Home | History | Annotate | Download | only in src
      1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
      2 // All Rights Reserved.
      3 //
      4 // Redistribution and use in source and binary forms, with or without
      5 // modification, are permitted provided that the following conditions are
      6 // met:
      7 //
      8 // - Redistributions of source code must retain the above copyright notice,
      9 // this list of conditions and the following disclaimer.
     10 //
     11 // - Redistribution in binary form must reproduce the above copyright
     12 // notice, this list of conditions and the following disclaimer in the
     13 // documentation and/or other materials provided with the distribution.
     14 //
     15 // - Neither the name of Sun Microsystems or the names of contributors may
     16 // be used to endorse or promote products derived from this software without
     17 // specific prior written permission.
     18 //
     19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
     20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
     21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
     23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
     26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
     27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     30 
     31 // The original source code covered by the above license above has been
     32 // modified significantly by Google Inc.
     33 // Copyright 2006-2009 the V8 project authors. All rights reserved.
     34 
     35 #include "v8.h"
     36 
     37 #include "arguments.h"
     38 #include "execution.h"
     39 #include "ic-inl.h"
     40 #include "factory.h"
     41 #include "runtime.h"
     42 #include "serialize.h"
     43 #include "stub-cache.h"
     44 #include "regexp-stack.h"
     45 #include "ast.h"
     46 #include "regexp-macro-assembler.h"
     47 #include "platform.h"
     48 // Include native regexp-macro-assembler.
     49 #ifdef V8_NATIVE_REGEXP
     50 #if V8_TARGET_ARCH_IA32
     51 #include "ia32/regexp-macro-assembler-ia32.h"
     52 #elif V8_TARGET_ARCH_X64
     53 #include "x64/regexp-macro-assembler-x64.h"
     54 #elif V8_TARGET_ARCH_ARM
     55 #include "arm/regexp-macro-assembler-arm.h"
     56 #else  // Unknown architecture.
     57 #error "Unknown architecture."
     58 #endif  // Target architecture.
     59 #endif  // V8_NATIVE_REGEXP
     60 
     61 namespace v8 {
     62 namespace internal {
     63 
     64 
     65 // -----------------------------------------------------------------------------
     66 // Implementation of Label
     67 
     68 int Label::pos() const {
     69   if (pos_ < 0) return -pos_ - 1;
     70   if (pos_ > 0) return  pos_ - 1;
     71   UNREACHABLE();
     72   return 0;
     73 }
     74 
     75 
     76 // -----------------------------------------------------------------------------
     77 // Implementation of RelocInfoWriter and RelocIterator
     78 //
     79 // Encoding
     80 //
     81 // The most common modes are given single-byte encodings.  Also, it is
     82 // easy to identify the type of reloc info and skip unwanted modes in
     83 // an iteration.
     84 //
     85 // The encoding relies on the fact that there are less than 14
     86 // different relocation modes.
     87 //
     88 // embedded_object:    [6 bits pc delta] 00
     89 //
     90 // code_taget:         [6 bits pc delta] 01
     91 //
     92 // position:           [6 bits pc delta] 10,
     93 //                     [7 bits signed data delta] 0
     94 //
     95 // statement_position: [6 bits pc delta] 10,
     96 //                     [7 bits signed data delta] 1
     97 //
     98 // any nondata mode:   00 [4 bits rmode] 11,  // rmode: 0..13 only
     99 //                     00 [6 bits pc delta]
    100 //
    101 // pc-jump:            00 1111 11,
    102 //                     00 [6 bits pc delta]
    103 //
    104 // pc-jump:            01 1111 11,
    105 // (variable length)   7 - 26 bit pc delta, written in chunks of 7
    106 //                     bits, the lowest 7 bits written first.
    107 //
    108 // data-jump + pos:    00 1110 11,
    109 //                     signed intptr_t, lowest byte written first
    110 //
    111 // data-jump + st.pos: 01 1110 11,
    112 //                     signed intptr_t, lowest byte written first
    113 //
    114 // data-jump + comm.:  10 1110 11,
    115 //                     signed intptr_t, lowest byte written first
    116 //
    117 const int kMaxRelocModes = 14;
    118 
    119 const int kTagBits = 2;
    120 const int kTagMask = (1 << kTagBits) - 1;
    121 const int kExtraTagBits = 4;
    122 const int kPositionTypeTagBits = 1;
    123 const int kSmallDataBits = kBitsPerByte - kPositionTypeTagBits;
    124 
    125 const int kEmbeddedObjectTag = 0;
    126 const int kCodeTargetTag = 1;
    127 const int kPositionTag = 2;
    128 const int kDefaultTag = 3;
    129 
    130 const int kPCJumpTag = (1 << kExtraTagBits) - 1;
    131 
    132 const int kSmallPCDeltaBits = kBitsPerByte - kTagBits;
    133 const int kSmallPCDeltaMask = (1 << kSmallPCDeltaBits) - 1;
    134 
    135 const int kVariableLengthPCJumpTopTag = 1;
    136 const int kChunkBits = 7;
    137 const int kChunkMask = (1 << kChunkBits) - 1;
    138 const int kLastChunkTagBits = 1;
    139 const int kLastChunkTagMask = 1;
    140 const int kLastChunkTag = 1;
    141 
    142 
    143 const int kDataJumpTag = kPCJumpTag - 1;
    144 
    145 const int kNonstatementPositionTag = 0;
    146 const int kStatementPositionTag = 1;
    147 const int kCommentTag = 2;
    148 
    149 
    150 uint32_t RelocInfoWriter::WriteVariableLengthPCJump(uint32_t pc_delta) {
    151   // Return if the pc_delta can fit in kSmallPCDeltaBits bits.
    152   // Otherwise write a variable length PC jump for the bits that do
    153   // not fit in the kSmallPCDeltaBits bits.
    154   if (is_uintn(pc_delta, kSmallPCDeltaBits)) return pc_delta;
    155   WriteExtraTag(kPCJumpTag, kVariableLengthPCJumpTopTag);
    156   uint32_t pc_jump = pc_delta >> kSmallPCDeltaBits;
    157   ASSERT(pc_jump > 0);
    158   // Write kChunkBits size chunks of the pc_jump.
    159   for (; pc_jump > 0; pc_jump = pc_jump >> kChunkBits) {
    160     byte b = pc_jump & kChunkMask;
    161     *--pos_ = b << kLastChunkTagBits;
    162   }
    163   // Tag the last chunk so it can be identified.
    164   *pos_ = *pos_ | kLastChunkTag;
    165   // Return the remaining kSmallPCDeltaBits of the pc_delta.
    166   return pc_delta & kSmallPCDeltaMask;
    167 }
    168 
    169 
    170 void RelocInfoWriter::WriteTaggedPC(uint32_t pc_delta, int tag) {
    171   // Write a byte of tagged pc-delta, possibly preceded by var. length pc-jump.
    172   pc_delta = WriteVariableLengthPCJump(pc_delta);
    173   *--pos_ = pc_delta << kTagBits | tag;
    174 }
    175 
    176 
    177 void RelocInfoWriter::WriteTaggedData(intptr_t data_delta, int tag) {
    178   *--pos_ = static_cast<byte>(data_delta << kPositionTypeTagBits | tag);
    179 }
    180 
    181 
    182 void RelocInfoWriter::WriteExtraTag(int extra_tag, int top_tag) {
    183   *--pos_ = static_cast<int>(top_tag << (kTagBits + kExtraTagBits) |
    184                              extra_tag << kTagBits |
    185                              kDefaultTag);
    186 }
    187 
    188 
    189 void RelocInfoWriter::WriteExtraTaggedPC(uint32_t pc_delta, int extra_tag) {
    190   // Write two-byte tagged pc-delta, possibly preceded by var. length pc-jump.
    191   pc_delta = WriteVariableLengthPCJump(pc_delta);
    192   WriteExtraTag(extra_tag, 0);
    193   *--pos_ = pc_delta;
    194 }
    195 
    196 
    197 void RelocInfoWriter::WriteExtraTaggedData(intptr_t data_delta, int top_tag) {
    198   WriteExtraTag(kDataJumpTag, top_tag);
    199   for (int i = 0; i < kIntptrSize; i++) {
    200     *--pos_ = static_cast<byte>(data_delta);
    201   // Signed right shift is arithmetic shift.  Tested in test-utils.cc.
    202     data_delta = data_delta >> kBitsPerByte;
    203   }
    204 }
    205 
    206 
    207 void RelocInfoWriter::Write(const RelocInfo* rinfo) {
    208 #ifdef DEBUG
    209   byte* begin_pos = pos_;
    210 #endif
    211   Counters::reloc_info_count.Increment();
    212   ASSERT(rinfo->pc() - last_pc_ >= 0);
    213   ASSERT(RelocInfo::NUMBER_OF_MODES < kMaxRelocModes);
    214   // Use unsigned delta-encoding for pc.
    215   uint32_t pc_delta = static_cast<uint32_t>(rinfo->pc() - last_pc_);
    216   RelocInfo::Mode rmode = rinfo->rmode();
    217 
    218   // The two most common modes are given small tags, and usually fit in a byte.
    219   if (rmode == RelocInfo::EMBEDDED_OBJECT) {
    220     WriteTaggedPC(pc_delta, kEmbeddedObjectTag);
    221   } else if (rmode == RelocInfo::CODE_TARGET) {
    222     WriteTaggedPC(pc_delta, kCodeTargetTag);
    223   } else if (RelocInfo::IsPosition(rmode)) {
    224     // Use signed delta-encoding for data.
    225     intptr_t data_delta = rinfo->data() - last_data_;
    226     int pos_type_tag = rmode == RelocInfo::POSITION ? kNonstatementPositionTag
    227                                                     : kStatementPositionTag;
    228     // Check if data is small enough to fit in a tagged byte.
    229     // We cannot use is_intn because data_delta is not an int32_t.
    230     if (data_delta >= -(1 << (kSmallDataBits-1)) &&
    231         data_delta < 1 << (kSmallDataBits-1)) {
    232       WriteTaggedPC(pc_delta, kPositionTag);
    233       WriteTaggedData(data_delta, pos_type_tag);
    234       last_data_ = rinfo->data();
    235     } else {
    236       // Otherwise, use costly encoding.
    237       WriteExtraTaggedPC(pc_delta, kPCJumpTag);
    238       WriteExtraTaggedData(data_delta, pos_type_tag);
    239       last_data_ = rinfo->data();
    240     }
    241   } else if (RelocInfo::IsComment(rmode)) {
    242     // Comments are normally not generated, so we use the costly encoding.
    243     WriteExtraTaggedPC(pc_delta, kPCJumpTag);
    244     WriteExtraTaggedData(rinfo->data() - last_data_, kCommentTag);
    245     last_data_ = rinfo->data();
    246   } else {
    247     // For all other modes we simply use the mode as the extra tag.
    248     // None of these modes need a data component.
    249     ASSERT(rmode < kPCJumpTag && rmode < kDataJumpTag);
    250     WriteExtraTaggedPC(pc_delta, rmode);
    251   }
    252   last_pc_ = rinfo->pc();
    253 #ifdef DEBUG
    254   ASSERT(begin_pos - pos_ <= kMaxSize);
    255 #endif
    256 }
    257 
    258 
    259 inline int RelocIterator::AdvanceGetTag() {
    260   return *--pos_ & kTagMask;
    261 }
    262 
    263 
    264 inline int RelocIterator::GetExtraTag() {
    265   return (*pos_ >> kTagBits) & ((1 << kExtraTagBits) - 1);
    266 }
    267 
    268 
    269 inline int RelocIterator::GetTopTag() {
    270   return *pos_ >> (kTagBits + kExtraTagBits);
    271 }
    272 
    273 
    274 inline void RelocIterator::ReadTaggedPC() {
    275   rinfo_.pc_ += *pos_ >> kTagBits;
    276 }
    277 
    278 
    279 inline void RelocIterator::AdvanceReadPC() {
    280   rinfo_.pc_ += *--pos_;
    281 }
    282 
    283 
    284 void RelocIterator::AdvanceReadData() {
    285   intptr_t x = 0;
    286   for (int i = 0; i < kIntptrSize; i++) {
    287     x |= static_cast<intptr_t>(*--pos_) << i * kBitsPerByte;
    288   }
    289   rinfo_.data_ += x;
    290 }
    291 
    292 
    293 void RelocIterator::AdvanceReadVariableLengthPCJump() {
    294   // Read the 32-kSmallPCDeltaBits most significant bits of the
    295   // pc jump in kChunkBits bit chunks and shift them into place.
    296   // Stop when the last chunk is encountered.
    297   uint32_t pc_jump = 0;
    298   for (int i = 0; i < kIntSize; i++) {
    299     byte pc_jump_part = *--pos_;
    300     pc_jump |= (pc_jump_part >> kLastChunkTagBits) << i * kChunkBits;
    301     if ((pc_jump_part & kLastChunkTagMask) == 1) break;
    302   }
    303   // The least significant kSmallPCDeltaBits bits will be added
    304   // later.
    305   rinfo_.pc_ += pc_jump << kSmallPCDeltaBits;
    306 }
    307 
    308 
    309 inline int RelocIterator::GetPositionTypeTag() {
    310   return *pos_ & ((1 << kPositionTypeTagBits) - 1);
    311 }
    312 
    313 
    314 inline void RelocIterator::ReadTaggedData() {
    315   int8_t signed_b = *pos_;
    316   // Signed right shift is arithmetic shift.  Tested in test-utils.cc.
    317   rinfo_.data_ += signed_b >> kPositionTypeTagBits;
    318 }
    319 
    320 
    321 inline RelocInfo::Mode RelocIterator::DebugInfoModeFromTag(int tag) {
    322   if (tag == kStatementPositionTag) {
    323     return RelocInfo::STATEMENT_POSITION;
    324   } else if (tag == kNonstatementPositionTag) {
    325     return RelocInfo::POSITION;
    326   } else {
    327     ASSERT(tag == kCommentTag);
    328     return RelocInfo::COMMENT;
    329   }
    330 }
    331 
    332 
    333 void RelocIterator::next() {
    334   ASSERT(!done());
    335   // Basically, do the opposite of RelocInfoWriter::Write.
    336   // Reading of data is as far as possible avoided for unwanted modes,
    337   // but we must always update the pc.
    338   //
    339   // We exit this loop by returning when we find a mode we want.
    340   while (pos_ > end_) {
    341     int tag = AdvanceGetTag();
    342     if (tag == kEmbeddedObjectTag) {
    343       ReadTaggedPC();
    344       if (SetMode(RelocInfo::EMBEDDED_OBJECT)) return;
    345     } else if (tag == kCodeTargetTag) {
    346       ReadTaggedPC();
    347       if (SetMode(RelocInfo::CODE_TARGET)) return;
    348     } else if (tag == kPositionTag) {
    349       ReadTaggedPC();
    350       Advance();
    351       // Check if we want source positions.
    352       if (mode_mask_ & RelocInfo::kPositionMask) {
    353         // Check if we want this type of source position.
    354         if (SetMode(DebugInfoModeFromTag(GetPositionTypeTag()))) {
    355           // Finally read the data before returning.
    356           ReadTaggedData();
    357           return;
    358         }
    359       }
    360     } else {
    361       ASSERT(tag == kDefaultTag);
    362       int extra_tag = GetExtraTag();
    363       if (extra_tag == kPCJumpTag) {
    364         int top_tag = GetTopTag();
    365         if (top_tag == kVariableLengthPCJumpTopTag) {
    366           AdvanceReadVariableLengthPCJump();
    367         } else {
    368           AdvanceReadPC();
    369         }
    370       } else if (extra_tag == kDataJumpTag) {
    371         // Check if we want debug modes (the only ones with data).
    372         if (mode_mask_ & RelocInfo::kDebugMask) {
    373           int top_tag = GetTopTag();
    374           AdvanceReadData();
    375           if (SetMode(DebugInfoModeFromTag(top_tag))) return;
    376         } else {
    377           // Otherwise, just skip over the data.
    378           Advance(kIntptrSize);
    379         }
    380       } else {
    381         AdvanceReadPC();
    382         if (SetMode(static_cast<RelocInfo::Mode>(extra_tag))) return;
    383       }
    384     }
    385   }
    386   done_ = true;
    387 }
    388 
    389 
    390 RelocIterator::RelocIterator(Code* code, int mode_mask) {
    391   rinfo_.pc_ = code->instruction_start();
    392   rinfo_.data_ = 0;
    393   // relocation info is read backwards
    394   pos_ = code->relocation_start() + code->relocation_size();
    395   end_ = code->relocation_start();
    396   done_ = false;
    397   mode_mask_ = mode_mask;
    398   if (mode_mask_ == 0) pos_ = end_;
    399   next();
    400 }
    401 
    402 
    403 RelocIterator::RelocIterator(const CodeDesc& desc, int mode_mask) {
    404   rinfo_.pc_ = desc.buffer;
    405   rinfo_.data_ = 0;
    406   // relocation info is read backwards
    407   pos_ = desc.buffer + desc.buffer_size;
    408   end_ = pos_ - desc.reloc_size;
    409   done_ = false;
    410   mode_mask_ = mode_mask;
    411   if (mode_mask_ == 0) pos_ = end_;
    412   next();
    413 }
    414 
    415 
    416 // -----------------------------------------------------------------------------
    417 // Implementation of RelocInfo
    418 
    419 
    420 #ifdef ENABLE_DISASSEMBLER
    421 const char* RelocInfo::RelocModeName(RelocInfo::Mode rmode) {
    422   switch (rmode) {
    423     case RelocInfo::NONE:
    424       return "no reloc";
    425     case RelocInfo::EMBEDDED_OBJECT:
    426       return "embedded object";
    427     case RelocInfo::EMBEDDED_STRING:
    428       return "embedded string";
    429     case RelocInfo::CONSTRUCT_CALL:
    430       return "code target (js construct call)";
    431     case RelocInfo::CODE_TARGET_CONTEXT:
    432       return "code target (context)";
    433     case RelocInfo::DEBUG_BREAK:
    434 #ifndef ENABLE_DEBUGGER_SUPPORT
    435       UNREACHABLE();
    436 #endif
    437       return "debug break";
    438     case RelocInfo::CODE_TARGET:
    439       return "code target";
    440     case RelocInfo::RUNTIME_ENTRY:
    441       return "runtime entry";
    442     case RelocInfo::JS_RETURN:
    443       return "js return";
    444     case RelocInfo::COMMENT:
    445       return "comment";
    446     case RelocInfo::POSITION:
    447       return "position";
    448     case RelocInfo::STATEMENT_POSITION:
    449       return "statement position";
    450     case RelocInfo::EXTERNAL_REFERENCE:
    451       return "external reference";
    452     case RelocInfo::INTERNAL_REFERENCE:
    453       return "internal reference";
    454     case RelocInfo::NUMBER_OF_MODES:
    455       UNREACHABLE();
    456       return "number_of_modes";
    457   }
    458   return "unknown relocation type";
    459 }
    460 
    461 
    462 void RelocInfo::Print() {
    463   PrintF("%p  %s", pc_, RelocModeName(rmode_));
    464   if (IsComment(rmode_)) {
    465     PrintF("  (%s)", data_);
    466   } else if (rmode_ == EMBEDDED_OBJECT) {
    467     PrintF("  (");
    468     target_object()->ShortPrint();
    469     PrintF(")");
    470   } else if (rmode_ == EXTERNAL_REFERENCE) {
    471     ExternalReferenceEncoder ref_encoder;
    472     PrintF(" (%s)  (%p)",
    473            ref_encoder.NameOfAddress(*target_reference_address()),
    474            *target_reference_address());
    475   } else if (IsCodeTarget(rmode_)) {
    476     Code* code = Code::GetCodeFromTargetAddress(target_address());
    477     PrintF(" (%s)  (%p)", Code::Kind2String(code->kind()), target_address());
    478   } else if (IsPosition(rmode_)) {
    479     PrintF("  (%d)", data());
    480   }
    481 
    482   PrintF("\n");
    483 }
    484 #endif  // ENABLE_DISASSEMBLER
    485 
    486 
    487 #ifdef DEBUG
    488 void RelocInfo::Verify() {
    489   switch (rmode_) {
    490     case EMBEDDED_OBJECT:
    491       Object::VerifyPointer(target_object());
    492       break;
    493     case DEBUG_BREAK:
    494 #ifndef ENABLE_DEBUGGER_SUPPORT
    495       UNREACHABLE();
    496       break;
    497 #endif
    498     case CONSTRUCT_CALL:
    499     case CODE_TARGET_CONTEXT:
    500     case CODE_TARGET: {
    501       // convert inline target address to code object
    502       Address addr = target_address();
    503       ASSERT(addr != NULL);
    504       // Check that we can find the right code object.
    505       Code* code = Code::GetCodeFromTargetAddress(addr);
    506       Object* found = Heap::FindCodeObject(addr);
    507       ASSERT(found->IsCode());
    508       ASSERT(code->address() == HeapObject::cast(found)->address());
    509       break;
    510     }
    511     case RelocInfo::EMBEDDED_STRING:
    512     case RUNTIME_ENTRY:
    513     case JS_RETURN:
    514     case COMMENT:
    515     case POSITION:
    516     case STATEMENT_POSITION:
    517     case EXTERNAL_REFERENCE:
    518     case INTERNAL_REFERENCE:
    519     case NONE:
    520       break;
    521     case NUMBER_OF_MODES:
    522       UNREACHABLE();
    523       break;
    524   }
    525 }
    526 #endif  // DEBUG
    527 
    528 
    529 // -----------------------------------------------------------------------------
    530 // Implementation of ExternalReference
    531 
    532 ExternalReference::ExternalReference(Builtins::CFunctionId id)
    533   : address_(Redirect(Builtins::c_function_address(id))) {}
    534 
    535 
    536 ExternalReference::ExternalReference(ApiFunction* fun)
    537   : address_(Redirect(fun->address())) {}
    538 
    539 
    540 ExternalReference::ExternalReference(Builtins::Name name)
    541   : address_(Builtins::builtin_address(name)) {}
    542 
    543 
    544 ExternalReference::ExternalReference(Runtime::FunctionId id)
    545   : address_(Redirect(Runtime::FunctionForId(id)->entry)) {}
    546 
    547 
    548 ExternalReference::ExternalReference(Runtime::Function* f)
    549   : address_(Redirect(f->entry)) {}
    550 
    551 
    552 ExternalReference::ExternalReference(const IC_Utility& ic_utility)
    553   : address_(Redirect(ic_utility.address())) {}
    554 
    555 #ifdef ENABLE_DEBUGGER_SUPPORT
    556 ExternalReference::ExternalReference(const Debug_Address& debug_address)
    557   : address_(debug_address.address()) {}
    558 #endif
    559 
    560 ExternalReference::ExternalReference(StatsCounter* counter)
    561   : address_(reinterpret_cast<Address>(counter->GetInternalPointer())) {}
    562 
    563 
    564 ExternalReference::ExternalReference(Top::AddressId id)
    565   : address_(Top::get_address_from_id(id)) {}
    566 
    567 
    568 ExternalReference::ExternalReference(const SCTableReference& table_ref)
    569   : address_(table_ref.address()) {}
    570 
    571 
    572 ExternalReference ExternalReference::perform_gc_function() {
    573   return ExternalReference(Redirect(FUNCTION_ADDR(Runtime::PerformGC)));
    574 }
    575 
    576 
    577 ExternalReference ExternalReference::random_positive_smi_function() {
    578   return ExternalReference(Redirect(FUNCTION_ADDR(V8::RandomPositiveSmi)));
    579 }
    580 
    581 
    582 ExternalReference ExternalReference::transcendental_cache_array_address() {
    583   return ExternalReference(TranscendentalCache::cache_array_address());
    584 }
    585 
    586 
    587 ExternalReference ExternalReference::keyed_lookup_cache_keys() {
    588   return ExternalReference(KeyedLookupCache::keys_address());
    589 }
    590 
    591 
    592 ExternalReference ExternalReference::keyed_lookup_cache_field_offsets() {
    593   return ExternalReference(KeyedLookupCache::field_offsets_address());
    594 }
    595 
    596 
    597 ExternalReference ExternalReference::the_hole_value_location() {
    598   return ExternalReference(Factory::the_hole_value().location());
    599 }
    600 
    601 
    602 ExternalReference ExternalReference::roots_address() {
    603   return ExternalReference(Heap::roots_address());
    604 }
    605 
    606 
    607 ExternalReference ExternalReference::address_of_stack_limit() {
    608   return ExternalReference(StackGuard::address_of_jslimit());
    609 }
    610 
    611 
    612 ExternalReference ExternalReference::address_of_real_stack_limit() {
    613   return ExternalReference(StackGuard::address_of_real_jslimit());
    614 }
    615 
    616 
    617 ExternalReference ExternalReference::address_of_regexp_stack_limit() {
    618   return ExternalReference(RegExpStack::limit_address());
    619 }
    620 
    621 
    622 ExternalReference ExternalReference::new_space_start() {
    623   return ExternalReference(Heap::NewSpaceStart());
    624 }
    625 
    626 
    627 ExternalReference ExternalReference::new_space_mask() {
    628   return ExternalReference(reinterpret_cast<Address>(Heap::NewSpaceMask()));
    629 }
    630 
    631 
    632 ExternalReference ExternalReference::new_space_allocation_top_address() {
    633   return ExternalReference(Heap::NewSpaceAllocationTopAddress());
    634 }
    635 
    636 
    637 ExternalReference ExternalReference::heap_always_allocate_scope_depth() {
    638   return ExternalReference(Heap::always_allocate_scope_depth_address());
    639 }
    640 
    641 
    642 ExternalReference ExternalReference::new_space_allocation_limit_address() {
    643   return ExternalReference(Heap::NewSpaceAllocationLimitAddress());
    644 }
    645 
    646 
    647 ExternalReference ExternalReference::handle_scope_extensions_address() {
    648   return ExternalReference(HandleScope::current_extensions_address());
    649 }
    650 
    651 
    652 ExternalReference ExternalReference::handle_scope_next_address() {
    653   return ExternalReference(HandleScope::current_next_address());
    654 }
    655 
    656 
    657 ExternalReference ExternalReference::handle_scope_limit_address() {
    658   return ExternalReference(HandleScope::current_limit_address());
    659 }
    660 
    661 
    662 ExternalReference ExternalReference::scheduled_exception_address() {
    663   return ExternalReference(Top::scheduled_exception_address());
    664 }
    665 
    666 
    667 #ifdef V8_NATIVE_REGEXP
    668 
    669 ExternalReference ExternalReference::re_check_stack_guard_state() {
    670   Address function;
    671 #ifdef V8_TARGET_ARCH_X64
    672   function = FUNCTION_ADDR(RegExpMacroAssemblerX64::CheckStackGuardState);
    673 #elif V8_TARGET_ARCH_IA32
    674   function = FUNCTION_ADDR(RegExpMacroAssemblerIA32::CheckStackGuardState);
    675 #elif V8_TARGET_ARCH_ARM
    676   function = FUNCTION_ADDR(RegExpMacroAssemblerARM::CheckStackGuardState);
    677 #else
    678   UNREACHABLE();
    679 #endif
    680   return ExternalReference(Redirect(function));
    681 }
    682 
    683 ExternalReference ExternalReference::re_grow_stack() {
    684   return ExternalReference(
    685       Redirect(FUNCTION_ADDR(NativeRegExpMacroAssembler::GrowStack)));
    686 }
    687 
    688 ExternalReference ExternalReference::re_case_insensitive_compare_uc16() {
    689   return ExternalReference(Redirect(
    690       FUNCTION_ADDR(NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16)));
    691 }
    692 
    693 ExternalReference ExternalReference::re_word_character_map() {
    694   return ExternalReference(
    695       NativeRegExpMacroAssembler::word_character_map_address());
    696 }
    697 
    698 ExternalReference ExternalReference::address_of_static_offsets_vector() {
    699   return ExternalReference(OffsetsVector::static_offsets_vector_address());
    700 }
    701 
    702 ExternalReference ExternalReference::address_of_regexp_stack_memory_address() {
    703   return ExternalReference(RegExpStack::memory_address());
    704 }
    705 
    706 ExternalReference ExternalReference::address_of_regexp_stack_memory_size() {
    707   return ExternalReference(RegExpStack::memory_size_address());
    708 }
    709 
    710 #endif
    711 
    712 
    713 static double add_two_doubles(double x, double y) {
    714   return x + y;
    715 }
    716 
    717 
    718 static double sub_two_doubles(double x, double y) {
    719   return x - y;
    720 }
    721 
    722 
    723 static double mul_two_doubles(double x, double y) {
    724   return x * y;
    725 }
    726 
    727 
    728 static double div_two_doubles(double x, double y) {
    729   return x / y;
    730 }
    731 
    732 
    733 static double mod_two_doubles(double x, double y) {
    734   return modulo(x, y);
    735 }
    736 
    737 
    738 static int native_compare_doubles(double y, double x) {
    739   if (x == y) return EQUAL;
    740   return x < y ? LESS : GREATER;
    741 }
    742 
    743 
    744 ExternalReference ExternalReference::double_fp_operation(
    745     Token::Value operation) {
    746   typedef double BinaryFPOperation(double x, double y);
    747   BinaryFPOperation* function = NULL;
    748   switch (operation) {
    749     case Token::ADD:
    750       function = &add_two_doubles;
    751       break;
    752     case Token::SUB:
    753       function = &sub_two_doubles;
    754       break;
    755     case Token::MUL:
    756       function = &mul_two_doubles;
    757       break;
    758     case Token::DIV:
    759       function = &div_two_doubles;
    760       break;
    761     case Token::MOD:
    762       function = &mod_two_doubles;
    763       break;
    764     default:
    765       UNREACHABLE();
    766   }
    767   // Passing true as 2nd parameter indicates that they return an fp value.
    768   return ExternalReference(Redirect(FUNCTION_ADDR(function), true));
    769 }
    770 
    771 
    772 ExternalReference ExternalReference::compare_doubles() {
    773   return ExternalReference(Redirect(FUNCTION_ADDR(native_compare_doubles),
    774                                     false));
    775 }
    776 
    777 
    778 ExternalReferenceRedirector* ExternalReference::redirector_ = NULL;
    779 
    780 
    781 #ifdef ENABLE_DEBUGGER_SUPPORT
    782 ExternalReference ExternalReference::debug_break() {
    783   return ExternalReference(Redirect(FUNCTION_ADDR(Debug::Break)));
    784 }
    785 
    786 
    787 ExternalReference ExternalReference::debug_step_in_fp_address() {
    788   return ExternalReference(Debug::step_in_fp_addr());
    789 }
    790 #endif
    791 
    792 } }  // namespace v8::internal
    793