1 /* 2 * gdb server stub 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, write to the Free Software 18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA 19 */ 20 #include "config.h" 21 #include "qemu-common.h" 22 #ifdef CONFIG_USER_ONLY 23 #include <stdlib.h> 24 #include <stdio.h> 25 #include <stdarg.h> 26 #include <string.h> 27 #include <errno.h> 28 #include <unistd.h> 29 #include <fcntl.h> 30 31 #include "qemu.h" 32 #else 33 #include "monitor.h" 34 #include "qemu-char.h" 35 #include "sysemu.h" 36 #include "gdbstub.h" 37 #endif 38 39 #define MAX_PACKET_LENGTH 4096 40 41 #include "qemu_socket.h" 42 #include "kvm.h" 43 44 45 enum { 46 GDB_SIGNAL_0 = 0, 47 GDB_SIGNAL_INT = 2, 48 GDB_SIGNAL_TRAP = 5, 49 GDB_SIGNAL_UNKNOWN = 143 50 }; 51 52 #ifdef CONFIG_USER_ONLY 53 54 /* Map target signal numbers to GDB protocol signal numbers and vice 55 * versa. For user emulation's currently supported systems, we can 56 * assume most signals are defined. 57 */ 58 59 static int gdb_signal_table[] = { 60 0, 61 TARGET_SIGHUP, 62 TARGET_SIGINT, 63 TARGET_SIGQUIT, 64 TARGET_SIGILL, 65 TARGET_SIGTRAP, 66 TARGET_SIGABRT, 67 -1, /* SIGEMT */ 68 TARGET_SIGFPE, 69 TARGET_SIGKILL, 70 TARGET_SIGBUS, 71 TARGET_SIGSEGV, 72 TARGET_SIGSYS, 73 TARGET_SIGPIPE, 74 TARGET_SIGALRM, 75 TARGET_SIGTERM, 76 TARGET_SIGURG, 77 TARGET_SIGSTOP, 78 TARGET_SIGTSTP, 79 TARGET_SIGCONT, 80 TARGET_SIGCHLD, 81 TARGET_SIGTTIN, 82 TARGET_SIGTTOU, 83 TARGET_SIGIO, 84 TARGET_SIGXCPU, 85 TARGET_SIGXFSZ, 86 TARGET_SIGVTALRM, 87 TARGET_SIGPROF, 88 TARGET_SIGWINCH, 89 -1, /* SIGLOST */ 90 TARGET_SIGUSR1, 91 TARGET_SIGUSR2, 92 #ifdef TARGET_SIGPWR 93 TARGET_SIGPWR, 94 #else 95 -1, 96 #endif 97 -1, /* SIGPOLL */ 98 -1, 99 -1, 100 -1, 101 -1, 102 -1, 103 -1, 104 -1, 105 -1, 106 -1, 107 -1, 108 -1, 109 #ifdef __SIGRTMIN 110 __SIGRTMIN + 1, 111 __SIGRTMIN + 2, 112 __SIGRTMIN + 3, 113 __SIGRTMIN + 4, 114 __SIGRTMIN + 5, 115 __SIGRTMIN + 6, 116 __SIGRTMIN + 7, 117 __SIGRTMIN + 8, 118 __SIGRTMIN + 9, 119 __SIGRTMIN + 10, 120 __SIGRTMIN + 11, 121 __SIGRTMIN + 12, 122 __SIGRTMIN + 13, 123 __SIGRTMIN + 14, 124 __SIGRTMIN + 15, 125 __SIGRTMIN + 16, 126 __SIGRTMIN + 17, 127 __SIGRTMIN + 18, 128 __SIGRTMIN + 19, 129 __SIGRTMIN + 20, 130 __SIGRTMIN + 21, 131 __SIGRTMIN + 22, 132 __SIGRTMIN + 23, 133 __SIGRTMIN + 24, 134 __SIGRTMIN + 25, 135 __SIGRTMIN + 26, 136 __SIGRTMIN + 27, 137 __SIGRTMIN + 28, 138 __SIGRTMIN + 29, 139 __SIGRTMIN + 30, 140 __SIGRTMIN + 31, 141 -1, /* SIGCANCEL */ 142 __SIGRTMIN, 143 __SIGRTMIN + 32, 144 __SIGRTMIN + 33, 145 __SIGRTMIN + 34, 146 __SIGRTMIN + 35, 147 __SIGRTMIN + 36, 148 __SIGRTMIN + 37, 149 __SIGRTMIN + 38, 150 __SIGRTMIN + 39, 151 __SIGRTMIN + 40, 152 __SIGRTMIN + 41, 153 __SIGRTMIN + 42, 154 __SIGRTMIN + 43, 155 __SIGRTMIN + 44, 156 __SIGRTMIN + 45, 157 __SIGRTMIN + 46, 158 __SIGRTMIN + 47, 159 __SIGRTMIN + 48, 160 __SIGRTMIN + 49, 161 __SIGRTMIN + 50, 162 __SIGRTMIN + 51, 163 __SIGRTMIN + 52, 164 __SIGRTMIN + 53, 165 __SIGRTMIN + 54, 166 __SIGRTMIN + 55, 167 __SIGRTMIN + 56, 168 __SIGRTMIN + 57, 169 __SIGRTMIN + 58, 170 __SIGRTMIN + 59, 171 __SIGRTMIN + 60, 172 __SIGRTMIN + 61, 173 __SIGRTMIN + 62, 174 __SIGRTMIN + 63, 175 __SIGRTMIN + 64, 176 __SIGRTMIN + 65, 177 __SIGRTMIN + 66, 178 __SIGRTMIN + 67, 179 __SIGRTMIN + 68, 180 __SIGRTMIN + 69, 181 __SIGRTMIN + 70, 182 __SIGRTMIN + 71, 183 __SIGRTMIN + 72, 184 __SIGRTMIN + 73, 185 __SIGRTMIN + 74, 186 __SIGRTMIN + 75, 187 __SIGRTMIN + 76, 188 __SIGRTMIN + 77, 189 __SIGRTMIN + 78, 190 __SIGRTMIN + 79, 191 __SIGRTMIN + 80, 192 __SIGRTMIN + 81, 193 __SIGRTMIN + 82, 194 __SIGRTMIN + 83, 195 __SIGRTMIN + 84, 196 __SIGRTMIN + 85, 197 __SIGRTMIN + 86, 198 __SIGRTMIN + 87, 199 __SIGRTMIN + 88, 200 __SIGRTMIN + 89, 201 __SIGRTMIN + 90, 202 __SIGRTMIN + 91, 203 __SIGRTMIN + 92, 204 __SIGRTMIN + 93, 205 __SIGRTMIN + 94, 206 __SIGRTMIN + 95, 207 -1, /* SIGINFO */ 208 -1, /* UNKNOWN */ 209 -1, /* DEFAULT */ 210 -1, 211 -1, 212 -1, 213 -1, 214 -1, 215 -1 216 #endif 217 }; 218 #else 219 /* In system mode we only need SIGINT and SIGTRAP; other signals 220 are not yet supported. */ 221 222 enum { 223 TARGET_SIGINT = 2, 224 TARGET_SIGTRAP = 5 225 }; 226 227 static int gdb_signal_table[] = { 228 -1, 229 -1, 230 TARGET_SIGINT, 231 -1, 232 -1, 233 TARGET_SIGTRAP 234 }; 235 #endif 236 237 #ifdef CONFIG_USER_ONLY 238 static int target_signal_to_gdb (int sig) 239 { 240 int i; 241 for (i = 0; i < ARRAY_SIZE (gdb_signal_table); i++) 242 if (gdb_signal_table[i] == sig) 243 return i; 244 return GDB_SIGNAL_UNKNOWN; 245 } 246 #endif 247 248 static int gdb_signal_to_target (int sig) 249 { 250 if (sig < ARRAY_SIZE (gdb_signal_table)) 251 return gdb_signal_table[sig]; 252 else 253 return -1; 254 } 255 256 //#define DEBUG_GDB 257 258 typedef struct GDBRegisterState { 259 int base_reg; 260 int num_regs; 261 gdb_reg_cb get_reg; 262 gdb_reg_cb set_reg; 263 const char *xml; 264 struct GDBRegisterState *next; 265 } GDBRegisterState; 266 267 enum RSState { 268 RS_INACTIVE, 269 RS_IDLE, 270 RS_GETLINE, 271 RS_CHKSUM1, 272 RS_CHKSUM2, 273 RS_SYSCALL, 274 }; 275 typedef struct GDBState { 276 CPUState *c_cpu; /* current CPU for step/continue ops */ 277 CPUState *g_cpu; /* current CPU for other ops */ 278 CPUState *query_cpu; /* for q{f|s}ThreadInfo */ 279 enum RSState state; /* parsing state */ 280 char line_buf[MAX_PACKET_LENGTH]; 281 int line_buf_index; 282 int line_csum; 283 uint8_t last_packet[MAX_PACKET_LENGTH + 4]; 284 int last_packet_len; 285 int signal; 286 #ifdef CONFIG_USER_ONLY 287 int fd; 288 int running_state; 289 #else 290 CharDriverState *chr; 291 CharDriverState *mon_chr; 292 #endif 293 } GDBState; 294 295 /* By default use no IRQs and no timers while single stepping so as to 296 * make single stepping like an ICE HW step. 297 */ 298 static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER; 299 300 static GDBState *gdbserver_state; 301 302 /* This is an ugly hack to cope with both new and old gdb. 303 If gdb sends qXfer:features:read then assume we're talking to a newish 304 gdb that understands target descriptions. */ 305 static int gdb_has_xml; 306 307 #ifdef CONFIG_USER_ONLY 308 /* XXX: This is not thread safe. Do we care? */ 309 static int gdbserver_fd = -1; 310 311 static int get_char(GDBState *s) 312 { 313 uint8_t ch; 314 int ret; 315 316 for(;;) { 317 ret = recv(s->fd, &ch, 1, 0); 318 if (ret < 0) { 319 if (errno == ECONNRESET) 320 s->fd = -1; 321 if (errno != EINTR && errno != EAGAIN) 322 return -1; 323 } else if (ret == 0) { 324 close(s->fd); 325 s->fd = -1; 326 return -1; 327 } else { 328 break; 329 } 330 } 331 return ch; 332 } 333 #endif 334 335 static gdb_syscall_complete_cb gdb_current_syscall_cb; 336 337 static enum { 338 GDB_SYS_UNKNOWN, 339 GDB_SYS_ENABLED, 340 GDB_SYS_DISABLED, 341 } gdb_syscall_mode; 342 343 /* If gdb is connected when the first semihosting syscall occurs then use 344 remote gdb syscalls. Otherwise use native file IO. */ 345 int use_gdb_syscalls(void) 346 { 347 if (gdb_syscall_mode == GDB_SYS_UNKNOWN) { 348 gdb_syscall_mode = (gdbserver_state ? GDB_SYS_ENABLED 349 : GDB_SYS_DISABLED); 350 } 351 return gdb_syscall_mode == GDB_SYS_ENABLED; 352 } 353 354 /* Resume execution. */ 355 static inline void gdb_continue(GDBState *s) 356 { 357 #ifdef CONFIG_USER_ONLY 358 s->running_state = 1; 359 #else 360 vm_start(); 361 #endif 362 } 363 364 static void put_buffer(GDBState *s, const uint8_t *buf, int len) 365 { 366 #ifdef CONFIG_USER_ONLY 367 int ret; 368 369 while (len > 0) { 370 ret = send(s->fd, buf, len, 0); 371 if (ret < 0) { 372 if (errno != EINTR && errno != EAGAIN) 373 return; 374 } else { 375 buf += ret; 376 len -= ret; 377 } 378 } 379 #else 380 qemu_chr_write(s->chr, buf, len); 381 #endif 382 } 383 384 static inline int fromhex(int v) 385 { 386 if (v >= '0' && v <= '9') 387 return v - '0'; 388 else if (v >= 'A' && v <= 'F') 389 return v - 'A' + 10; 390 else if (v >= 'a' && v <= 'f') 391 return v - 'a' + 10; 392 else 393 return 0; 394 } 395 396 static inline int tohex(int v) 397 { 398 if (v < 10) 399 return v + '0'; 400 else 401 return v - 10 + 'a'; 402 } 403 404 static void memtohex(char *buf, const uint8_t *mem, int len) 405 { 406 int i, c; 407 char *q; 408 q = buf; 409 for(i = 0; i < len; i++) { 410 c = mem[i]; 411 *q++ = tohex(c >> 4); 412 *q++ = tohex(c & 0xf); 413 } 414 *q = '\0'; 415 } 416 417 static void hextomem(uint8_t *mem, const char *buf, int len) 418 { 419 int i; 420 421 for(i = 0; i < len; i++) { 422 mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]); 423 buf += 2; 424 } 425 } 426 427 /* return -1 if error, 0 if OK */ 428 static int put_packet_binary(GDBState *s, const char *buf, int len) 429 { 430 int csum, i; 431 uint8_t *p; 432 433 for(;;) { 434 p = s->last_packet; 435 *(p++) = '$'; 436 memcpy(p, buf, len); 437 p += len; 438 csum = 0; 439 for(i = 0; i < len; i++) { 440 csum += buf[i]; 441 } 442 *(p++) = '#'; 443 *(p++) = tohex((csum >> 4) & 0xf); 444 *(p++) = tohex((csum) & 0xf); 445 446 s->last_packet_len = p - s->last_packet; 447 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len); 448 449 #ifdef CONFIG_USER_ONLY 450 i = get_char(s); 451 if (i < 0) 452 return -1; 453 if (i == '+') 454 break; 455 #else 456 break; 457 #endif 458 } 459 return 0; 460 } 461 462 /* return -1 if error, 0 if OK */ 463 static int put_packet(GDBState *s, const char *buf) 464 { 465 #ifdef DEBUG_GDB 466 printf("reply='%s'\n", buf); 467 #endif 468 469 return put_packet_binary(s, buf, strlen(buf)); 470 } 471 472 /* The GDB remote protocol transfers values in target byte order. This means 473 we can use the raw memory access routines to access the value buffer. 474 Conveniently, these also handle the case where the buffer is mis-aligned. 475 */ 476 #define GET_REG8(val) do { \ 477 stb_p(mem_buf, val); \ 478 return 1; \ 479 } while(0) 480 #define GET_REG16(val) do { \ 481 stw_p(mem_buf, val); \ 482 return 2; \ 483 } while(0) 484 #define GET_REG32(val) do { \ 485 stl_p(mem_buf, val); \ 486 return 4; \ 487 } while(0) 488 #define GET_REG64(val) do { \ 489 stq_p(mem_buf, val); \ 490 return 8; \ 491 } while(0) 492 493 #if TARGET_LONG_BITS == 64 494 #define GET_REGL(val) GET_REG64(val) 495 #define ldtul_p(addr) ldq_p(addr) 496 #else 497 #define GET_REGL(val) GET_REG32(val) 498 #define ldtul_p(addr) ldl_p(addr) 499 #endif 500 501 #if defined(TARGET_I386) 502 503 #ifdef TARGET_X86_64 504 static const int gpr_map[16] = { 505 R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP, 506 8, 9, 10, 11, 12, 13, 14, 15 507 }; 508 #else 509 static const int gpr_map[8] = {0, 1, 2, 3, 4, 5, 6, 7}; 510 #endif 511 512 #define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25) 513 514 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n) 515 { 516 if (n < CPU_NB_REGS) { 517 GET_REGL(env->regs[gpr_map[n]]); 518 } else if (n >= CPU_NB_REGS + 8 && n < CPU_NB_REGS + 16) { 519 /* FIXME: byteswap float values. */ 520 #ifdef USE_X86LDOUBLE 521 memcpy(mem_buf, &env->fpregs[n - (CPU_NB_REGS + 8)], 10); 522 #else 523 memset(mem_buf, 0, 10); 524 #endif 525 return 10; 526 } else if (n >= CPU_NB_REGS + 24) { 527 n -= CPU_NB_REGS + 24; 528 if (n < CPU_NB_REGS) { 529 stq_p(mem_buf, env->xmm_regs[n].XMM_Q(0)); 530 stq_p(mem_buf + 8, env->xmm_regs[n].XMM_Q(1)); 531 return 16; 532 } else if (n == CPU_NB_REGS) { 533 GET_REG32(env->mxcsr); 534 } 535 } else { 536 n -= CPU_NB_REGS; 537 switch (n) { 538 case 0: GET_REGL(env->eip); 539 case 1: GET_REG32(env->eflags); 540 case 2: GET_REG32(env->segs[R_CS].selector); 541 case 3: GET_REG32(env->segs[R_SS].selector); 542 case 4: GET_REG32(env->segs[R_DS].selector); 543 case 5: GET_REG32(env->segs[R_ES].selector); 544 case 6: GET_REG32(env->segs[R_FS].selector); 545 case 7: GET_REG32(env->segs[R_GS].selector); 546 /* 8...15 x87 regs. */ 547 case 16: GET_REG32(env->fpuc); 548 case 17: GET_REG32((env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11); 549 case 18: GET_REG32(0); /* ftag */ 550 case 19: GET_REG32(0); /* fiseg */ 551 case 20: GET_REG32(0); /* fioff */ 552 case 21: GET_REG32(0); /* foseg */ 553 case 22: GET_REG32(0); /* fooff */ 554 case 23: GET_REG32(0); /* fop */ 555 /* 24+ xmm regs. */ 556 } 557 } 558 return 0; 559 } 560 561 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int i) 562 { 563 uint32_t tmp; 564 565 if (i < CPU_NB_REGS) { 566 env->regs[gpr_map[i]] = ldtul_p(mem_buf); 567 return sizeof(target_ulong); 568 } else if (i >= CPU_NB_REGS + 8 && i < CPU_NB_REGS + 16) { 569 i -= CPU_NB_REGS + 8; 570 #ifdef USE_X86LDOUBLE 571 memcpy(&env->fpregs[i], mem_buf, 10); 572 #endif 573 return 10; 574 } else if (i >= CPU_NB_REGS + 24) { 575 i -= CPU_NB_REGS + 24; 576 if (i < CPU_NB_REGS) { 577 env->xmm_regs[i].XMM_Q(0) = ldq_p(mem_buf); 578 env->xmm_regs[i].XMM_Q(1) = ldq_p(mem_buf + 8); 579 return 16; 580 } else if (i == CPU_NB_REGS) { 581 env->mxcsr = ldl_p(mem_buf); 582 return 4; 583 } 584 } else { 585 i -= CPU_NB_REGS; 586 switch (i) { 587 case 0: env->eip = ldtul_p(mem_buf); return sizeof(target_ulong); 588 case 1: env->eflags = ldl_p(mem_buf); return 4; 589 #if defined(CONFIG_USER_ONLY) 590 #define LOAD_SEG(index, sreg)\ 591 tmp = ldl_p(mem_buf);\ 592 if (tmp != env->segs[sreg].selector)\ 593 cpu_x86_load_seg(env, sreg, tmp); 594 #else 595 /* FIXME: Honor segment registers. Needs to avoid raising an exception 596 when the selector is invalid. */ 597 #define LOAD_SEG(index, sreg) do {} while(0) 598 #endif 599 case 2: LOAD_SEG(10, R_CS); return 4; 600 case 3: LOAD_SEG(11, R_SS); return 4; 601 case 4: LOAD_SEG(12, R_DS); return 4; 602 case 5: LOAD_SEG(13, R_ES); return 4; 603 case 6: LOAD_SEG(14, R_FS); return 4; 604 case 7: LOAD_SEG(15, R_GS); return 4; 605 /* 8...15 x87 regs. */ 606 case 16: env->fpuc = ldl_p(mem_buf); return 4; 607 case 17: 608 tmp = ldl_p(mem_buf); 609 env->fpstt = (tmp >> 11) & 7; 610 env->fpus = tmp & ~0x3800; 611 return 4; 612 case 18: /* ftag */ return 4; 613 case 19: /* fiseg */ return 4; 614 case 20: /* fioff */ return 4; 615 case 21: /* foseg */ return 4; 616 case 22: /* fooff */ return 4; 617 case 23: /* fop */ return 4; 618 /* 24+ xmm regs. */ 619 } 620 } 621 /* Unrecognised register. */ 622 return 0; 623 } 624 625 #elif defined (TARGET_PPC) 626 627 /* Old gdb always expects FP registers. Newer (xml-aware) gdb only 628 expects whatever the target description contains. Due to a 629 historical mishap the FP registers appear in between core integer 630 regs and PC, MSR, CR, and so forth. We hack round this by giving the 631 FP regs zero size when talking to a newer gdb. */ 632 #define NUM_CORE_REGS 71 633 #if defined (TARGET_PPC64) 634 #define GDB_CORE_XML "power64-core.xml" 635 #else 636 #define GDB_CORE_XML "power-core.xml" 637 #endif 638 639 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n) 640 { 641 if (n < 32) { 642 /* gprs */ 643 GET_REGL(env->gpr[n]); 644 } else if (n < 64) { 645 /* fprs */ 646 if (gdb_has_xml) 647 return 0; 648 stfq_p(mem_buf, env->fpr[n-32]); 649 return 8; 650 } else { 651 switch (n) { 652 case 64: GET_REGL(env->nip); 653 case 65: GET_REGL(env->msr); 654 case 66: 655 { 656 uint32_t cr = 0; 657 int i; 658 for (i = 0; i < 8; i++) 659 cr |= env->crf[i] << (32 - ((i + 1) * 4)); 660 GET_REG32(cr); 661 } 662 case 67: GET_REGL(env->lr); 663 case 68: GET_REGL(env->ctr); 664 case 69: GET_REGL(env->xer); 665 case 70: 666 { 667 if (gdb_has_xml) 668 return 0; 669 GET_REG32(0); /* fpscr */ 670 } 671 } 672 } 673 return 0; 674 } 675 676 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n) 677 { 678 if (n < 32) { 679 /* gprs */ 680 env->gpr[n] = ldtul_p(mem_buf); 681 return sizeof(target_ulong); 682 } else if (n < 64) { 683 /* fprs */ 684 if (gdb_has_xml) 685 return 0; 686 env->fpr[n-32] = ldfq_p(mem_buf); 687 return 8; 688 } else { 689 switch (n) { 690 case 64: 691 env->nip = ldtul_p(mem_buf); 692 return sizeof(target_ulong); 693 case 65: 694 ppc_store_msr(env, ldtul_p(mem_buf)); 695 return sizeof(target_ulong); 696 case 66: 697 { 698 uint32_t cr = ldl_p(mem_buf); 699 int i; 700 for (i = 0; i < 8; i++) 701 env->crf[i] = (cr >> (32 - ((i + 1) * 4))) & 0xF; 702 return 4; 703 } 704 case 67: 705 env->lr = ldtul_p(mem_buf); 706 return sizeof(target_ulong); 707 case 68: 708 env->ctr = ldtul_p(mem_buf); 709 return sizeof(target_ulong); 710 case 69: 711 env->xer = ldtul_p(mem_buf); 712 return sizeof(target_ulong); 713 case 70: 714 /* fpscr */ 715 if (gdb_has_xml) 716 return 0; 717 return 4; 718 } 719 } 720 return 0; 721 } 722 723 #elif defined (TARGET_SPARC) 724 725 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) 726 #define NUM_CORE_REGS 86 727 #else 728 #define NUM_CORE_REGS 72 729 #endif 730 731 #ifdef TARGET_ABI32 732 #define GET_REGA(val) GET_REG32(val) 733 #else 734 #define GET_REGA(val) GET_REGL(val) 735 #endif 736 737 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n) 738 { 739 if (n < 8) { 740 /* g0..g7 */ 741 GET_REGA(env->gregs[n]); 742 } 743 if (n < 32) { 744 /* register window */ 745 GET_REGA(env->regwptr[n - 8]); 746 } 747 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64) 748 if (n < 64) { 749 /* fprs */ 750 GET_REG32(*((uint32_t *)&env->fpr[n - 32])); 751 } 752 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */ 753 switch (n) { 754 case 64: GET_REGA(env->y); 755 case 65: GET_REGA(GET_PSR(env)); 756 case 66: GET_REGA(env->wim); 757 case 67: GET_REGA(env->tbr); 758 case 68: GET_REGA(env->pc); 759 case 69: GET_REGA(env->npc); 760 case 70: GET_REGA(env->fsr); 761 case 71: GET_REGA(0); /* csr */ 762 default: GET_REGA(0); 763 } 764 #else 765 if (n < 64) { 766 /* f0-f31 */ 767 GET_REG32(*((uint32_t *)&env->fpr[n - 32])); 768 } 769 if (n < 80) { 770 /* f32-f62 (double width, even numbers only) */ 771 uint64_t val; 772 773 val = (uint64_t)*((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) << 32; 774 val |= *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]); 775 GET_REG64(val); 776 } 777 switch (n) { 778 case 80: GET_REGL(env->pc); 779 case 81: GET_REGL(env->npc); 780 case 82: GET_REGL(((uint64_t)GET_CCR(env) << 32) | 781 ((env->asi & 0xff) << 24) | 782 ((env->pstate & 0xfff) << 8) | 783 GET_CWP64(env)); 784 case 83: GET_REGL(env->fsr); 785 case 84: GET_REGL(env->fprs); 786 case 85: GET_REGL(env->y); 787 } 788 #endif 789 return 0; 790 } 791 792 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n) 793 { 794 #if defined(TARGET_ABI32) 795 abi_ulong tmp; 796 797 tmp = ldl_p(mem_buf); 798 #else 799 target_ulong tmp; 800 801 tmp = ldtul_p(mem_buf); 802 #endif 803 804 if (n < 8) { 805 /* g0..g7 */ 806 env->gregs[n] = tmp; 807 } else if (n < 32) { 808 /* register window */ 809 env->regwptr[n - 8] = tmp; 810 } 811 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64) 812 else if (n < 64) { 813 /* fprs */ 814 *((uint32_t *)&env->fpr[n - 32]) = tmp; 815 } else { 816 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */ 817 switch (n) { 818 case 64: env->y = tmp; break; 819 case 65: PUT_PSR(env, tmp); break; 820 case 66: env->wim = tmp; break; 821 case 67: env->tbr = tmp; break; 822 case 68: env->pc = tmp; break; 823 case 69: env->npc = tmp; break; 824 case 70: env->fsr = tmp; break; 825 default: return 0; 826 } 827 } 828 return 4; 829 #else 830 else if (n < 64) { 831 /* f0-f31 */ 832 env->fpr[n] = ldfl_p(mem_buf); 833 return 4; 834 } else if (n < 80) { 835 /* f32-f62 (double width, even numbers only) */ 836 *((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) = tmp >> 32; 837 *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]) = tmp; 838 } else { 839 switch (n) { 840 case 80: env->pc = tmp; break; 841 case 81: env->npc = tmp; break; 842 case 82: 843 PUT_CCR(env, tmp >> 32); 844 env->asi = (tmp >> 24) & 0xff; 845 env->pstate = (tmp >> 8) & 0xfff; 846 PUT_CWP64(env, tmp & 0xff); 847 break; 848 case 83: env->fsr = tmp; break; 849 case 84: env->fprs = tmp; break; 850 case 85: env->y = tmp; break; 851 default: return 0; 852 } 853 } 854 return 8; 855 #endif 856 } 857 #elif defined (TARGET_ARM) 858 859 /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect 860 whatever the target description contains. Due to a historical mishap 861 the FPA registers appear in between core integer regs and the CPSR. 862 We hack round this by giving the FPA regs zero size when talking to a 863 newer gdb. */ 864 #define NUM_CORE_REGS 26 865 #define GDB_CORE_XML "arm-core.xml" 866 867 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n) 868 { 869 if (n < 16) { 870 /* Core integer register. */ 871 GET_REG32(env->regs[n]); 872 } 873 if (n < 24) { 874 /* FPA registers. */ 875 if (gdb_has_xml) 876 return 0; 877 memset(mem_buf, 0, 12); 878 return 12; 879 } 880 switch (n) { 881 case 24: 882 /* FPA status register. */ 883 if (gdb_has_xml) 884 return 0; 885 GET_REG32(0); 886 case 25: 887 /* CPSR */ 888 GET_REG32(cpsr_read(env)); 889 } 890 /* Unknown register. */ 891 return 0; 892 } 893 894 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n) 895 { 896 uint32_t tmp; 897 898 tmp = ldl_p(mem_buf); 899 900 /* Mask out low bit of PC to workaround gdb bugs. This will probably 901 cause problems if we ever implement the Jazelle DBX extensions. */ 902 if (n == 15) 903 tmp &= ~1; 904 905 if (n < 16) { 906 /* Core integer register. */ 907 env->regs[n] = tmp; 908 return 4; 909 } 910 if (n < 24) { /* 16-23 */ 911 /* FPA registers (ignored). */ 912 if (gdb_has_xml) 913 return 0; 914 return 12; 915 } 916 switch (n) { 917 case 24: 918 /* FPA status register (ignored). */ 919 if (gdb_has_xml) 920 return 0; 921 return 4; 922 case 25: 923 /* CPSR */ 924 cpsr_write (env, tmp, 0xffffffff); 925 return 4; 926 } 927 /* Unknown register. */ 928 return 0; 929 } 930 931 #elif defined (TARGET_M68K) 932 933 #define NUM_CORE_REGS 18 934 935 #define GDB_CORE_XML "cf-core.xml" 936 937 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n) 938 { 939 if (n < 8) { 940 /* D0-D7 */ 941 GET_REG32(env->dregs[n]); 942 } else if (n < 16) { 943 /* A0-A7 */ 944 GET_REG32(env->aregs[n - 8]); 945 } else { 946 switch (n) { 947 case 16: GET_REG32(env->sr); 948 case 17: GET_REG32(env->pc); 949 } 950 } 951 /* FP registers not included here because they vary between 952 ColdFire and m68k. Use XML bits for these. */ 953 return 0; 954 } 955 956 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n) 957 { 958 uint32_t tmp; 959 960 tmp = ldl_p(mem_buf); 961 962 if (n < 8) { 963 /* D0-D7 */ 964 env->dregs[n] = tmp; 965 } else if (n < 8) { 966 /* A0-A7 */ 967 env->aregs[n - 8] = tmp; 968 } else { 969 switch (n) { 970 case 16: env->sr = tmp; break; 971 case 17: env->pc = tmp; break; 972 default: return 0; 973 } 974 } 975 return 4; 976 } 977 #elif defined (TARGET_MIPS) 978 979 #define NUM_CORE_REGS 73 980 981 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n) 982 { 983 if (n < 32) { 984 GET_REGL(env->active_tc.gpr[n]); 985 } 986 if (env->CP0_Config1 & (1 << CP0C1_FP)) { 987 if (n >= 38 && n < 70) { 988 if (env->CP0_Status & (1 << CP0St_FR)) 989 GET_REGL(env->active_fpu.fpr[n - 38].d); 990 else 991 GET_REGL(env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX]); 992 } 993 switch (n) { 994 case 70: GET_REGL((int32_t)env->active_fpu.fcr31); 995 case 71: GET_REGL((int32_t)env->active_fpu.fcr0); 996 } 997 } 998 switch (n) { 999 case 32: GET_REGL((int32_t)env->CP0_Status); 1000 case 33: GET_REGL(env->active_tc.LO[0]); 1001 case 34: GET_REGL(env->active_tc.HI[0]); 1002 case 35: GET_REGL(env->CP0_BadVAddr); 1003 case 36: GET_REGL((int32_t)env->CP0_Cause); 1004 case 37: GET_REGL(env->active_tc.PC); 1005 case 72: GET_REGL(0); /* fp */ 1006 case 89: GET_REGL((int32_t)env->CP0_PRid); 1007 } 1008 if (n >= 73 && n <= 88) { 1009 /* 16 embedded regs. */ 1010 GET_REGL(0); 1011 } 1012 1013 return 0; 1014 } 1015 1016 /* convert MIPS rounding mode in FCR31 to IEEE library */ 1017 static unsigned int ieee_rm[] = 1018 { 1019 float_round_nearest_even, 1020 float_round_to_zero, 1021 float_round_up, 1022 float_round_down 1023 }; 1024 #define RESTORE_ROUNDING_MODE \ 1025 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status) 1026 1027 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n) 1028 { 1029 target_ulong tmp; 1030 1031 tmp = ldtul_p(mem_buf); 1032 1033 if (n < 32) { 1034 env->active_tc.gpr[n] = tmp; 1035 return sizeof(target_ulong); 1036 } 1037 if (env->CP0_Config1 & (1 << CP0C1_FP) 1038 && n >= 38 && n < 73) { 1039 if (n < 70) { 1040 if (env->CP0_Status & (1 << CP0St_FR)) 1041 env->active_fpu.fpr[n - 38].d = tmp; 1042 else 1043 env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX] = tmp; 1044 } 1045 switch (n) { 1046 case 70: 1047 env->active_fpu.fcr31 = tmp & 0xFF83FFFF; 1048 /* set rounding mode */ 1049 RESTORE_ROUNDING_MODE; 1050 #ifndef CONFIG_SOFTFLOAT 1051 /* no floating point exception for native float */ 1052 SET_FP_ENABLE(env->active_fpu.fcr31, 0); 1053 #endif 1054 break; 1055 case 71: env->active_fpu.fcr0 = tmp; break; 1056 } 1057 return sizeof(target_ulong); 1058 } 1059 switch (n) { 1060 case 32: env->CP0_Status = tmp; break; 1061 case 33: env->active_tc.LO[0] = tmp; break; 1062 case 34: env->active_tc.HI[0] = tmp; break; 1063 case 35: env->CP0_BadVAddr = tmp; break; 1064 case 36: env->CP0_Cause = tmp; break; 1065 case 37: env->active_tc.PC = tmp; break; 1066 case 72: /* fp, ignored */ break; 1067 default: 1068 if (n > 89) 1069 return 0; 1070 /* Other registers are readonly. Ignore writes. */ 1071 break; 1072 } 1073 1074 return sizeof(target_ulong); 1075 } 1076 #elif defined (TARGET_SH4) 1077 1078 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */ 1079 /* FIXME: We should use XML for this. */ 1080 1081 #define NUM_CORE_REGS 59 1082 1083 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n) 1084 { 1085 if (n < 8) { 1086 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) { 1087 GET_REGL(env->gregs[n + 16]); 1088 } else { 1089 GET_REGL(env->gregs[n]); 1090 } 1091 } else if (n < 16) { 1092 GET_REGL(env->gregs[n - 8]); 1093 } else if (n >= 25 && n < 41) { 1094 GET_REGL(env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)]); 1095 } else if (n >= 43 && n < 51) { 1096 GET_REGL(env->gregs[n - 43]); 1097 } else if (n >= 51 && n < 59) { 1098 GET_REGL(env->gregs[n - (51 - 16)]); 1099 } 1100 switch (n) { 1101 case 16: GET_REGL(env->pc); 1102 case 17: GET_REGL(env->pr); 1103 case 18: GET_REGL(env->gbr); 1104 case 19: GET_REGL(env->vbr); 1105 case 20: GET_REGL(env->mach); 1106 case 21: GET_REGL(env->macl); 1107 case 22: GET_REGL(env->sr); 1108 case 23: GET_REGL(env->fpul); 1109 case 24: GET_REGL(env->fpscr); 1110 case 41: GET_REGL(env->ssr); 1111 case 42: GET_REGL(env->spc); 1112 } 1113 1114 return 0; 1115 } 1116 1117 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n) 1118 { 1119 uint32_t tmp; 1120 1121 tmp = ldl_p(mem_buf); 1122 1123 if (n < 8) { 1124 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) { 1125 env->gregs[n + 16] = tmp; 1126 } else { 1127 env->gregs[n] = tmp; 1128 } 1129 return 4; 1130 } else if (n < 16) { 1131 env->gregs[n - 8] = tmp; 1132 return 4; 1133 } else if (n >= 25 && n < 41) { 1134 env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)] = tmp; 1135 } else if (n >= 43 && n < 51) { 1136 env->gregs[n - 43] = tmp; 1137 return 4; 1138 } else if (n >= 51 && n < 59) { 1139 env->gregs[n - (51 - 16)] = tmp; 1140 return 4; 1141 } 1142 switch (n) { 1143 case 16: env->pc = tmp; 1144 case 17: env->pr = tmp; 1145 case 18: env->gbr = tmp; 1146 case 19: env->vbr = tmp; 1147 case 20: env->mach = tmp; 1148 case 21: env->macl = tmp; 1149 case 22: env->sr = tmp; 1150 case 23: env->fpul = tmp; 1151 case 24: env->fpscr = tmp; 1152 case 41: env->ssr = tmp; 1153 case 42: env->spc = tmp; 1154 default: return 0; 1155 } 1156 1157 return 4; 1158 } 1159 #elif defined (TARGET_MICROBLAZE) 1160 1161 #define NUM_CORE_REGS (32 + 5) 1162 1163 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n) 1164 { 1165 if (n < 32) { 1166 GET_REG32(env->regs[n]); 1167 } else { 1168 GET_REG32(env->sregs[n - 32]); 1169 } 1170 return 0; 1171 } 1172 1173 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n) 1174 { 1175 uint32_t tmp; 1176 1177 if (n > NUM_CORE_REGS) 1178 return 0; 1179 1180 tmp = ldl_p(mem_buf); 1181 1182 if (n < 32) { 1183 env->regs[n] = tmp; 1184 } else { 1185 env->sregs[n - 32] = tmp; 1186 } 1187 return 4; 1188 } 1189 #elif defined (TARGET_CRIS) 1190 1191 #define NUM_CORE_REGS 49 1192 1193 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n) 1194 { 1195 uint8_t srs; 1196 1197 srs = env->pregs[PR_SRS]; 1198 if (n < 16) { 1199 GET_REG32(env->regs[n]); 1200 } 1201 1202 if (n >= 21 && n < 32) { 1203 GET_REG32(env->pregs[n - 16]); 1204 } 1205 if (n >= 33 && n < 49) { 1206 GET_REG32(env->sregs[srs][n - 33]); 1207 } 1208 switch (n) { 1209 case 16: GET_REG8(env->pregs[0]); 1210 case 17: GET_REG8(env->pregs[1]); 1211 case 18: GET_REG32(env->pregs[2]); 1212 case 19: GET_REG8(srs); 1213 case 20: GET_REG16(env->pregs[4]); 1214 case 32: GET_REG32(env->pc); 1215 } 1216 1217 return 0; 1218 } 1219 1220 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n) 1221 { 1222 uint32_t tmp; 1223 1224 if (n > 49) 1225 return 0; 1226 1227 tmp = ldl_p(mem_buf); 1228 1229 if (n < 16) { 1230 env->regs[n] = tmp; 1231 } 1232 1233 if (n >= 21 && n < 32) { 1234 env->pregs[n - 16] = tmp; 1235 } 1236 1237 /* FIXME: Should support function regs be writable? */ 1238 switch (n) { 1239 case 16: return 1; 1240 case 17: return 1; 1241 case 18: env->pregs[PR_PID] = tmp; break; 1242 case 19: return 1; 1243 case 20: return 2; 1244 case 32: env->pc = tmp; break; 1245 } 1246 1247 return 4; 1248 } 1249 #elif defined (TARGET_ALPHA) 1250 1251 #define NUM_CORE_REGS 65 1252 1253 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n) 1254 { 1255 if (n < 31) { 1256 GET_REGL(env->ir[n]); 1257 } 1258 else if (n == 31) { 1259 GET_REGL(0); 1260 } 1261 else if (n<63) { 1262 uint64_t val; 1263 1264 val=*((uint64_t *)&env->fir[n-32]); 1265 GET_REGL(val); 1266 } 1267 else if (n==63) { 1268 GET_REGL(env->fpcr); 1269 } 1270 else if (n==64) { 1271 GET_REGL(env->pc); 1272 } 1273 else { 1274 GET_REGL(0); 1275 } 1276 1277 return 0; 1278 } 1279 1280 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n) 1281 { 1282 target_ulong tmp; 1283 tmp = ldtul_p(mem_buf); 1284 1285 if (n < 31) { 1286 env->ir[n] = tmp; 1287 } 1288 1289 if (n > 31 && n < 63) { 1290 env->fir[n - 32] = ldfl_p(mem_buf); 1291 } 1292 1293 if (n == 64 ) { 1294 env->pc=tmp; 1295 } 1296 1297 return 8; 1298 } 1299 #else 1300 1301 #define NUM_CORE_REGS 0 1302 1303 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n) 1304 { 1305 return 0; 1306 } 1307 1308 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n) 1309 { 1310 return 0; 1311 } 1312 1313 #endif 1314 1315 static int num_g_regs = NUM_CORE_REGS; 1316 1317 #ifdef GDB_CORE_XML 1318 /* Encode data using the encoding for 'x' packets. */ 1319 static int memtox(char *buf, const char *mem, int len) 1320 { 1321 char *p = buf; 1322 char c; 1323 1324 while (len--) { 1325 c = *(mem++); 1326 switch (c) { 1327 case '#': case '$': case '*': case '}': 1328 *(p++) = '}'; 1329 *(p++) = c ^ 0x20; 1330 break; 1331 default: 1332 *(p++) = c; 1333 break; 1334 } 1335 } 1336 return p - buf; 1337 } 1338 1339 static const char *get_feature_xml(const char *p, const char **newp) 1340 { 1341 extern const char *const xml_builtin[][2]; 1342 size_t len; 1343 int i; 1344 const char *name; 1345 static char target_xml[1024]; 1346 1347 len = 0; 1348 while (p[len] && p[len] != ':') 1349 len++; 1350 *newp = p + len; 1351 1352 name = NULL; 1353 if (strncmp(p, "target.xml", len) == 0) { 1354 /* Generate the XML description for this CPU. */ 1355 if (!target_xml[0]) { 1356 GDBRegisterState *r; 1357 1358 snprintf(target_xml, sizeof(target_xml), 1359 "<?xml version=\"1.0\"?>" 1360 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">" 1361 "<target>" 1362 "<xi:include href=\"%s\"/>", 1363 GDB_CORE_XML); 1364 1365 for (r = first_cpu->gdb_regs; r; r = r->next) { 1366 pstrcat(target_xml, sizeof(target_xml), "<xi:include href=\""); 1367 pstrcat(target_xml, sizeof(target_xml), r->xml); 1368 pstrcat(target_xml, sizeof(target_xml), "\"/>"); 1369 } 1370 pstrcat(target_xml, sizeof(target_xml), "</target>"); 1371 } 1372 return target_xml; 1373 } 1374 for (i = 0; ; i++) { 1375 name = xml_builtin[i][0]; 1376 if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len)) 1377 break; 1378 } 1379 return name ? xml_builtin[i][1] : NULL; 1380 } 1381 #endif 1382 1383 static int gdb_read_register(CPUState *env, uint8_t *mem_buf, int reg) 1384 { 1385 GDBRegisterState *r; 1386 1387 if (reg < NUM_CORE_REGS) 1388 return cpu_gdb_read_register(env, mem_buf, reg); 1389 1390 for (r = env->gdb_regs; r; r = r->next) { 1391 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) { 1392 return r->get_reg(env, mem_buf, reg - r->base_reg); 1393 } 1394 } 1395 return 0; 1396 } 1397 1398 static int gdb_write_register(CPUState *env, uint8_t *mem_buf, int reg) 1399 { 1400 GDBRegisterState *r; 1401 1402 if (reg < NUM_CORE_REGS) 1403 return cpu_gdb_write_register(env, mem_buf, reg); 1404 1405 for (r = env->gdb_regs; r; r = r->next) { 1406 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) { 1407 return r->set_reg(env, mem_buf, reg - r->base_reg); 1408 } 1409 } 1410 return 0; 1411 } 1412 1413 /* Register a supplemental set of CPU registers. If g_pos is nonzero it 1414 specifies the first register number and these registers are included in 1415 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is 1416 gdb reading a CPU register, and set_reg is gdb modifying a CPU register. 1417 */ 1418 1419 void gdb_register_coprocessor(CPUState * env, 1420 gdb_reg_cb get_reg, gdb_reg_cb set_reg, 1421 int num_regs, const char *xml, int g_pos) 1422 { 1423 GDBRegisterState *s; 1424 GDBRegisterState **p; 1425 static int last_reg = NUM_CORE_REGS; 1426 1427 s = (GDBRegisterState *)qemu_mallocz(sizeof(GDBRegisterState)); 1428 s->base_reg = last_reg; 1429 s->num_regs = num_regs; 1430 s->get_reg = get_reg; 1431 s->set_reg = set_reg; 1432 s->xml = xml; 1433 p = &env->gdb_regs; 1434 while (*p) { 1435 /* Check for duplicates. */ 1436 if (strcmp((*p)->xml, xml) == 0) 1437 return; 1438 p = &(*p)->next; 1439 } 1440 /* Add to end of list. */ 1441 last_reg += num_regs; 1442 *p = s; 1443 if (g_pos) { 1444 if (g_pos != s->base_reg) { 1445 fprintf(stderr, "Error: Bad gdb register numbering for '%s'\n" 1446 "Expected %d got %d\n", xml, g_pos, s->base_reg); 1447 } else { 1448 num_g_regs = last_reg; 1449 } 1450 } 1451 } 1452 1453 #ifndef CONFIG_USER_ONLY 1454 static const int xlat_gdb_type[] = { 1455 [GDB_WATCHPOINT_WRITE] = BP_GDB | BP_MEM_WRITE, 1456 [GDB_WATCHPOINT_READ] = BP_GDB | BP_MEM_READ, 1457 [GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS, 1458 }; 1459 #endif 1460 1461 static int gdb_breakpoint_insert(target_ulong addr, target_ulong len, int type) 1462 { 1463 CPUState *env; 1464 int err = 0; 1465 1466 if (kvm_enabled()) 1467 return kvm_insert_breakpoint(gdbserver_state->c_cpu, addr, len, type); 1468 1469 switch (type) { 1470 case GDB_BREAKPOINT_SW: 1471 case GDB_BREAKPOINT_HW: 1472 for (env = first_cpu; env != NULL; env = env->next_cpu) { 1473 err = cpu_breakpoint_insert(env, addr, BP_GDB, NULL); 1474 if (err) 1475 break; 1476 } 1477 return err; 1478 #ifndef CONFIG_USER_ONLY 1479 case GDB_WATCHPOINT_WRITE: 1480 case GDB_WATCHPOINT_READ: 1481 case GDB_WATCHPOINT_ACCESS: 1482 for (env = first_cpu; env != NULL; env = env->next_cpu) { 1483 err = cpu_watchpoint_insert(env, addr, len, xlat_gdb_type[type], 1484 NULL); 1485 if (err) 1486 break; 1487 } 1488 return err; 1489 #endif 1490 default: 1491 return -ENOSYS; 1492 } 1493 } 1494 1495 static int gdb_breakpoint_remove(target_ulong addr, target_ulong len, int type) 1496 { 1497 CPUState *env; 1498 int err = 0; 1499 1500 if (kvm_enabled()) 1501 return kvm_remove_breakpoint(gdbserver_state->c_cpu, addr, len, type); 1502 1503 switch (type) { 1504 case GDB_BREAKPOINT_SW: 1505 case GDB_BREAKPOINT_HW: 1506 for (env = first_cpu; env != NULL; env = env->next_cpu) { 1507 err = cpu_breakpoint_remove(env, addr, BP_GDB); 1508 if (err) 1509 break; 1510 } 1511 return err; 1512 #ifndef CONFIG_USER_ONLY 1513 case GDB_WATCHPOINT_WRITE: 1514 case GDB_WATCHPOINT_READ: 1515 case GDB_WATCHPOINT_ACCESS: 1516 for (env = first_cpu; env != NULL; env = env->next_cpu) { 1517 err = cpu_watchpoint_remove(env, addr, len, xlat_gdb_type[type]); 1518 if (err) 1519 break; 1520 } 1521 return err; 1522 #endif 1523 default: 1524 return -ENOSYS; 1525 } 1526 } 1527 1528 static void gdb_breakpoint_remove_all(void) 1529 { 1530 CPUState *env; 1531 1532 if (kvm_enabled()) { 1533 kvm_remove_all_breakpoints(gdbserver_state->c_cpu); 1534 return; 1535 } 1536 1537 for (env = first_cpu; env != NULL; env = env->next_cpu) { 1538 cpu_breakpoint_remove_all(env, BP_GDB); 1539 #ifndef CONFIG_USER_ONLY 1540 cpu_watchpoint_remove_all(env, BP_GDB); 1541 #endif 1542 } 1543 } 1544 1545 static void gdb_set_cpu_pc(GDBState *s, target_ulong pc) 1546 { 1547 #if defined(TARGET_I386) 1548 s->c_cpu->eip = pc; 1549 cpu_synchronize_state(s->c_cpu, 1); 1550 #elif defined (TARGET_PPC) 1551 s->c_cpu->nip = pc; 1552 #elif defined (TARGET_SPARC) 1553 s->c_cpu->pc = pc; 1554 s->c_cpu->npc = pc + 4; 1555 #elif defined (TARGET_ARM) 1556 s->c_cpu->regs[15] = pc; 1557 #elif defined (TARGET_SH4) 1558 s->c_cpu->pc = pc; 1559 #elif defined (TARGET_MIPS) 1560 s->c_cpu->active_tc.PC = pc; 1561 #elif defined (TARGET_MICROBLAZE) 1562 s->c_cpu->sregs[SR_PC] = pc; 1563 #elif defined (TARGET_CRIS) 1564 s->c_cpu->pc = pc; 1565 #elif defined (TARGET_ALPHA) 1566 s->c_cpu->pc = pc; 1567 #endif 1568 } 1569 1570 static inline int gdb_id(CPUState *env) 1571 { 1572 #if defined(CONFIG_USER_ONLY) && defined(USE_NPTL) 1573 return env->host_tid; 1574 #else 1575 return env->cpu_index + 1; 1576 #endif 1577 } 1578 1579 static CPUState *find_cpu(uint32_t thread_id) 1580 { 1581 CPUState *env; 1582 1583 for (env = first_cpu; env != NULL; env = env->next_cpu) { 1584 if (gdb_id(env) == thread_id) { 1585 return env; 1586 } 1587 } 1588 1589 return NULL; 1590 } 1591 1592 static int gdb_handle_packet(GDBState *s, const char *line_buf) 1593 { 1594 CPUState *env; 1595 const char *p; 1596 uint32_t thread; 1597 int ch, reg_size, type, res; 1598 char buf[MAX_PACKET_LENGTH]; 1599 uint8_t mem_buf[MAX_PACKET_LENGTH]; 1600 uint8_t *registers; 1601 target_ulong addr, len; 1602 1603 #ifdef DEBUG_GDB 1604 printf("command='%s'\n", line_buf); 1605 #endif 1606 p = line_buf; 1607 ch = *p++; 1608 switch(ch) { 1609 case '?': 1610 /* TODO: Make this return the correct value for user-mode. */ 1611 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", GDB_SIGNAL_TRAP, 1612 gdb_id(s->c_cpu)); 1613 put_packet(s, buf); 1614 /* Remove all the breakpoints when this query is issued, 1615 * because gdb is doing and initial connect and the state 1616 * should be cleaned up. 1617 */ 1618 gdb_breakpoint_remove_all(); 1619 break; 1620 case 'c': 1621 if (*p != '\0') { 1622 addr = strtoull(p, (char **)&p, 16); 1623 gdb_set_cpu_pc(s, addr); 1624 } 1625 s->signal = 0; 1626 gdb_continue(s); 1627 return RS_IDLE; 1628 case 'C': 1629 s->signal = gdb_signal_to_target (strtoul(p, (char **)&p, 16)); 1630 if (s->signal == -1) 1631 s->signal = 0; 1632 gdb_continue(s); 1633 return RS_IDLE; 1634 case 'k': 1635 /* Kill the target */ 1636 fprintf(stderr, "\nQEMU: Terminated via GDBstub\n"); 1637 exit(0); 1638 case 'D': 1639 /* Detach packet */ 1640 gdb_breakpoint_remove_all(); 1641 gdb_continue(s); 1642 put_packet(s, "OK"); 1643 break; 1644 case 's': 1645 if (*p != '\0') { 1646 addr = strtoull(p, (char **)&p, 16); 1647 gdb_set_cpu_pc(s, addr); 1648 } 1649 cpu_single_step(s->c_cpu, sstep_flags); 1650 gdb_continue(s); 1651 return RS_IDLE; 1652 case 'F': 1653 { 1654 target_ulong ret; 1655 target_ulong err; 1656 1657 ret = strtoull(p, (char **)&p, 16); 1658 if (*p == ',') { 1659 p++; 1660 err = strtoull(p, (char **)&p, 16); 1661 } else { 1662 err = 0; 1663 } 1664 if (*p == ',') 1665 p++; 1666 type = *p; 1667 if (gdb_current_syscall_cb) 1668 gdb_current_syscall_cb(s->c_cpu, ret, err); 1669 if (type == 'C') { 1670 put_packet(s, "T02"); 1671 } else { 1672 gdb_continue(s); 1673 } 1674 } 1675 break; 1676 case 'g': 1677 cpu_synchronize_state(s->g_cpu, 0); 1678 len = 0; 1679 for (addr = 0; addr < num_g_regs; addr++) { 1680 reg_size = gdb_read_register(s->g_cpu, mem_buf + len, addr); 1681 len += reg_size; 1682 } 1683 memtohex(buf, mem_buf, len); 1684 put_packet(s, buf); 1685 break; 1686 case 'G': 1687 registers = mem_buf; 1688 len = strlen(p) / 2; 1689 hextomem((uint8_t *)registers, p, len); 1690 for (addr = 0; addr < num_g_regs && len > 0; addr++) { 1691 reg_size = gdb_write_register(s->g_cpu, registers, addr); 1692 len -= reg_size; 1693 registers += reg_size; 1694 } 1695 cpu_synchronize_state(s->g_cpu, 1); 1696 put_packet(s, "OK"); 1697 break; 1698 case 'm': 1699 addr = strtoull(p, (char **)&p, 16); 1700 if (*p == ',') 1701 p++; 1702 len = strtoull(p, NULL, 16); 1703 if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 0) != 0) { 1704 put_packet (s, "E14"); 1705 } else { 1706 memtohex(buf, mem_buf, len); 1707 put_packet(s, buf); 1708 } 1709 break; 1710 case 'M': 1711 addr = strtoull(p, (char **)&p, 16); 1712 if (*p == ',') 1713 p++; 1714 len = strtoull(p, (char **)&p, 16); 1715 if (*p == ':') 1716 p++; 1717 hextomem(mem_buf, p, len); 1718 if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 1) != 0) 1719 put_packet(s, "E14"); 1720 else 1721 put_packet(s, "OK"); 1722 break; 1723 case 'p': 1724 /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable. 1725 This works, but can be very slow. Anything new enough to 1726 understand XML also knows how to use this properly. */ 1727 if (!gdb_has_xml) 1728 goto unknown_command; 1729 addr = strtoull(p, (char **)&p, 16); 1730 reg_size = gdb_read_register(s->g_cpu, mem_buf, addr); 1731 if (reg_size) { 1732 memtohex(buf, mem_buf, reg_size); 1733 put_packet(s, buf); 1734 } else { 1735 put_packet(s, "E14"); 1736 } 1737 break; 1738 case 'P': 1739 if (!gdb_has_xml) 1740 goto unknown_command; 1741 addr = strtoull(p, (char **)&p, 16); 1742 if (*p == '=') 1743 p++; 1744 reg_size = strlen(p) / 2; 1745 hextomem(mem_buf, p, reg_size); 1746 gdb_write_register(s->g_cpu, mem_buf, addr); 1747 put_packet(s, "OK"); 1748 break; 1749 case 'Z': 1750 case 'z': 1751 type = strtoul(p, (char **)&p, 16); 1752 if (*p == ',') 1753 p++; 1754 addr = strtoull(p, (char **)&p, 16); 1755 if (*p == ',') 1756 p++; 1757 len = strtoull(p, (char **)&p, 16); 1758 if (ch == 'Z') 1759 res = gdb_breakpoint_insert(addr, len, type); 1760 else 1761 res = gdb_breakpoint_remove(addr, len, type); 1762 if (res >= 0) 1763 put_packet(s, "OK"); 1764 else if (res == -ENOSYS) 1765 put_packet(s, ""); 1766 else 1767 put_packet(s, "E22"); 1768 break; 1769 case 'H': 1770 type = *p++; 1771 thread = strtoull(p, (char **)&p, 16); 1772 if (thread == -1 || thread == 0) { 1773 put_packet(s, "OK"); 1774 break; 1775 } 1776 env = find_cpu(thread); 1777 if (env == NULL) { 1778 put_packet(s, "E22"); 1779 break; 1780 } 1781 switch (type) { 1782 case 'c': 1783 s->c_cpu = env; 1784 put_packet(s, "OK"); 1785 break; 1786 case 'g': 1787 s->g_cpu = env; 1788 put_packet(s, "OK"); 1789 break; 1790 default: 1791 put_packet(s, "E22"); 1792 break; 1793 } 1794 break; 1795 case 'T': 1796 thread = strtoull(p, (char **)&p, 16); 1797 env = find_cpu(thread); 1798 1799 if (env != NULL) { 1800 put_packet(s, "OK"); 1801 } else { 1802 put_packet(s, "E22"); 1803 } 1804 break; 1805 case 'q': 1806 case 'Q': 1807 /* parse any 'q' packets here */ 1808 if (!strcmp(p,"qemu.sstepbits")) { 1809 /* Query Breakpoint bit definitions */ 1810 snprintf(buf, sizeof(buf), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x", 1811 SSTEP_ENABLE, 1812 SSTEP_NOIRQ, 1813 SSTEP_NOTIMER); 1814 put_packet(s, buf); 1815 break; 1816 } else if (strncmp(p,"qemu.sstep",10) == 0) { 1817 /* Display or change the sstep_flags */ 1818 p += 10; 1819 if (*p != '=') { 1820 /* Display current setting */ 1821 snprintf(buf, sizeof(buf), "0x%x", sstep_flags); 1822 put_packet(s, buf); 1823 break; 1824 } 1825 p++; 1826 type = strtoul(p, (char **)&p, 16); 1827 sstep_flags = type; 1828 put_packet(s, "OK"); 1829 break; 1830 } else if (strcmp(p,"C") == 0) { 1831 /* "Current thread" remains vague in the spec, so always return 1832 * the first CPU (gdb returns the first thread). */ 1833 put_packet(s, "QC1"); 1834 break; 1835 } else if (strcmp(p,"fThreadInfo") == 0) { 1836 s->query_cpu = first_cpu; 1837 goto report_cpuinfo; 1838 } else if (strcmp(p,"sThreadInfo") == 0) { 1839 report_cpuinfo: 1840 if (s->query_cpu) { 1841 snprintf(buf, sizeof(buf), "m%x", gdb_id(s->query_cpu)); 1842 put_packet(s, buf); 1843 s->query_cpu = s->query_cpu->next_cpu; 1844 } else 1845 put_packet(s, "l"); 1846 break; 1847 } else if (strncmp(p,"ThreadExtraInfo,", 16) == 0) { 1848 thread = strtoull(p+16, (char **)&p, 16); 1849 env = find_cpu(thread); 1850 if (env != NULL) { 1851 cpu_synchronize_state(env, 0); 1852 len = snprintf((char *)mem_buf, sizeof(mem_buf), 1853 "CPU#%d [%s]", env->cpu_index, 1854 env->halted ? "halted " : "running"); 1855 memtohex(buf, mem_buf, len); 1856 put_packet(s, buf); 1857 } 1858 break; 1859 } 1860 #ifdef CONFIG_USER_ONLY 1861 else if (strncmp(p, "Offsets", 7) == 0) { 1862 TaskState *ts = s->c_cpu->opaque; 1863 1864 snprintf(buf, sizeof(buf), 1865 "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx 1866 ";Bss=" TARGET_ABI_FMT_lx, 1867 ts->info->code_offset, 1868 ts->info->data_offset, 1869 ts->info->data_offset); 1870 put_packet(s, buf); 1871 break; 1872 } 1873 #else /* !CONFIG_USER_ONLY */ 1874 else if (strncmp(p, "Rcmd,", 5) == 0) { 1875 int len = strlen(p + 5); 1876 1877 if ((len % 2) != 0) { 1878 put_packet(s, "E01"); 1879 break; 1880 } 1881 hextomem(mem_buf, p + 5, len); 1882 len = len / 2; 1883 mem_buf[len++] = 0; 1884 qemu_chr_read(s->mon_chr, mem_buf, len); 1885 put_packet(s, "OK"); 1886 break; 1887 } 1888 #endif /* !CONFIG_USER_ONLY */ 1889 if (strncmp(p, "Supported", 9) == 0) { 1890 snprintf(buf, sizeof(buf), "PacketSize=%x", MAX_PACKET_LENGTH); 1891 #ifdef GDB_CORE_XML 1892 pstrcat(buf, sizeof(buf), ";qXfer:features:read+"); 1893 #endif 1894 put_packet(s, buf); 1895 break; 1896 } 1897 #ifdef GDB_CORE_XML 1898 if (strncmp(p, "Xfer:features:read:", 19) == 0) { 1899 const char *xml; 1900 target_ulong total_len; 1901 1902 gdb_has_xml = 1; 1903 p += 19; 1904 xml = get_feature_xml(p, &p); 1905 if (!xml) { 1906 snprintf(buf, sizeof(buf), "E00"); 1907 put_packet(s, buf); 1908 break; 1909 } 1910 1911 if (*p == ':') 1912 p++; 1913 addr = strtoul(p, (char **)&p, 16); 1914 if (*p == ',') 1915 p++; 1916 len = strtoul(p, (char **)&p, 16); 1917 1918 total_len = strlen(xml); 1919 if (addr > total_len) { 1920 snprintf(buf, sizeof(buf), "E00"); 1921 put_packet(s, buf); 1922 break; 1923 } 1924 if (len > (MAX_PACKET_LENGTH - 5) / 2) 1925 len = (MAX_PACKET_LENGTH - 5) / 2; 1926 if (len < total_len - addr) { 1927 buf[0] = 'm'; 1928 len = memtox(buf + 1, xml + addr, len); 1929 } else { 1930 buf[0] = 'l'; 1931 len = memtox(buf + 1, xml + addr, total_len - addr); 1932 } 1933 put_packet_binary(s, buf, len + 1); 1934 break; 1935 } 1936 #endif 1937 /* Unrecognised 'q' command. */ 1938 goto unknown_command; 1939 1940 default: 1941 unknown_command: 1942 /* put empty packet */ 1943 buf[0] = '\0'; 1944 put_packet(s, buf); 1945 break; 1946 } 1947 return RS_IDLE; 1948 } 1949 1950 void gdb_set_stop_cpu(CPUState *env) 1951 { 1952 gdbserver_state->c_cpu = env; 1953 gdbserver_state->g_cpu = env; 1954 } 1955 1956 #ifndef CONFIG_USER_ONLY 1957 static void gdb_vm_state_change(void *opaque, int running, int reason) 1958 { 1959 GDBState *s = gdbserver_state; 1960 CPUState *env = s->c_cpu; 1961 char buf[256]; 1962 const char *type; 1963 int ret; 1964 1965 if (running || (reason != EXCP_DEBUG && reason != EXCP_INTERRUPT) || 1966 s->state == RS_INACTIVE || s->state == RS_SYSCALL) 1967 return; 1968 1969 /* disable single step if it was enable */ 1970 cpu_single_step(env, 0); 1971 1972 if (reason == EXCP_DEBUG) { 1973 if (env->watchpoint_hit) { 1974 switch (env->watchpoint_hit->flags & BP_MEM_ACCESS) { 1975 case BP_MEM_READ: 1976 type = "r"; 1977 break; 1978 case BP_MEM_ACCESS: 1979 type = "a"; 1980 break; 1981 default: 1982 type = ""; 1983 break; 1984 } 1985 snprintf(buf, sizeof(buf), 1986 "T%02xthread:%02x;%swatch:" TARGET_FMT_lx ";", 1987 GDB_SIGNAL_TRAP, gdb_id(env), type, 1988 env->watchpoint_hit->vaddr); 1989 put_packet(s, buf); 1990 env->watchpoint_hit = NULL; 1991 return; 1992 } 1993 tb_flush(env); 1994 ret = GDB_SIGNAL_TRAP; 1995 } else { 1996 ret = GDB_SIGNAL_INT; 1997 } 1998 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", ret, gdb_id(env)); 1999 put_packet(s, buf); 2000 } 2001 #endif 2002 2003 /* Send a gdb syscall request. 2004 This accepts limited printf-style format specifiers, specifically: 2005 %x - target_ulong argument printed in hex. 2006 %lx - 64-bit argument printed in hex. 2007 %s - string pointer (target_ulong) and length (int) pair. */ 2008 void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...) 2009 { 2010 va_list va; 2011 char buf[256]; 2012 char *p; 2013 target_ulong addr; 2014 uint64_t i64; 2015 GDBState *s; 2016 2017 s = gdbserver_state; 2018 if (!s) 2019 return; 2020 gdb_current_syscall_cb = cb; 2021 s->state = RS_SYSCALL; 2022 #ifndef CONFIG_USER_ONLY 2023 vm_stop(EXCP_DEBUG); 2024 #endif 2025 s->state = RS_IDLE; 2026 va_start(va, fmt); 2027 p = buf; 2028 *(p++) = 'F'; 2029 while (*fmt) { 2030 if (*fmt == '%') { 2031 fmt++; 2032 switch (*fmt++) { 2033 case 'x': 2034 addr = va_arg(va, target_ulong); 2035 p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx, addr); 2036 break; 2037 case 'l': 2038 if (*(fmt++) != 'x') 2039 goto bad_format; 2040 i64 = va_arg(va, uint64_t); 2041 p += snprintf(p, &buf[sizeof(buf)] - p, "%" PRIx64, i64); 2042 break; 2043 case 's': 2044 addr = va_arg(va, target_ulong); 2045 p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx "/%x", 2046 addr, va_arg(va, int)); 2047 break; 2048 default: 2049 bad_format: 2050 fprintf(stderr, "gdbstub: Bad syscall format string '%s'\n", 2051 fmt - 1); 2052 break; 2053 } 2054 } else { 2055 *(p++) = *(fmt++); 2056 } 2057 } 2058 *p = 0; 2059 va_end(va); 2060 put_packet(s, buf); 2061 #ifdef CONFIG_USER_ONLY 2062 gdb_handlesig(s->c_cpu, 0); 2063 #else 2064 cpu_exit(s->c_cpu); 2065 #endif 2066 } 2067 2068 static void gdb_read_byte(GDBState *s, int ch) 2069 { 2070 int i, csum; 2071 uint8_t reply; 2072 2073 #ifndef CONFIG_USER_ONLY 2074 if (s->last_packet_len) { 2075 /* Waiting for a response to the last packet. If we see the start 2076 of a new command then abandon the previous response. */ 2077 if (ch == '-') { 2078 #ifdef DEBUG_GDB 2079 printf("Got NACK, retransmitting\n"); 2080 #endif 2081 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len); 2082 } 2083 #ifdef DEBUG_GDB 2084 else if (ch == '+') 2085 printf("Got ACK\n"); 2086 else 2087 printf("Got '%c' when expecting ACK/NACK\n", ch); 2088 #endif 2089 if (ch == '+' || ch == '$') 2090 s->last_packet_len = 0; 2091 if (ch != '$') 2092 return; 2093 } 2094 if (vm_running) { 2095 /* when the CPU is running, we cannot do anything except stop 2096 it when receiving a char */ 2097 vm_stop(EXCP_INTERRUPT); 2098 } else 2099 #endif 2100 { 2101 switch(s->state) { 2102 case RS_IDLE: 2103 if (ch == '$') { 2104 s->line_buf_index = 0; 2105 s->state = RS_GETLINE; 2106 } 2107 break; 2108 case RS_GETLINE: 2109 if (ch == '#') { 2110 s->state = RS_CHKSUM1; 2111 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) { 2112 s->state = RS_IDLE; 2113 } else { 2114 s->line_buf[s->line_buf_index++] = ch; 2115 } 2116 break; 2117 case RS_CHKSUM1: 2118 s->line_buf[s->line_buf_index] = '\0'; 2119 s->line_csum = fromhex(ch) << 4; 2120 s->state = RS_CHKSUM2; 2121 break; 2122 case RS_CHKSUM2: 2123 s->line_csum |= fromhex(ch); 2124 csum = 0; 2125 for(i = 0; i < s->line_buf_index; i++) { 2126 csum += s->line_buf[i]; 2127 } 2128 if (s->line_csum != (csum & 0xff)) { 2129 reply = '-'; 2130 put_buffer(s, &reply, 1); 2131 s->state = RS_IDLE; 2132 } else { 2133 reply = '+'; 2134 put_buffer(s, &reply, 1); 2135 s->state = gdb_handle_packet(s, s->line_buf); 2136 } 2137 break; 2138 default: 2139 abort(); 2140 } 2141 } 2142 } 2143 2144 #ifdef CONFIG_USER_ONLY 2145 int 2146 gdb_queuesig (void) 2147 { 2148 GDBState *s; 2149 2150 s = gdbserver_state; 2151 2152 if (gdbserver_fd < 0 || s->fd < 0) 2153 return 0; 2154 else 2155 return 1; 2156 } 2157 2158 int 2159 gdb_handlesig (CPUState *env, int sig) 2160 { 2161 GDBState *s; 2162 char buf[256]; 2163 int n; 2164 2165 s = gdbserver_state; 2166 if (gdbserver_fd < 0 || s->fd < 0) 2167 return sig; 2168 2169 /* disable single step if it was enabled */ 2170 cpu_single_step(env, 0); 2171 tb_flush(env); 2172 2173 if (sig != 0) 2174 { 2175 snprintf(buf, sizeof(buf), "S%02x", target_signal_to_gdb (sig)); 2176 put_packet(s, buf); 2177 } 2178 /* put_packet() might have detected that the peer terminated the 2179 connection. */ 2180 if (s->fd < 0) 2181 return sig; 2182 2183 sig = 0; 2184 s->state = RS_IDLE; 2185 s->running_state = 0; 2186 while (s->running_state == 0) { 2187 n = read (s->fd, buf, 256); 2188 if (n > 0) 2189 { 2190 int i; 2191 2192 for (i = 0; i < n; i++) 2193 gdb_read_byte (s, buf[i]); 2194 } 2195 else if (n == 0 || errno != EAGAIN) 2196 { 2197 /* XXX: Connection closed. Should probably wait for annother 2198 connection before continuing. */ 2199 return sig; 2200 } 2201 } 2202 sig = s->signal; 2203 s->signal = 0; 2204 return sig; 2205 } 2206 2207 /* Tell the remote gdb that the process has exited. */ 2208 void gdb_exit(CPUState *env, int code) 2209 { 2210 GDBState *s; 2211 char buf[4]; 2212 2213 s = gdbserver_state; 2214 if (gdbserver_fd < 0 || s->fd < 0) 2215 return; 2216 2217 snprintf(buf, sizeof(buf), "W%02x", code); 2218 put_packet(s, buf); 2219 } 2220 2221 /* Tell the remote gdb that the process has exited due to SIG. */ 2222 void gdb_signalled(CPUState *env, int sig) 2223 { 2224 GDBState *s; 2225 char buf[4]; 2226 2227 s = gdbserver_state; 2228 if (gdbserver_fd < 0 || s->fd < 0) 2229 return; 2230 2231 snprintf(buf, sizeof(buf), "X%02x", target_signal_to_gdb (sig)); 2232 put_packet(s, buf); 2233 } 2234 2235 static void gdb_accept(void) 2236 { 2237 GDBState *s; 2238 struct sockaddr_in sockaddr; 2239 socklen_t len; 2240 int val, fd; 2241 2242 for(;;) { 2243 len = sizeof(sockaddr); 2244 fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len); 2245 if (fd < 0 && errno != EINTR) { 2246 perror("accept"); 2247 return; 2248 } else if (fd >= 0) { 2249 break; 2250 } 2251 } 2252 2253 /* set short latency */ 2254 val = 1; 2255 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val)); 2256 2257 s = qemu_mallocz(sizeof(GDBState)); 2258 s->c_cpu = first_cpu; 2259 s->g_cpu = first_cpu; 2260 s->fd = fd; 2261 gdb_has_xml = 0; 2262 2263 gdbserver_state = s; 2264 2265 fcntl(fd, F_SETFL, O_NONBLOCK); 2266 } 2267 2268 static int gdbserver_open(int port) 2269 { 2270 struct sockaddr_in sockaddr; 2271 int fd, val, ret; 2272 2273 fd = socket(PF_INET, SOCK_STREAM, 0); 2274 if (fd < 0) { 2275 perror("socket"); 2276 return -1; 2277 } 2278 2279 /* allow fast reuse */ 2280 val = 1; 2281 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&val, sizeof(val)); 2282 2283 sockaddr.sin_family = AF_INET; 2284 sockaddr.sin_port = htons(port); 2285 sockaddr.sin_addr.s_addr = 0; 2286 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr)); 2287 if (ret < 0) { 2288 perror("bind"); 2289 return -1; 2290 } 2291 ret = listen(fd, 0); 2292 if (ret < 0) { 2293 perror("listen"); 2294 return -1; 2295 } 2296 return fd; 2297 } 2298 2299 int gdbserver_start(int port) 2300 { 2301 gdbserver_fd = gdbserver_open(port); 2302 if (gdbserver_fd < 0) 2303 return -1; 2304 /* accept connections */ 2305 gdb_accept(); 2306 return 0; 2307 } 2308 2309 /* Disable gdb stub for child processes. */ 2310 void gdbserver_fork(CPUState *env) 2311 { 2312 GDBState *s = gdbserver_state; 2313 if (gdbserver_fd < 0 || s->fd < 0) 2314 return; 2315 close(s->fd); 2316 s->fd = -1; 2317 cpu_breakpoint_remove_all(env, BP_GDB); 2318 cpu_watchpoint_remove_all(env, BP_GDB); 2319 } 2320 #else 2321 static int gdb_chr_can_receive(void *opaque) 2322 { 2323 /* We can handle an arbitrarily large amount of data. 2324 Pick the maximum packet size, which is as good as anything. */ 2325 return MAX_PACKET_LENGTH; 2326 } 2327 2328 static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size) 2329 { 2330 int i; 2331 2332 for (i = 0; i < size; i++) { 2333 gdb_read_byte(gdbserver_state, buf[i]); 2334 } 2335 } 2336 2337 static void gdb_chr_event(void *opaque, int event) 2338 { 2339 switch (event) { 2340 case CHR_EVENT_RESET: 2341 vm_stop(EXCP_INTERRUPT); 2342 gdb_has_xml = 0; 2343 break; 2344 default: 2345 break; 2346 } 2347 } 2348 2349 static void gdb_monitor_output(GDBState *s, const char *msg, int len) 2350 { 2351 char buf[MAX_PACKET_LENGTH]; 2352 2353 buf[0] = 'O'; 2354 if (len > (MAX_PACKET_LENGTH/2) - 1) 2355 len = (MAX_PACKET_LENGTH/2) - 1; 2356 memtohex(buf + 1, (uint8_t *)msg, len); 2357 put_packet(s, buf); 2358 } 2359 2360 static int gdb_monitor_write(CharDriverState *chr, const uint8_t *buf, int len) 2361 { 2362 const char *p = (const char *)buf; 2363 int max_sz; 2364 2365 max_sz = (sizeof(gdbserver_state->last_packet) - 2) / 2; 2366 for (;;) { 2367 if (len <= max_sz) { 2368 gdb_monitor_output(gdbserver_state, p, len); 2369 break; 2370 } 2371 gdb_monitor_output(gdbserver_state, p, max_sz); 2372 p += max_sz; 2373 len -= max_sz; 2374 } 2375 return len; 2376 } 2377 2378 #ifndef _WIN32 2379 static void gdb_sigterm_handler(int signal) 2380 { 2381 if (vm_running) 2382 vm_stop(EXCP_INTERRUPT); 2383 } 2384 #endif 2385 2386 int gdbserver_start(const char *device) 2387 { 2388 GDBState *s; 2389 char gdbstub_device_name[128]; 2390 CharDriverState *chr = NULL; 2391 CharDriverState *mon_chr; 2392 2393 if (!device) 2394 return -1; 2395 if (strcmp(device, "none") != 0) { 2396 if (strstart(device, "tcp:", NULL)) { 2397 /* enforce required TCP attributes */ 2398 snprintf(gdbstub_device_name, sizeof(gdbstub_device_name), 2399 "%s,nowait,nodelay,server", device); 2400 device = gdbstub_device_name; 2401 } 2402 #ifndef _WIN32 2403 else if (strcmp(device, "stdio") == 0) { 2404 struct sigaction act; 2405 2406 memset(&act, 0, sizeof(act)); 2407 act.sa_handler = gdb_sigterm_handler; 2408 sigaction(SIGINT, &act, NULL); 2409 } 2410 #endif 2411 chr = qemu_chr_open("gdb", device, NULL); 2412 if (!chr) 2413 return -1; 2414 2415 qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive, 2416 gdb_chr_event, NULL); 2417 } 2418 2419 s = gdbserver_state; 2420 if (!s) { 2421 s = qemu_mallocz(sizeof(GDBState)); 2422 gdbserver_state = s; 2423 2424 qemu_add_vm_change_state_handler(gdb_vm_state_change, NULL); 2425 2426 /* Initialize a monitor terminal for gdb */ 2427 mon_chr = qemu_mallocz(sizeof(*mon_chr)); 2428 mon_chr->chr_write = gdb_monitor_write; 2429 monitor_init(mon_chr, 0); 2430 } else { 2431 if (s->chr) 2432 qemu_chr_close(s->chr); 2433 mon_chr = s->mon_chr; 2434 memset(s, 0, sizeof(GDBState)); 2435 } 2436 s->c_cpu = first_cpu; 2437 s->g_cpu = first_cpu; 2438 s->chr = chr; 2439 s->state = chr ? RS_IDLE : RS_INACTIVE; 2440 s->mon_chr = mon_chr; 2441 2442 return 0; 2443 } 2444 #endif 2445