1 /* sha.c 2 ** 3 ** Copyright 2008, The Android Open Source Project 4 ** 5 ** Redistribution and use in source and binary forms, with or without 6 ** modification, are permitted provided that the following conditions are met: 7 ** * Redistributions of source code must retain the above copyright 8 ** notice, this list of conditions and the following disclaimer. 9 ** * Redistributions in binary form must reproduce the above copyright 10 ** notice, this list of conditions and the following disclaimer in the 11 ** documentation and/or other materials provided with the distribution. 12 ** * Neither the name of Google Inc. nor the names of its contributors may 13 ** be used to endorse or promote products derived from this software 14 ** without specific prior written permission. 15 ** 16 ** THIS SOFTWARE IS PROVIDED BY Google Inc. ``AS IS'' AND ANY EXPRESS OR 17 ** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 18 ** MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 ** EVENT SHALL Google Inc. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 20 ** SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 ** PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; 22 ** OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 23 ** WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR 24 ** OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF 25 ** ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 */ 27 28 #include "mincrypt/sha.h" 29 30 // Some machines lack byteswap.h and endian.h. These have to use the 31 // slower code, even if they're little-endian. 32 33 #if defined(HAVE_ENDIAN_H) && defined(HAVE_LITTLE_ENDIAN) 34 35 #include <byteswap.h> 36 #include <memory.h> 37 38 // This version is about 28% faster than the generic version below, 39 // but assumes little-endianness. 40 41 static inline uint32_t ror27(uint32_t val) { 42 return (val >> 27) | (val << 5); 43 } 44 static inline uint32_t ror2(uint32_t val) { 45 return (val >> 2) | (val << 30); 46 } 47 static inline uint32_t ror31(uint32_t val) { 48 return (val >> 31) | (val << 1); 49 } 50 51 static void SHA1_Transform(SHA_CTX* ctx) { 52 uint32_t W[80]; 53 register uint32_t A, B, C, D, E; 54 int t; 55 56 A = ctx->state[0]; 57 B = ctx->state[1]; 58 C = ctx->state[2]; 59 D = ctx->state[3]; 60 E = ctx->state[4]; 61 62 #define SHA_F1(A,B,C,D,E,t) \ 63 E += ror27(A) + \ 64 (W[t] = bswap_32(ctx->buf.w[t])) + \ 65 (D^(B&(C^D))) + 0x5A827999; \ 66 B = ror2(B); 67 68 for (t = 0; t < 15; t += 5) { 69 SHA_F1(A,B,C,D,E,t + 0); 70 SHA_F1(E,A,B,C,D,t + 1); 71 SHA_F1(D,E,A,B,C,t + 2); 72 SHA_F1(C,D,E,A,B,t + 3); 73 SHA_F1(B,C,D,E,A,t + 4); 74 } 75 SHA_F1(A,B,C,D,E,t + 0); // 16th one, t == 15 76 77 #undef SHA_F1 78 79 #define SHA_F1(A,B,C,D,E,t) \ 80 E += ror27(A) + \ 81 (W[t] = ror31(W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16])) + \ 82 (D^(B&(C^D))) + 0x5A827999; \ 83 B = ror2(B); 84 85 SHA_F1(E,A,B,C,D,t + 1); 86 SHA_F1(D,E,A,B,C,t + 2); 87 SHA_F1(C,D,E,A,B,t + 3); 88 SHA_F1(B,C,D,E,A,t + 4); 89 90 #undef SHA_F1 91 92 #define SHA_F2(A,B,C,D,E,t) \ 93 E += ror27(A) + \ 94 (W[t] = ror31(W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16])) + \ 95 (B^C^D) + 0x6ED9EBA1; \ 96 B = ror2(B); 97 98 for (t = 20; t < 40; t += 5) { 99 SHA_F2(A,B,C,D,E,t + 0); 100 SHA_F2(E,A,B,C,D,t + 1); 101 SHA_F2(D,E,A,B,C,t + 2); 102 SHA_F2(C,D,E,A,B,t + 3); 103 SHA_F2(B,C,D,E,A,t + 4); 104 } 105 106 #undef SHA_F2 107 108 #define SHA_F3(A,B,C,D,E,t) \ 109 E += ror27(A) + \ 110 (W[t] = ror31(W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16])) + \ 111 ((B&C)|(D&(B|C))) + 0x8F1BBCDC; \ 112 B = ror2(B); 113 114 for (; t < 60; t += 5) { 115 SHA_F3(A,B,C,D,E,t + 0); 116 SHA_F3(E,A,B,C,D,t + 1); 117 SHA_F3(D,E,A,B,C,t + 2); 118 SHA_F3(C,D,E,A,B,t + 3); 119 SHA_F3(B,C,D,E,A,t + 4); 120 } 121 122 #undef SHA_F3 123 124 #define SHA_F4(A,B,C,D,E,t) \ 125 E += ror27(A) + \ 126 (W[t] = ror31(W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16])) + \ 127 (B^C^D) + 0xCA62C1D6; \ 128 B = ror2(B); 129 130 for (; t < 80; t += 5) { 131 SHA_F4(A,B,C,D,E,t + 0); 132 SHA_F4(E,A,B,C,D,t + 1); 133 SHA_F4(D,E,A,B,C,t + 2); 134 SHA_F4(C,D,E,A,B,t + 3); 135 SHA_F4(B,C,D,E,A,t + 4); 136 } 137 138 #undef SHA_F4 139 140 ctx->state[0] += A; 141 ctx->state[1] += B; 142 ctx->state[2] += C; 143 ctx->state[3] += D; 144 ctx->state[4] += E; 145 } 146 147 void SHA_update(SHA_CTX* ctx, const void* data, int len) { 148 int i = ctx->count % sizeof(ctx->buf); 149 const uint8_t* p = (const uint8_t*)data; 150 151 ctx->count += len; 152 153 while (len > sizeof(ctx->buf) - i) { 154 memcpy(&ctx->buf.b[i], p, sizeof(ctx->buf) - i); 155 len -= sizeof(ctx->buf) - i; 156 p += sizeof(ctx->buf) - i; 157 SHA1_Transform(ctx); 158 i = 0; 159 } 160 161 while (len--) { 162 ctx->buf.b[i++] = *p++; 163 if (i == sizeof(ctx->buf)) { 164 SHA1_Transform(ctx); 165 i = 0; 166 } 167 } 168 } 169 170 171 const uint8_t* SHA_final(SHA_CTX* ctx) { 172 uint64_t cnt = ctx->count * 8; 173 int i; 174 175 SHA_update(ctx, (uint8_t*)"\x80", 1); 176 while ((ctx->count % sizeof(ctx->buf)) != (sizeof(ctx->buf) - 8)) { 177 SHA_update(ctx, (uint8_t*)"\0", 1); 178 } 179 for (i = 0; i < 8; ++i) { 180 uint8_t tmp = cnt >> ((7 - i) * 8); 181 SHA_update(ctx, &tmp, 1); 182 } 183 184 for (i = 0; i < 5; i++) { 185 ctx->buf.w[i] = bswap_32(ctx->state[i]); 186 } 187 188 return ctx->buf.b; 189 } 190 191 #else // #if defined(HAVE_ENDIAN_H) && defined(HAVE_LITTLE_ENDIAN) 192 193 #define rol(bits, value) (((value) << (bits)) | ((value) >> (32 - (bits)))) 194 195 static void SHA1_transform(SHA_CTX *ctx) { 196 uint32_t W[80]; 197 uint32_t A, B, C, D, E; 198 uint8_t *p = ctx->buf; 199 int t; 200 201 for(t = 0; t < 16; ++t) { 202 uint32_t tmp = *p++ << 24; 203 tmp |= *p++ << 16; 204 tmp |= *p++ << 8; 205 tmp |= *p++; 206 W[t] = tmp; 207 } 208 209 for(; t < 80; t++) { 210 W[t] = rol(1,W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16]); 211 } 212 213 A = ctx->state[0]; 214 B = ctx->state[1]; 215 C = ctx->state[2]; 216 D = ctx->state[3]; 217 E = ctx->state[4]; 218 219 for(t = 0; t < 80; t++) { 220 uint32_t tmp = rol(5,A) + E + W[t]; 221 222 if (t < 20) 223 tmp += (D^(B&(C^D))) + 0x5A827999; 224 else if ( t < 40) 225 tmp += (B^C^D) + 0x6ED9EBA1; 226 else if ( t < 60) 227 tmp += ((B&C)|(D&(B|C))) + 0x8F1BBCDC; 228 else 229 tmp += (B^C^D) + 0xCA62C1D6; 230 231 E = D; 232 D = C; 233 C = rol(30,B); 234 B = A; 235 A = tmp; 236 } 237 238 ctx->state[0] += A; 239 ctx->state[1] += B; 240 ctx->state[2] += C; 241 ctx->state[3] += D; 242 ctx->state[4] += E; 243 } 244 245 void SHA_update(SHA_CTX *ctx, const void *data, int len) { 246 int i = ctx->count % sizeof(ctx->buf); 247 const uint8_t* p = (const uint8_t*)data; 248 249 ctx->count += len; 250 251 while (len--) { 252 ctx->buf[i++] = *p++; 253 if (i == sizeof(ctx->buf)) { 254 SHA1_transform(ctx); 255 i = 0; 256 } 257 } 258 } 259 const uint8_t *SHA_final(SHA_CTX *ctx) { 260 uint8_t *p = ctx->buf; 261 uint64_t cnt = ctx->count * 8; 262 int i; 263 264 SHA_update(ctx, (uint8_t*)"\x80", 1); 265 while ((ctx->count % sizeof(ctx->buf)) != (sizeof(ctx->buf) - 8)) { 266 SHA_update(ctx, (uint8_t*)"\0", 1); 267 } 268 for (i = 0; i < 8; ++i) { 269 uint8_t tmp = cnt >> ((7 - i) * 8); 270 SHA_update(ctx, &tmp, 1); 271 } 272 273 for (i = 0; i < 5; i++) { 274 uint32_t tmp = ctx->state[i]; 275 *p++ = tmp >> 24; 276 *p++ = tmp >> 16; 277 *p++ = tmp >> 8; 278 *p++ = tmp >> 0; 279 } 280 281 return ctx->buf; 282 } 283 284 #endif // endianness 285 286 void SHA_init(SHA_CTX* ctx) { 287 ctx->state[0] = 0x67452301; 288 ctx->state[1] = 0xEFCDAB89; 289 ctx->state[2] = 0x98BADCFE; 290 ctx->state[3] = 0x10325476; 291 ctx->state[4] = 0xC3D2E1F0; 292 ctx->count = 0; 293 } 294 295 /* Convenience function */ 296 const uint8_t* SHA(const void *data, int len, uint8_t *digest) { 297 const uint8_t *p; 298 int i; 299 SHA_CTX ctx; 300 SHA_init(&ctx); 301 SHA_update(&ctx, data, len); 302 p = SHA_final(&ctx); 303 for (i = 0; i < SHA_DIGEST_SIZE; ++i) { 304 digest[i] = *p++; 305 } 306 return digest; 307 } 308