(p)
    681 #define stb(p, v) stb_raw(p, v)
    682 #define stw(p, v) stw_raw(p, v)
    683 #define stl(p, v) stl_raw(p, v)
    684 #define stq(p, v) stq_raw(p, v)
    685 #define stfl(p, v) stfl_raw(p, v)
    686 #define stfq(p, v) stfq_raw(p, v)
    687 
    688 #define ldub_code(p) ldub_raw(p)
    689 #define ldsb_code(p) ldsb_raw(p)
    690 #define lduw_code(p) lduw_raw(p)
    691 #define ldsw_code(p) ldsw_raw(p)
    692 #define ldl_code(p) ldl_raw(p)
    693 #define ldq_code(p) ldq_raw(p)
    694 
    695 #define ldub_kernel(p) ldub_raw(p)
    696 #define ldsb_kernel(p) ldsb_raw(p)
    697 #define lduw_kernel(p) lduw_raw(p)
    698 #define ldsw_kernel(p) ldsw_raw(p)
    699 #define ldl_kernel(p) ldl_raw(p)
    700 #define ldq_kernel(p) ldq_raw(p)
    701 #define ldfl_kernel(p) ldfl_raw(p)
    702 #define ldfq_kernel(p) ldfq_raw(p)
    703 #define stb_kernel(p, v) stb_raw(p, v)
    704 #define stw_kernel(p, v) stw_raw(p, v)
    705 #define stl_kernel(p, v) stl_raw(p, v)
    706 #define stq_kernel(p, v) stq_raw(p, v)
    707 #define stfl_kernel(p, v) stfl_raw(p, v)
    708 #define stfq_kernel(p, vt) stfq_raw(p, v)
    709 
    710 #endif /* defined(CONFIG_USER_ONLY) */
    711 
    712 /* page related stuff */
    713 
    714 #define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
    715 #define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
    716 #define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
    717 
    718 /* ??? These should be the larger of unsigned long and target_ulong.  */
    719 extern unsigned long qemu_real_host_page_size;
    720 extern unsigned long qemu_host_page_bits;
    721 extern unsigned long qemu_host_page_size;
    722 extern unsigned long qemu_host_page_mask;
    723 
    724 #define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
    725 
    726 /* same as PROT_xxx */
    727 #define PAGE_READ      0x0001
    728 #define PAGE_WRITE     0x0002
    729 #define PAGE_EXEC      0x0004
    730 #define PAGE_BITS      (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
    731 #define PAGE_VALID     0x0008
    732 /* original state of the write flag (used when tracking self-modifying
    733    code */
    734 #define PAGE_WRITE_ORG 0x0010
    735 #define PAGE_RESERVED  0x0020
    736 
    737 void page_dump(FILE *f);
    738 int walk_memory_regions(void *,
    739     int (*fn)(void *, unsigned long, unsigned long, unsigned long));
    740 int page_get_flags(target_ulong address);
    741 void page_set_flags(target_ulong start, target_ulong end, int flags);
    742 int page_check_range(target_ulong start, target_ulong len, int flags);
    743 
    744 void cpu_exec_init_all(unsigned long tb_size);
    745 CPUState *cpu_copy(CPUState *env);
    746 CPUState *qemu_get_cpu(int cpu);
    747 
    748 void cpu_dump_state(CPUState *env, FILE *f,
    749                     int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
    750                     int flags);
    751 void cpu_dump_statistics (CPUState *env, FILE *f,
    752                           int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
    753                           int flags);
    754 
    755 void QEMU_NORETURN cpu_abort(CPUState *env, const char *fmt, ...)
    756     __attribute__ ((__format__ (__printf__, 2, 3)));
    757 extern CPUState *first_cpu;
    758 extern CPUState *cpu_single_env;
    759 extern int64_t qemu_icount;
    760 extern int use_icount;
    761 
    762 #define CPU_INTERRUPT_HARD   0x02 /* hardware interrupt pending */
    763 #define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
    764 #define CPU_INTERRUPT_TIMER  0x08 /* internal timer exception pending */
    765 #define CPU_INTERRUPT_FIQ    0x10 /* Fast interrupt pending.  */
    766 #define CPU_INTERRUPT_HALT   0x20 /* CPU halt wanted */
    767 #define CPU_INTERRUPT_SMI    0x40 /* (x86 only) SMI interrupt pending */
    768 #define CPU_INTERRUPT_DEBUG  0x80 /* Debug event occured.  */
    769 #define CPU_INTERRUPT_VIRQ   0x100 /* virtual interrupt pending.  */
    770 #define CPU_INTERRUPT_NMI    0x200 /* NMI pending. */
    771 
    772 void cpu_interrupt(CPUState *s, int mask);
    773 void cpu_reset_interrupt(CPUState *env, int mask);
    774 
    775 void cpu_exit(CPUState *s);
    776 
    777 int qemu_cpu_has_work(CPUState *env);
    778 
    779 /* Breakpoint/watchpoint flags */
    780 #define BP_MEM_READ           0x01
    781 #define BP_MEM_WRITE          0x02
    782 #define BP_MEM_ACCESS         (BP_MEM_READ | BP_MEM_WRITE)
    783 #define BP_STOP_BEFORE_ACCESS 0x04
    784 #define BP_WATCHPOINT_HIT     0x08
    785 #define BP_GDB                0x10
    786 #define BP_CPU                0x20
    787 
    788 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
    789                           CPUBreakpoint **breakpoint);
    790 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags);
    791 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint);
    792 void cpu_breakpoint_remove_all(CPUState *env, int mask);
    793 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
    794                           int flags, CPUWatchpoint **watchpoint);
    795 int cpu_watchpoint_remove(CPUState *env, target_ulong addr,
    796                           target_ulong len, int flags);
    797 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint);
    798 void cpu_watchpoint_remove_all(CPUState *env, int mask);
    799 
    800 #define SSTEP_ENABLE  0x1  /* Enable simulated HW single stepping */
    801 #define SSTEP_NOIRQ   0x2  /* Do not use IRQ while single stepping */
    802 #define SSTEP_NOTIMER 0x4  /* Do not Timers while single stepping */
    803 
    804 void cpu_single_step(CPUState *env, int enabled);
    805 void cpu_reset(CPUState *s);
    806 
    807 /* Return the physical page corresponding to a virtual one. Use it
    808    only for debugging because no protection checks are done. Return -1
    809    if no page found. */
    810 target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
    811 
    812 #define CPU_LOG_TB_OUT_ASM (1 << 0)
    813 #define CPU_LOG_TB_IN_ASM  (1 << 1)
    814 #define CPU_LOG_TB_OP      (1 << 2)
    815 #define CPU_LOG_TB_OP_OPT  (1 << 3)
    816 #define CPU_LOG_INT        (1 << 4)
    817 #define CPU_LOG_EXEC       (1 << 5)
    818 #define CPU_LOG_PCALL      (1 << 6)
    819 #define CPU_LOG_IOPORT     (1 << 7)
    820 #define CPU_LOG_TB_CPU     (1 << 8)
    821 #define CPU_LOG_RESET      (1 << 9)
    822 
    823 /* define log items */
    824 typedef struct CPULogItem {
    825     int mask;
    826     const char *name;
    827     const char *help;
    828 } CPULogItem;
    829 
    830 extern const CPULogItem cpu_log_items[];
    831 
    832 void cpu_set_log(int log_flags);
    833 void cpu_set_log_filename(const char *filename);
    834 int cpu_str_to_log_mask(const char *str);
    835 
    836 /* IO ports API */
    837 
    838 /* NOTE: as these functions may be even used when there is an isa
    839    brige on non x86 targets, we always defined them */
    840 #ifndef NO_CPU_IO_DEFS
    841 void cpu_outb(CPUState *env, int addr, int val);
    842 void cpu_outw(CPUState *env, int addr, int val);
    843 void cpu_outl(CPUState *env, int addr, int val);
    844 int cpu_inb(CPUState *env, int addr);
    845 int cpu_inw(CPUState *env, int addr);
    846 int cpu_inl(CPUState *env, int addr);
    847 #endif
    848 
    849 /* memory API */
    850 
    851 extern int phys_ram_fd;
    852 extern uint8_t *phys_ram_dirty;
    853 extern ram_addr_t ram_size;
    854 extern ram_addr_t last_ram_offset;
    855 
    856 /* physical memory access */
    857 
    858 /* MMIO pages are identified by a combination of an IO device index and
    859    3 flags.  The ROMD code stores the page ram offset in iotlb entry,
    860    so only a limited number of ids are avaiable.  */
    861 
    862 #define IO_MEM_NB_ENTRIES  (1 << (TARGET_PAGE_BITS  - IO_MEM_SHIFT))
    863 
    864 /* Flags stored in the low bits of the TLB virtual address.  These are
    865    defined so that fast path ram access is all zeros.  */
    866 /* Zero if TLB entry is valid.  */
    867 #define TLB_INVALID_MASK   (1 << 3)
    868 /* Set if TLB entry references a clean RAM page.  The iotlb entry will
    869    contain the page physical address.  */
    870 #define TLB_NOTDIRTY    (1 << 4)
    871 /* Set if TLB entry is an IO callback.  */
    872 #define TLB_MMIO        (1 << 5)
    873 
    874 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
    875                         uint8_t *buf, int len, int is_write);
    876 
    877 #define VGA_DIRTY_FLAG       0x01
    878 #define CODE_DIRTY_FLAG      0x02
    879 #define KQEMU_DIRTY_FLAG     0x04
    880 #define MIGRATION_DIRTY_FLAG 0x08
    881 
    882 /* read dirty bit (return 0 or 1) */
    883 static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
    884 {
    885     return phys_ram_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
    886 }
    887 
    888 static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
    889                                                 int dirty_flags)
    890 {
    891     return phys_ram_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
    892 }
    893 
    894 static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
    895 {
    896     phys_ram_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
    897 }
    898 
    899 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
    900                                      int dirty_flags);
    901 void cpu_tlb_update_dirty(CPUState *env);
    902 
    903 int cpu_physical_memory_set_dirty_tracking(int enable);
    904 
    905 int cpu_physical_memory_get_dirty_tracking(void);
    906 
    907 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
    908                                    target_phys_addr_t end_addr);
    909 
    910 void dump_exec_info(FILE *f,
    911                     int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
    912 
    913 /* Coalesced MMIO regions are areas where write operations can be reordered.
    914  * This usually implies that write operations are side-effect free.  This allows
    915  * batching which can make a major impact on performance when using
    916  * virtualization.
    917  */
    918 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);
    919 
    920 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);
    921 
    922 /*******************************************/
    923 /* host CPU ticks (if available) */
    924 
    925 #if defined(_ARCH_PPC)
    926 
    927 static inline int64_t cpu_get_real_ticks(void)
    928 {
    929     int64_t retval;
    930 #ifdef _ARCH_PPC64
    931     /* This reads timebase in one 64bit go and includes Cell workaround from:
    932        http://ozlabs.org/pipermail/linuxppc-dev/2006-October/027052.html
    933      */
    934     __asm__ __volatile__ (
    935         "mftb    %0\n\t"
    936         "cmpwi   %0,0\n\t"
    937         "beq-    $-8"
    938         : "=r" (retval));
    939 #else
    940     /* http://ozlabs.org/pipermail/linuxppc-dev/1999-October/003889.html */
    941     unsigned long junk;
    942     __asm__ __volatile__ (
    943         "mftbu   %1\n\t"
    944         "mftb    %L0\n\t"
    945         "mftbu   %0\n\t"
    946         "cmpw    %0,%1\n\t"
    947         "bne     $-16"
    948         : "=r" (retval), "=r" (junk));
    949 #endif
    950     return retval;
    951 }
    952 
    953 #elif defined(__i386__)
    954 
    955 static inline int64_t cpu_get_real_ticks(void)
    956 {
    957     int64_t val;
    958     asm volatile ("rdtsc" : "=A" (val));
    959     return val;
    960 }
    961 
    962 #elif defined(__x86_64__)
    963 
    964 static inline int64_t cpu_get_real_ticks(void)
    965 {
    966     uint32_t low,high;
    967     int64_t val;
    968     asm volatile("rdtsc" : "=a" (low), "=d" (high));
    969     val = high;
    970     val <<= 32;
    971     val |= low;
    972     return val;
    973 }
    974 
    975 #elif defined(__hppa__)
    976 
    977 static inline int64_t cpu_get_real_ticks(void)
    978 {
    979     int val;
    980     asm volatile ("mfctl %%cr16, %0" : "=r"(val));
    981     return val;
    982 }
    983 
    984 #elif defined(__ia64)
    985 
    986 static inline int64_t cpu_get_real_ticks(void)
    987 {
    988 	int64_t val;
    989 	asm volatile ("mov %0 = ar.itc" : "=r"(val) :: "memory");
    990 	return val;
    991 }
    992 
    993 #elif defined(__s390__)
    994 
    995 static inline int64_t cpu_get_real_ticks(void)
    996 {
    997     int64_t val;
    998     asm volatile("stck 0(%1)" : "=m" (val) : "a" (&val) : "cc");
    999     return val;
   1000 }
   1001 
   1002 #elif defined(__sparc_v8plus__) || defined(__sparc_v8plusa__) || defined(__sparc_v9__)
   1003 
   1004 static inline int64_t cpu_get_real_ticks (void)
   1005 {
   1006 #if     defined(_LP64)
   1007         uint64_t        rval;
   1008         asm volatile("rd %%tick,%0" : "=r"(rval));
   1009         return rval;
   1010 #else
   1011         union {
   1012                 uint64_t i64;
   1013                 struct {
   1014                         uint32_t high;
   1015                         uint32_t low;
   1016                 }       i32;
   1017         } rval;
   1018         asm volatile("rd %%tick,%1; srlx %1,32,%0"
   1019                 : "=r"(rval.i32.high), "=r"(rval.i32.low));
   1020         return rval.i64;
   1021 #endif
   1022 }
   1023 
   1024 #elif defined(__mips__)
   1025 
   1026 static inline int64_t cpu_get_real_ticks(void)
   1027 {
   1028 #if __mips_isa_rev >= 2
   1029     uint32_t count;
   1030     static uint32_t cyc_per_count = 0;
   1031 
   1032     if (!cyc_per_count)
   1033         __asm__ __volatile__("rdhwr %0, $3" : "=r" (cyc_per_count));
   1034 
   1035     __asm__ __volatile__("rdhwr %1, $2" : "=r" (count));
   1036     return (int64_t)(count * cyc_per_count);
   1037 #else
   1038     /* FIXME */
   1039     static int64_t ticks = 0;
   1040     return ticks++;
   1041 #endif
   1042 }
   1043 
   1044 #else
   1045 /* The host CPU doesn't have an easily accessible cycle counter.
   1046    Just return a monotonically increasing value.  This will be
   1047    totally wrong, but hopefully better than nothing.  */
   1048 static inline int64_t cpu_get_real_ticks (void)
   1049 {
   1050     static int64_t ticks = 0;
   1051     return ticks++;
   1052 }
   1053 #endif
   1054 
   1055 /* profiling */
   1056 #ifdef CONFIG_PROFILER
   1057 static inline int64_t profile_getclock(void)
   1058 {
   1059     return cpu_get_real_ticks();
   1060 }
   1061 
   1062 extern int64_t kqemu_time, kqemu_time_start;
   1063 extern int64_t qemu_time, qemu_time_start;
   1064 extern int64_t tlb_flush_time;
   1065 extern int64_t kqemu_exec_count;
   1066 extern int64_t dev_time;
   1067 extern int64_t kqemu_ret_int_count;
   1068 extern int64_t kqemu_ret_excp_count;
   1069 extern int64_t kqemu_ret_intr_count;
   1070 #endif
   1071 
   1072 #endif /* CPU_ALL_H */
   1073