Home | History | Annotate | Download | only in jpeg
      1 /*
      2  * jdcoefct.c
      3  *
      4  * Copyright (C) 1994-1997, Thomas G. Lane.
      5  * This file is part of the Independent JPEG Group's software.
      6  * For conditions of distribution and use, see the accompanying README file.
      7  *
      8  * This file contains the coefficient buffer controller for decompression.
      9  * This controller is the top level of the JPEG decompressor proper.
     10  * The coefficient buffer lies between entropy decoding and inverse-DCT steps.
     11  *
     12  * In buffered-image mode, this controller is the interface between
     13  * input-oriented processing and output-oriented processing.
     14  * Also, the input side (only) is used when reading a file for transcoding.
     15  */
     16 
     17 #define JPEG_INTERNALS
     18 #include "jinclude.h"
     19 #include "jpeglib.h"
     20 
     21 /* Block smoothing is only applicable for progressive JPEG, so: */
     22 #ifndef D_PROGRESSIVE_SUPPORTED
     23 #undef BLOCK_SMOOTHING_SUPPORTED
     24 #endif
     25 
     26 /* Private buffer controller object */
     27 
     28 typedef struct {
     29   struct jpeg_d_coef_controller pub; /* public fields */
     30 
     31   /* These variables keep track of the current location of the input side. */
     32   /* cinfo->input_iMCU_row is also used for this. */
     33   JDIMENSION MCU_ctr;		/* counts MCUs processed in current row */
     34   int MCU_vert_offset;		/* counts MCU rows within iMCU row */
     35   int MCU_rows_per_iMCU_row;	/* number of such rows needed */
     36 
     37   /* The output side's location is represented by cinfo->output_iMCU_row. */
     38 
     39   /* In single-pass modes, it's sufficient to buffer just one MCU.
     40    * We allocate a workspace of D_MAX_BLOCKS_IN_MCU coefficient blocks,
     41    * and let the entropy decoder write into that workspace each time.
     42    * (On 80x86, the workspace is FAR even though it's not really very big;
     43    * this is to keep the module interfaces unchanged when a large coefficient
     44    * buffer is necessary.)
     45    * In multi-pass modes, this array points to the current MCU's blocks
     46    * within the virtual arrays; it is used only by the input side.
     47    */
     48   JBLOCKROW MCU_buffer[D_MAX_BLOCKS_IN_MCU];
     49 
     50 #ifdef D_MULTISCAN_FILES_SUPPORTED
     51   /* In multi-pass modes, we need a virtual block array for each component. */
     52   jvirt_barray_ptr whole_image[MAX_COMPONENTS];
     53 #endif
     54 
     55 #ifdef BLOCK_SMOOTHING_SUPPORTED
     56   /* When doing block smoothing, we latch coefficient Al values here */
     57   int * coef_bits_latch;
     58 #define SAVED_COEFS  6		/* we save coef_bits[0..5] */
     59 #endif
     60 } my_coef_controller;
     61 
     62 typedef my_coef_controller * my_coef_ptr;
     63 
     64 /* Forward declarations */
     65 METHODDEF(int) decompress_onepass
     66 	JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
     67 #ifdef D_MULTISCAN_FILES_SUPPORTED
     68 METHODDEF(int) decompress_data
     69 	JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
     70 #endif
     71 #ifdef BLOCK_SMOOTHING_SUPPORTED
     72 LOCAL(boolean) smoothing_ok JPP((j_decompress_ptr cinfo));
     73 METHODDEF(int) decompress_smooth_data
     74 	JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
     75 #endif
     76 
     77 
     78 LOCAL(void)
     79 start_iMCU_row (j_decompress_ptr cinfo)
     80 /* Reset within-iMCU-row counters for a new row (input side) */
     81 {
     82   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
     83 
     84   /* In an interleaved scan, an MCU row is the same as an iMCU row.
     85    * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
     86    * But at the bottom of the image, process only what's left.
     87    */
     88   if (cinfo->comps_in_scan > 1) {
     89     coef->MCU_rows_per_iMCU_row = 1;
     90   } else {
     91     if (cinfo->input_iMCU_row < (cinfo->total_iMCU_rows-1))
     92       coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
     93     else
     94       coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
     95   }
     96 
     97   coef->MCU_ctr = 0;
     98   coef->MCU_vert_offset = 0;
     99 }
    100 
    101 
    102 /*
    103  * Initialize for an input processing pass.
    104  */
    105 
    106 METHODDEF(void)
    107 start_input_pass (j_decompress_ptr cinfo)
    108 {
    109   cinfo->input_iMCU_row = 0;
    110   start_iMCU_row(cinfo);
    111 }
    112 
    113 
    114 /*
    115  * Initialize for an output processing pass.
    116  */
    117 
    118 METHODDEF(void)
    119 start_output_pass (j_decompress_ptr cinfo)
    120 {
    121 #ifdef BLOCK_SMOOTHING_SUPPORTED
    122   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
    123 
    124   /* If multipass, check to see whether to use block smoothing on this pass */
    125   if (coef->pub.coef_arrays != NULL) {
    126     if (cinfo->do_block_smoothing && smoothing_ok(cinfo))
    127       coef->pub.decompress_data = decompress_smooth_data;
    128     else
    129       coef->pub.decompress_data = decompress_data;
    130   }
    131 #endif
    132   cinfo->output_iMCU_row = 0;
    133 }
    134 
    135 
    136 /*
    137  * Decompress and return some data in the single-pass case.
    138  * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
    139  * Input and output must run in lockstep since we have only a one-MCU buffer.
    140  * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
    141  *
    142  * NB: output_buf contains a plane for each component in image,
    143  * which we index according to the component's SOF position.
    144  */
    145 
    146 METHODDEF(int)
    147 decompress_onepass (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
    148 {
    149   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
    150   JDIMENSION MCU_col_num;	/* index of current MCU within row */
    151   JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
    152   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
    153   int blkn, ci, xindex, yindex, yoffset, useful_width;
    154   JSAMPARRAY output_ptr;
    155   JDIMENSION start_col, output_col;
    156   jpeg_component_info *compptr;
    157   inverse_DCT_method_ptr inverse_DCT;
    158 
    159   /* Loop to process as much as one whole iMCU row */
    160   for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
    161        yoffset++) {
    162     for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col;
    163 	 MCU_col_num++) {
    164       /* Try to fetch an MCU.  Entropy decoder expects buffer to be zeroed. */
    165       jzero_far((void FAR *) coef->MCU_buffer[0],
    166 		(size_t) (cinfo->blocks_in_MCU * SIZEOF(JBLOCK)));
    167       if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
    168 	/* Suspension forced; update state counters and exit */
    169 	coef->MCU_vert_offset = yoffset;
    170 	coef->MCU_ctr = MCU_col_num;
    171 	return JPEG_SUSPENDED;
    172       }
    173       /* Determine where data should go in output_buf and do the IDCT thing.
    174        * We skip dummy blocks at the right and bottom edges (but blkn gets
    175        * incremented past them!).  Note the inner loop relies on having
    176        * allocated the MCU_buffer[] blocks sequentially.
    177        */
    178       blkn = 0;			/* index of current DCT block within MCU */
    179       for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    180 	compptr = cinfo->cur_comp_info[ci];
    181 	/* Don't bother to IDCT an uninteresting component. */
    182 	if (! compptr->component_needed) {
    183 	  blkn += compptr->MCU_blocks;
    184 	  continue;
    185 	}
    186 	inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index];
    187 	useful_width = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
    188 						    : compptr->last_col_width;
    189 	output_ptr = output_buf[compptr->component_index] +
    190 	  yoffset * compptr->DCT_scaled_size;
    191 	start_col = MCU_col_num * compptr->MCU_sample_width;
    192 	for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
    193 	  if (cinfo->input_iMCU_row < last_iMCU_row ||
    194 	      yoffset+yindex < compptr->last_row_height) {
    195 	    output_col = start_col;
    196 	    for (xindex = 0; xindex < useful_width; xindex++) {
    197 	      (*inverse_DCT) (cinfo, compptr,
    198 			      (JCOEFPTR) coef->MCU_buffer[blkn+xindex],
    199 			      output_ptr, output_col);
    200 	      output_col += compptr->DCT_scaled_size;
    201 	    }
    202 	  }
    203 	  blkn += compptr->MCU_width;
    204 	  output_ptr += compptr->DCT_scaled_size;
    205 	}
    206       }
    207     }
    208     /* Completed an MCU row, but perhaps not an iMCU row */
    209     coef->MCU_ctr = 0;
    210   }
    211   /* Completed the iMCU row, advance counters for next one */
    212   cinfo->output_iMCU_row++;
    213   if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
    214     start_iMCU_row(cinfo);
    215     return JPEG_ROW_COMPLETED;
    216   }
    217   /* Completed the scan */
    218   (*cinfo->inputctl->finish_input_pass) (cinfo);
    219   return JPEG_SCAN_COMPLETED;
    220 }
    221 
    222 
    223 /*
    224  * Dummy consume-input routine for single-pass operation.
    225  */
    226 
    227 METHODDEF(int)
    228 dummy_consume_data (j_decompress_ptr cinfo)
    229 {
    230   return JPEG_SUSPENDED;	/* Always indicate nothing was done */
    231 }
    232 
    233 
    234 #ifdef D_MULTISCAN_FILES_SUPPORTED
    235 
    236 /*
    237  * Consume input data and store it in the full-image coefficient buffer.
    238  * We read as much as one fully interleaved MCU row ("iMCU" row) per call,
    239  * ie, v_samp_factor block rows for each component in the scan.
    240  * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
    241  */
    242 
    243 METHODDEF(int)
    244 consume_data (j_decompress_ptr cinfo)
    245 {
    246   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
    247   JDIMENSION MCU_col_num;	/* index of current MCU within row */
    248   int blkn, ci, xindex, yindex, yoffset;
    249   JDIMENSION start_col;
    250   JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
    251   JBLOCKROW buffer_ptr;
    252   jpeg_component_info *compptr;
    253 
    254   /* Align the virtual buffers for the components used in this scan. */
    255   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    256     compptr = cinfo->cur_comp_info[ci];
    257     buffer[ci] = (*cinfo->mem->access_virt_barray)
    258       ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
    259        cinfo->input_iMCU_row * compptr->v_samp_factor,
    260        (JDIMENSION) compptr->v_samp_factor, TRUE);
    261     /* Note: entropy decoder expects buffer to be zeroed,
    262      * but this is handled automatically by the memory manager
    263      * because we requested a pre-zeroed array.
    264      */
    265   }
    266 
    267   /* Loop to process one whole iMCU row */
    268   for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
    269        yoffset++) {
    270     for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row;
    271 	 MCU_col_num++) {
    272       /* Construct list of pointers to DCT blocks belonging to this MCU */
    273       blkn = 0;			/* index of current DCT block within MCU */
    274       for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    275 	compptr = cinfo->cur_comp_info[ci];
    276 	start_col = MCU_col_num * compptr->MCU_width;
    277 	for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
    278 	  buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
    279 	  for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
    280 	    coef->MCU_buffer[blkn++] = buffer_ptr++;
    281 	  }
    282 	}
    283       }
    284       /* Try to fetch the MCU. */
    285       if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
    286 	/* Suspension forced; update state counters and exit */
    287 	coef->MCU_vert_offset = yoffset;
    288 	coef->MCU_ctr = MCU_col_num;
    289 	return JPEG_SUSPENDED;
    290       }
    291     }
    292     /* Completed an MCU row, but perhaps not an iMCU row */
    293     coef->MCU_ctr = 0;
    294   }
    295   /* Completed the iMCU row, advance counters for next one */
    296   if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
    297     start_iMCU_row(cinfo);
    298     return JPEG_ROW_COMPLETED;
    299   }
    300   /* Completed the scan */
    301   (*cinfo->inputctl->finish_input_pass) (cinfo);
    302   return JPEG_SCAN_COMPLETED;
    303 }
    304 
    305 
    306 /*
    307  * Decompress and return some data in the multi-pass case.
    308  * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
    309  * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
    310  *
    311  * NB: output_buf contains a plane for each component in image.
    312  */
    313 
    314 METHODDEF(int)
    315 decompress_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
    316 {
    317   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
    318   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
    319   JDIMENSION block_num;
    320   int ci, block_row, block_rows;
    321   JBLOCKARRAY buffer;
    322   JBLOCKROW buffer_ptr;
    323   JSAMPARRAY output_ptr;
    324   JDIMENSION output_col;
    325   jpeg_component_info *compptr;
    326   inverse_DCT_method_ptr inverse_DCT;
    327 
    328   /* Force some input to be done if we are getting ahead of the input. */
    329   while (cinfo->input_scan_number < cinfo->output_scan_number ||
    330 	 (cinfo->input_scan_number == cinfo->output_scan_number &&
    331 	  cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) {
    332     if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
    333       return JPEG_SUSPENDED;
    334   }
    335 
    336   /* OK, output from the virtual arrays. */
    337   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
    338        ci++, compptr++) {
    339     /* Don't bother to IDCT an uninteresting component. */
    340     if (! compptr->component_needed)
    341       continue;
    342     /* Align the virtual buffer for this component. */
    343     buffer = (*cinfo->mem->access_virt_barray)
    344       ((j_common_ptr) cinfo, coef->whole_image[ci],
    345        cinfo->output_iMCU_row * compptr->v_samp_factor,
    346        (JDIMENSION) compptr->v_samp_factor, FALSE);
    347     /* Count non-dummy DCT block rows in this iMCU row. */
    348     if (cinfo->output_iMCU_row < last_iMCU_row)
    349       block_rows = compptr->v_samp_factor;
    350     else {
    351       /* NB: can't use last_row_height here; it is input-side-dependent! */
    352       block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
    353       if (block_rows == 0) block_rows = compptr->v_samp_factor;
    354     }
    355     inverse_DCT = cinfo->idct->inverse_DCT[ci];
    356     output_ptr = output_buf[ci];
    357     /* Loop over all DCT blocks to be processed. */
    358     for (block_row = 0; block_row < block_rows; block_row++) {
    359       buffer_ptr = buffer[block_row];
    360       output_col = 0;
    361       for (block_num = 0; block_num < compptr->width_in_blocks; block_num++) {
    362 	(*inverse_DCT) (cinfo, compptr, (JCOEFPTR) buffer_ptr,
    363 			output_ptr, output_col);
    364 	buffer_ptr++;
    365 	output_col += compptr->DCT_scaled_size;
    366       }
    367       output_ptr += compptr->DCT_scaled_size;
    368     }
    369   }
    370 
    371   if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
    372     return JPEG_ROW_COMPLETED;
    373   return JPEG_SCAN_COMPLETED;
    374 }
    375 
    376 #endif /* D_MULTISCAN_FILES_SUPPORTED */
    377 
    378 
    379 #ifdef BLOCK_SMOOTHING_SUPPORTED
    380 
    381 /*
    382  * This code applies interblock smoothing as described by section K.8
    383  * of the JPEG standard: the first 5 AC coefficients are estimated from
    384  * the DC values of a DCT block and its 8 neighboring blocks.
    385  * We apply smoothing only for progressive JPEG decoding, and only if
    386  * the coefficients it can estimate are not yet known to full precision.
    387  */
    388 
    389 /* Natural-order array positions of the first 5 zigzag-order coefficients */
    390 #define Q01_POS  1
    391 #define Q10_POS  8
    392 #define Q20_POS  16
    393 #define Q11_POS  9
    394 #define Q02_POS  2
    395 
    396 /*
    397  * Determine whether block smoothing is applicable and safe.
    398  * We also latch the current states of the coef_bits[] entries for the
    399  * AC coefficients; otherwise, if the input side of the decompressor
    400  * advances into a new scan, we might think the coefficients are known
    401  * more accurately than they really are.
    402  */
    403 
    404 LOCAL(boolean)
    405 smoothing_ok (j_decompress_ptr cinfo)
    406 {
    407   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
    408   boolean smoothing_useful = FALSE;
    409   int ci, coefi;
    410   jpeg_component_info *compptr;
    411   JQUANT_TBL * qtable;
    412   int * coef_bits;
    413   int * coef_bits_latch;
    414 
    415   if (! cinfo->progressive_mode || cinfo->coef_bits == NULL)
    416     return FALSE;
    417 
    418   /* Allocate latch area if not already done */
    419   if (coef->coef_bits_latch == NULL)
    420     coef->coef_bits_latch = (int *)
    421       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    422 				  cinfo->num_components *
    423 				  (SAVED_COEFS * SIZEOF(int)));
    424   coef_bits_latch = coef->coef_bits_latch;
    425 
    426   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
    427        ci++, compptr++) {
    428     /* All components' quantization values must already be latched. */
    429     if ((qtable = compptr->quant_table) == NULL)
    430       return FALSE;
    431     /* Verify DC & first 5 AC quantizers are nonzero to avoid zero-divide. */
    432     if (qtable->quantval[0] == 0 ||
    433 	qtable->quantval[Q01_POS] == 0 ||
    434 	qtable->quantval[Q10_POS] == 0 ||
    435 	qtable->quantval[Q20_POS] == 0 ||
    436 	qtable->quantval[Q11_POS] == 0 ||
    437 	qtable->quantval[Q02_POS] == 0)
    438       return FALSE;
    439     /* DC values must be at least partly known for all components. */
    440     coef_bits = cinfo->coef_bits[ci];
    441     if (coef_bits[0] < 0)
    442       return FALSE;
    443     /* Block smoothing is helpful if some AC coefficients remain inaccurate. */
    444     for (coefi = 1; coefi <= 5; coefi++) {
    445       coef_bits_latch[coefi] = coef_bits[coefi];
    446       if (coef_bits[coefi] != 0)
    447 	smoothing_useful = TRUE;
    448     }
    449     coef_bits_latch += SAVED_COEFS;
    450   }
    451 
    452   return smoothing_useful;
    453 }
    454 
    455 
    456 /*
    457  * Variant of decompress_data for use when doing block smoothing.
    458  */
    459 
    460 METHODDEF(int)
    461 decompress_smooth_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
    462 {
    463   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
    464   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
    465   JDIMENSION block_num, last_block_column;
    466   int ci, block_row, block_rows, access_rows;
    467   JBLOCKARRAY buffer;
    468   JBLOCKROW buffer_ptr, prev_block_row, next_block_row;
    469   JSAMPARRAY output_ptr;
    470   JDIMENSION output_col;
    471   jpeg_component_info *compptr;
    472   inverse_DCT_method_ptr inverse_DCT;
    473   boolean first_row, last_row;
    474   JBLOCK workspace;
    475   int *coef_bits;
    476   JQUANT_TBL *quanttbl;
    477   INT32 Q00,Q01,Q02,Q10,Q11,Q20, num;
    478   int DC1,DC2,DC3,DC4,DC5,DC6,DC7,DC8,DC9;
    479   int Al, pred;
    480 
    481   /* Force some input to be done if we are getting ahead of the input. */
    482   while (cinfo->input_scan_number <= cinfo->output_scan_number &&
    483 	 ! cinfo->inputctl->eoi_reached) {
    484     if (cinfo->input_scan_number == cinfo->output_scan_number) {
    485       /* If input is working on current scan, we ordinarily want it to
    486        * have completed the current row.  But if input scan is DC,
    487        * we want it to keep one row ahead so that next block row's DC
    488        * values are up to date.
    489        */
    490       JDIMENSION delta = (cinfo->Ss == 0) ? 1 : 0;
    491       if (cinfo->input_iMCU_row > cinfo->output_iMCU_row+delta)
    492 	break;
    493     }
    494     if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
    495       return JPEG_SUSPENDED;
    496   }
    497 
    498   /* OK, output from the virtual arrays. */
    499   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
    500        ci++, compptr++) {
    501     /* Don't bother to IDCT an uninteresting component. */
    502     if (! compptr->component_needed)
    503       continue;
    504     /* Count non-dummy DCT block rows in this iMCU row. */
    505     if (cinfo->output_iMCU_row < last_iMCU_row) {
    506       block_rows = compptr->v_samp_factor;
    507       access_rows = block_rows * 2; /* this and next iMCU row */
    508       last_row = FALSE;
    509     } else {
    510       /* NB: can't use last_row_height here; it is input-side-dependent! */
    511       block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
    512       if (block_rows == 0) block_rows = compptr->v_samp_factor;
    513       access_rows = block_rows; /* this iMCU row only */
    514       last_row = TRUE;
    515     }
    516     /* Align the virtual buffer for this component. */
    517     if (cinfo->output_iMCU_row > 0) {
    518       access_rows += compptr->v_samp_factor; /* prior iMCU row too */
    519       buffer = (*cinfo->mem->access_virt_barray)
    520 	((j_common_ptr) cinfo, coef->whole_image[ci],
    521 	 (cinfo->output_iMCU_row - 1) * compptr->v_samp_factor,
    522 	 (JDIMENSION) access_rows, FALSE);
    523       buffer += compptr->v_samp_factor;	/* point to current iMCU row */
    524       first_row = FALSE;
    525     } else {
    526       buffer = (*cinfo->mem->access_virt_barray)
    527 	((j_common_ptr) cinfo, coef->whole_image[ci],
    528 	 (JDIMENSION) 0, (JDIMENSION) access_rows, FALSE);
    529       first_row = TRUE;
    530     }
    531     /* Fetch component-dependent info */
    532     coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS);
    533     quanttbl = compptr->quant_table;
    534     Q00 = quanttbl->quantval[0];
    535     Q01 = quanttbl->quantval[Q01_POS];
    536     Q10 = quanttbl->quantval[Q10_POS];
    537     Q20 = quanttbl->quantval[Q20_POS];
    538     Q11 = quanttbl->quantval[Q11_POS];
    539     Q02 = quanttbl->quantval[Q02_POS];
    540     inverse_DCT = cinfo->idct->inverse_DCT[ci];
    541     output_ptr = output_buf[ci];
    542     /* Loop over all DCT blocks to be processed. */
    543     for (block_row = 0; block_row < block_rows; block_row++) {
    544       buffer_ptr = buffer[block_row];
    545       if (first_row && block_row == 0)
    546 	prev_block_row = buffer_ptr;
    547       else
    548 	prev_block_row = buffer[block_row-1];
    549       if (last_row && block_row == block_rows-1)
    550 	next_block_row = buffer_ptr;
    551       else
    552 	next_block_row = buffer[block_row+1];
    553       /* We fetch the surrounding DC values using a sliding-register approach.
    554        * Initialize all nine here so as to do the right thing on narrow pics.
    555        */
    556       DC1 = DC2 = DC3 = (int) prev_block_row[0][0];
    557       DC4 = DC5 = DC6 = (int) buffer_ptr[0][0];
    558       DC7 = DC8 = DC9 = (int) next_block_row[0][0];
    559       output_col = 0;
    560       last_block_column = compptr->width_in_blocks - 1;
    561       for (block_num = 0; block_num <= last_block_column; block_num++) {
    562 	/* Fetch current DCT block into workspace so we can modify it. */
    563 	jcopy_block_row(buffer_ptr, (JBLOCKROW) workspace, (JDIMENSION) 1);
    564 	/* Update DC values */
    565 	if (block_num < last_block_column) {
    566 	  DC3 = (int) prev_block_row[1][0];
    567 	  DC6 = (int) buffer_ptr[1][0];
    568 	  DC9 = (int) next_block_row[1][0];
    569 	}
    570 	/* Compute coefficient estimates per K.8.
    571 	 * An estimate is applied only if coefficient is still zero,
    572 	 * and is not known to be fully accurate.
    573 	 */
    574 	/* AC01 */
    575 	if ((Al=coef_bits[1]) != 0 && workspace[1] == 0) {
    576 	  num = 36 * Q00 * (DC4 - DC6);
    577 	  if (num >= 0) {
    578 	    pred = (int) (((Q01<<7) + num) / (Q01<<8));
    579 	    if (Al > 0 && pred >= (1<<Al))
    580 	      pred = (1<<Al)-1;
    581 	  } else {
    582 	    pred = (int) (((Q01<<7) - num) / (Q01<<8));
    583 	    if (Al > 0 && pred >= (1<<Al))
    584 	      pred = (1<<Al)-1;
    585 	    pred = -pred;
    586 	  }
    587 	  workspace[1] = (JCOEF) pred;
    588 	}
    589 	/* AC10 */
    590 	if ((Al=coef_bits[2]) != 0 && workspace[8] == 0) {
    591 	  num = 36 * Q00 * (DC2 - DC8);
    592 	  if (num >= 0) {
    593 	    pred = (int) (((Q10<<7) + num) / (Q10<<8));
    594 	    if (Al > 0 && pred >= (1<<Al))
    595 	      pred = (1<<Al)-1;
    596 	  } else {
    597 	    pred = (int) (((Q10<<7) - num) / (Q10<<8));
    598 	    if (Al > 0 && pred >= (1<<Al))
    599 	      pred = (1<<Al)-1;
    600 	    pred = -pred;
    601 	  }
    602 	  workspace[8] = (JCOEF) pred;
    603 	}
    604 	/* AC20 */
    605 	if ((Al=coef_bits[3]) != 0 && workspace[16] == 0) {
    606 	  num = 9 * Q00 * (DC2 + DC8 - 2*DC5);
    607 	  if (num >= 0) {
    608 	    pred = (int) (((Q20<<7) + num) / (Q20<<8));
    609 	    if (Al > 0 && pred >= (1<<Al))
    610 	      pred = (1<<Al)-1;
    611 	  } else {
    612 	    pred = (int) (((Q20<<7) - num) / (Q20<<8));
    613 	    if (Al > 0 && pred >= (1<<Al))
    614 	      pred = (1<<Al)-1;
    615 	    pred = -pred;
    616 	  }
    617 	  workspace[16] = (JCOEF) pred;
    618 	}
    619 	/* AC11 */
    620 	if ((Al=coef_bits[4]) != 0 && workspace[9] == 0) {
    621 	  num = 5 * Q00 * (DC1 - DC3 - DC7 + DC9);
    622 	  if (num >= 0) {
    623 	    pred = (int) (((Q11<<7) + num) / (Q11<<8));
    624 	    if (Al > 0 && pred >= (1<<Al))
    625 	      pred = (1<<Al)-1;
    626 	  } else {
    627 	    pred = (int) (((Q11<<7) - num) / (Q11<<8));
    628 	    if (Al > 0 && pred >= (1<<Al))
    629 	      pred = (1<<Al)-1;
    630 	    pred = -pred;
    631 	  }
    632 	  workspace[9] = (JCOEF) pred;
    633 	}
    634 	/* AC02 */
    635 	if ((Al=coef_bits[5]) != 0 && workspace[2] == 0) {
    636 	  num = 9 * Q00 * (DC4 + DC6 - 2*DC5);
    637 	  if (num >= 0) {
    638 	    pred = (int) (((Q02<<7) + num) / (Q02<<8));
    639 	    if (Al > 0 && pred >= (1<<Al))
    640 	      pred = (1<<Al)-1;
    641 	  } else {
    642 	    pred = (int) (((Q02<<7) - num) / (Q02<<8));
    643 	    if (Al > 0 && pred >= (1<<Al))
    644 	      pred = (1<<Al)-1;
    645 	    pred = -pred;
    646 	  }
    647 	  workspace[2] = (JCOEF) pred;
    648 	}
    649 	/* OK, do the IDCT */
    650 	(*inverse_DCT) (cinfo, compptr, (JCOEFPTR) workspace,
    651 			output_ptr, output_col);
    652 	/* Advance for next column */
    653 	DC1 = DC2; DC2 = DC3;
    654 	DC4 = DC5; DC5 = DC6;
    655 	DC7 = DC8; DC8 = DC9;
    656 	buffer_ptr++, prev_block_row++, next_block_row++;
    657 	output_col += compptr->DCT_scaled_size;
    658       }
    659       output_ptr += compptr->DCT_scaled_size;
    660     }
    661   }
    662 
    663   if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
    664     return JPEG_ROW_COMPLETED;
    665   return JPEG_SCAN_COMPLETED;
    666 }
    667 
    668 #endif /* BLOCK_SMOOTHING_SUPPORTED */
    669 
    670 
    671 /*
    672  * Initialize coefficient buffer controller.
    673  */
    674 
    675 GLOBAL(void)
    676 jinit_d_coef_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
    677 {
    678   my_coef_ptr coef;
    679 
    680   coef = (my_coef_ptr)
    681     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    682 				SIZEOF(my_coef_controller));
    683   cinfo->coef = (struct jpeg_d_coef_controller *) coef;
    684   coef->pub.start_input_pass = start_input_pass;
    685   coef->pub.start_output_pass = start_output_pass;
    686 #ifdef BLOCK_SMOOTHING_SUPPORTED
    687   coef->coef_bits_latch = NULL;
    688 #endif
    689 
    690   /* Create the coefficient buffer. */
    691   if (need_full_buffer) {
    692 #ifdef D_MULTISCAN_FILES_SUPPORTED
    693     /* Allocate a full-image virtual array for each component, */
    694     /* padded to a multiple of samp_factor DCT blocks in each direction. */
    695     /* Note we ask for a pre-zeroed array. */
    696     int ci, access_rows;
    697     jpeg_component_info *compptr;
    698 
    699     for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
    700 	 ci++, compptr++) {
    701       access_rows = compptr->v_samp_factor;
    702 #ifdef BLOCK_SMOOTHING_SUPPORTED
    703       /* If block smoothing could be used, need a bigger window */
    704       if (cinfo->progressive_mode)
    705 	access_rows *= 3;
    706 #endif
    707       coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
    708 	((j_common_ptr) cinfo, JPOOL_IMAGE, TRUE,
    709 	 (JDIMENSION) jround_up((long) compptr->width_in_blocks,
    710 				(long) compptr->h_samp_factor),
    711 	 (JDIMENSION) jround_up((long) compptr->height_in_blocks,
    712 				(long) compptr->v_samp_factor),
    713 	 (JDIMENSION) access_rows);
    714     }
    715     coef->pub.consume_data = consume_data;
    716     coef->pub.decompress_data = decompress_data;
    717     coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */
    718 #else
    719     ERREXIT(cinfo, JERR_NOT_COMPILED);
    720 #endif
    721   } else {
    722     /* We only need a single-MCU buffer. */
    723     JBLOCKROW buffer;
    724     int i;
    725 
    726     buffer = (JBLOCKROW)
    727       (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    728 				  D_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
    729     for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) {
    730       coef->MCU_buffer[i] = buffer + i;
    731     }
    732     coef->pub.consume_data = dummy_consume_data;
    733     coef->pub.decompress_data = decompress_onepass;
    734     coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */
    735   }
    736 }
    737