1 /* 2 * Misc utility routines for accessing chip-specific features 3 * of the SiliconBackplane-based Broadcom chips. 4 * 5 * Copyright (C) 1999-2009, Broadcom Corporation 6 * 7 * Unless you and Broadcom execute a separate written software license 8 * agreement governing use of this software, this software is licensed to you 9 * under the terms of the GNU General Public License version 2 (the "GPL"), 10 * available at http://www.broadcom.com/licenses/GPLv2.php, with the 11 * following added to such license: 12 * 13 * As a special exception, the copyright holders of this software give you 14 * permission to link this software with independent modules, and to copy and 15 * distribute the resulting executable under terms of your choice, provided that 16 * you also meet, for each linked independent module, the terms and conditions of 17 * the license of that module. An independent module is a module which is not 18 * derived from this software. The special exception does not apply to any 19 * modifications of the software. 20 * 21 * Notwithstanding the above, under no circumstances may you combine this 22 * software in any way with any other Broadcom software provided under a license 23 * other than the GPL, without Broadcom's express prior written consent. 24 * 25 * $Id: aiutils.c,v 1.6.4.7.4.5 2009/09/25 00:32:01 Exp $ 26 */ 27 28 #include <typedefs.h> 29 #include <bcmdefs.h> 30 #include <osl.h> 31 #include <bcmutils.h> 32 #include <siutils.h> 33 #include <hndsoc.h> 34 #include <sbchipc.h> 35 #include <pcicfg.h> 36 37 #include "siutils_priv.h" 38 39 STATIC uint32 40 get_asd(si_t *sih, uint32 *eromptr, uint sp, uint ad, uint st, 41 uint32 *addrl, uint32 *addrh, uint32 *sizel, uint32 *sizeh); 42 43 44 /* EROM parsing */ 45 46 static uint32 47 get_erom_ent(si_t *sih, uint32 *eromptr, uint32 mask, uint32 match) 48 { 49 uint32 ent; 50 uint inv = 0, nom = 0; 51 52 while (TRUE) { 53 ent = R_REG(si_osh(sih), (uint32 *)(uintptr)(*eromptr)); 54 *eromptr += sizeof(uint32); 55 56 if (mask == 0) 57 break; 58 59 if ((ent & ER_VALID) == 0) { 60 inv++; 61 continue; 62 } 63 64 if (ent == (ER_END | ER_VALID)) 65 break; 66 67 if ((ent & mask) == match) 68 break; 69 70 nom++; 71 } 72 73 SI_MSG(("%s: Returning ent 0x%08x\n", __FUNCTION__, ent)); 74 if (inv + nom) 75 SI_MSG((" after %d invalid and %d non-matching entries\n", inv, nom)); 76 return ent; 77 } 78 79 STATIC uint32 80 get_asd(si_t *sih, uint32 *eromptr, uint sp, uint ad, uint st, 81 uint32 *addrl, uint32 *addrh, uint32 *sizel, uint32 *sizeh) 82 { 83 uint32 asd, sz, szd; 84 85 asd = get_erom_ent(sih, eromptr, ER_VALID, ER_VALID); 86 if (((asd & ER_TAG1) != ER_ADD) || 87 (((asd & AD_SP_MASK) >> AD_SP_SHIFT) != sp) || 88 ((asd & AD_ST_MASK) != st)) { 89 /* This is not what we want, "push" it back */ 90 *eromptr -= sizeof(uint32); 91 return 0; 92 } 93 *addrl = asd & AD_ADDR_MASK; 94 if (asd & AD_AG32) 95 *addrh = get_erom_ent(sih, eromptr, 0, 0); 96 else 97 *addrh = 0; 98 *sizeh = 0; 99 sz = asd & AD_SZ_MASK; 100 if (sz == AD_SZ_SZD) { 101 szd = get_erom_ent(sih, eromptr, 0, 0); 102 *sizel = szd & SD_SZ_MASK; 103 if (szd & SD_SG32) 104 *sizeh = get_erom_ent(sih, eromptr, 0, 0); 105 } else 106 *sizel = AD_SZ_BASE << (sz >> AD_SZ_SHIFT); 107 108 SI_MSG((" SP %d, ad %d: st = %d, 0x%08x_0x%08x @ 0x%08x_0x%08x\n", 109 sp, ad, st, *sizeh, *sizel, *addrh, *addrl)); 110 111 return asd; 112 } 113 114 /* parse the enumeration rom to identify all cores */ 115 void 116 ai_scan(si_t *sih, void *regs, uint devid) 117 { 118 si_info_t *sii = SI_INFO(sih); 119 chipcregs_t *cc = (chipcregs_t *)regs; 120 uint32 erombase, eromptr, eromlim; 121 122 erombase = R_REG(sii->osh, &cc->eromptr); 123 124 switch (BUSTYPE(sih->bustype)) { 125 case SI_BUS: 126 eromptr = (uintptr)REG_MAP(erombase, SI_CORE_SIZE); 127 break; 128 129 case PCI_BUS: 130 /* Set wrappers address */ 131 sii->curwrap = (void *)((uintptr)regs + SI_CORE_SIZE); 132 133 /* Now point the window at the erom */ 134 OSL_PCI_WRITE_CONFIG(sii->osh, PCI_BAR0_WIN, 4, erombase); 135 eromptr = (uint32)(uintptr)regs; 136 break; 137 138 case SPI_BUS: 139 case SDIO_BUS: 140 eromptr = erombase; 141 break; 142 143 case PCMCIA_BUS: 144 default: 145 SI_ERROR(("Don't know how to do AXI enumertion on bus %d\n", sih->bustype)); 146 ASSERT(0); 147 return; 148 } 149 eromlim = eromptr + ER_REMAPCONTROL; 150 151 SI_MSG(("ai_scan: regs = 0x%p, erombase = 0x%08x, eromptr = 0x%08x, eromlim = 0x%08x\n", 152 regs, erombase, eromptr, eromlim)); 153 while (eromptr < eromlim) { 154 uint32 cia, cib, base, cid, mfg, crev, nmw, nsw, nmp, nsp; 155 uint32 mpd, asd, addrl, addrh, sizel, sizeh; 156 uint i, j, idx; 157 bool br; 158 159 br = FALSE; 160 161 /* Grok a component */ 162 cia = get_erom_ent(sih, &eromptr, ER_TAG, ER_CI); 163 if (cia == (ER_END | ER_VALID)) { 164 SI_MSG(("Found END of erom after %d cores\n", sii->numcores)); 165 return; 166 } 167 base = eromptr - sizeof(uint32); 168 cib = get_erom_ent(sih, &eromptr, 0, 0); 169 170 if ((cib & ER_TAG) != ER_CI) { 171 SI_ERROR(("CIA not followed by CIB\n")); 172 goto error; 173 } 174 175 cid = (cia & CIA_CID_MASK) >> CIA_CID_SHIFT; 176 mfg = (cia & CIA_MFG_MASK) >> CIA_MFG_SHIFT; 177 crev = (cib & CIB_REV_MASK) >> CIB_REV_SHIFT; 178 nmw = (cib & CIB_NMW_MASK) >> CIB_NMW_SHIFT; 179 nsw = (cib & CIB_NSW_MASK) >> CIB_NSW_SHIFT; 180 nmp = (cib & CIB_NMP_MASK) >> CIB_NMP_SHIFT; 181 nsp = (cib & CIB_NSP_MASK) >> CIB_NSP_SHIFT; 182 183 SI_MSG(("Found component 0x%04x/0x%4x rev %d at erom addr 0x%08x, with nmw = %d, " 184 "nsw = %d, nmp = %d & nsp = %d\n", 185 mfg, cid, crev, base, nmw, nsw, nmp, nsp)); 186 187 if (((mfg == MFGID_ARM) && (cid == DEF_AI_COMP)) || (nsp == 0)) 188 continue; 189 if ((nmw + nsw == 0)) { 190 /* A component which is not a core */ 191 if (cid == OOB_ROUTER_CORE_ID) { 192 asd = get_asd(sih, &eromptr, 0, 0, AD_ST_SLAVE, 193 &addrl, &addrh, &sizel, &sizeh); 194 if (asd != 0) { 195 sii->common_info->oob_router = addrl; 196 } 197 } 198 continue; 199 } 200 201 idx = sii->numcores; 202 /* sii->eromptr[idx] = base; */ 203 sii->common_info->cia[idx] = cia; 204 sii->common_info->cib[idx] = cib; 205 sii->common_info->coreid[idx] = cid; 206 207 for (i = 0; i < nmp; i++) { 208 mpd = get_erom_ent(sih, &eromptr, ER_VALID, ER_VALID); 209 if ((mpd & ER_TAG) != ER_MP) { 210 SI_ERROR(("Not enough MP entries for component 0x%x\n", cid)); 211 goto error; 212 } 213 SI_MSG((" Master port %d, mp: %d id: %d\n", i, 214 (mpd & MPD_MP_MASK) >> MPD_MP_SHIFT, 215 (mpd & MPD_MUI_MASK) >> MPD_MUI_SHIFT)); 216 } 217 218 /* First Slave Address Descriptor should be port 0: 219 * the main register space for the core 220 */ 221 asd = get_asd(sih, &eromptr, 0, 0, AD_ST_SLAVE, &addrl, &addrh, &sizel, &sizeh); 222 if (asd == 0) { 223 /* Try again to see if it is a bridge */ 224 asd = get_asd(sih, &eromptr, 0, 0, AD_ST_BRIDGE, &addrl, &addrh, 225 &sizel, &sizeh); 226 if (asd != 0) 227 br = TRUE; 228 else 229 if ((addrh != 0) || (sizeh != 0) || (sizel != SI_CORE_SIZE)) { 230 SI_ERROR(("First Slave ASD for core 0x%04x malformed " 231 "(0x%08x)\n", cid, asd)); 232 goto error; 233 } 234 } 235 sii->common_info->coresba[idx] = addrl; 236 sii->common_info->coresba_size[idx] = sizel; 237 /* Get any more ASDs in port 0 */ 238 j = 1; 239 do { 240 asd = get_asd(sih, &eromptr, 0, j, AD_ST_SLAVE, &addrl, &addrh, 241 &sizel, &sizeh); 242 if ((asd != 0) && (j == 1) && (sizel == SI_CORE_SIZE)) 243 sii->common_info->coresba2[idx] = addrl; 244 sii->common_info->coresba2_size[idx] = sizel; 245 j++; 246 } while (asd != 0); 247 248 /* Go through the ASDs for other slave ports */ 249 for (i = 1; i < nsp; i++) { 250 j = 0; 251 do { 252 asd = get_asd(sih, &eromptr, i, j++, AD_ST_SLAVE, &addrl, &addrh, 253 &sizel, &sizeh); 254 } while (asd != 0); 255 if (j == 0) { 256 SI_ERROR((" SP %d has no address descriptors\n", i)); 257 goto error; 258 } 259 } 260 261 /* Now get master wrappers */ 262 for (i = 0; i < nmw; i++) { 263 asd = get_asd(sih, &eromptr, i, 0, AD_ST_MWRAP, &addrl, &addrh, 264 &sizel, &sizeh); 265 if (asd == 0) { 266 SI_ERROR(("Missing descriptor for MW %d\n", i)); 267 goto error; 268 } 269 if ((sizeh != 0) || (sizel != SI_CORE_SIZE)) { 270 SI_ERROR(("Master wrapper %d is not 4KB\n", i)); 271 goto error; 272 } 273 if (i == 0) 274 sii->common_info->wrapba[idx] = addrl; 275 } 276 277 /* And finally slave wrappers */ 278 for (i = 0; i < nsw; i++) { 279 uint fwp = (nsp == 1) ? 0 : 1; 280 asd = get_asd(sih, &eromptr, fwp + i, 0, AD_ST_SWRAP, &addrl, &addrh, 281 &sizel, &sizeh); 282 if (asd == 0) { 283 SI_ERROR(("Missing descriptor for SW %d\n", i)); 284 goto error; 285 } 286 if ((sizeh != 0) || (sizel != SI_CORE_SIZE)) { 287 SI_ERROR(("Slave wrapper %d is not 4KB\n", i)); 288 goto error; 289 } 290 if ((nmw == 0) && (i == 0)) 291 sii->common_info->wrapba[idx] = addrl; 292 } 293 294 /* Don't record bridges */ 295 if (br) 296 continue; 297 298 /* Done with core */ 299 sii->numcores++; 300 } 301 302 SI_ERROR(("Reached end of erom without finding END")); 303 304 error: 305 sii->numcores = 0; 306 return; 307 } 308 309 /* This function changes the logical "focus" to the indicated core. 310 * Return the current core's virtual address. 311 */ 312 void * 313 ai_setcoreidx(si_t *sih, uint coreidx) 314 { 315 si_info_t *sii = SI_INFO(sih); 316 uint32 addr = sii->common_info->coresba[coreidx]; 317 uint32 wrap = sii->common_info->wrapba[coreidx]; 318 void *regs; 319 320 if (coreidx >= sii->numcores) 321 return (NULL); 322 323 /* 324 * If the user has provided an interrupt mask enabled function, 325 * then assert interrupts are disabled before switching the core. 326 */ 327 ASSERT((sii->intrsenabled_fn == NULL) || !(*(sii)->intrsenabled_fn)((sii)->intr_arg)); 328 329 switch (BUSTYPE(sih->bustype)) { 330 case SI_BUS: 331 /* map new one */ 332 if (!sii->common_info->regs[coreidx]) { 333 sii->common_info->regs[coreidx] = REG_MAP(addr, SI_CORE_SIZE); 334 ASSERT(GOODREGS(sii->common_info->regs[coreidx])); 335 } 336 sii->curmap = regs = sii->common_info->regs[coreidx]; 337 if (!sii->common_info->wrappers[coreidx]) { 338 sii->common_info->wrappers[coreidx] = REG_MAP(wrap, SI_CORE_SIZE); 339 ASSERT(GOODREGS(sii->common_info->wrappers[coreidx])); 340 } 341 sii->curwrap = sii->common_info->wrappers[coreidx]; 342 break; 343 344 345 case SPI_BUS: 346 case SDIO_BUS: 347 sii->curmap = regs = (void *)((uintptr)addr); 348 sii->curwrap = (void *)((uintptr)wrap); 349 break; 350 351 case PCMCIA_BUS: 352 default: 353 ASSERT(0); 354 regs = NULL; 355 break; 356 } 357 358 sii->curmap = regs; 359 sii->curidx = coreidx; 360 361 return regs; 362 } 363 364 /* Return the number of address spaces in current core */ 365 int 366 ai_numaddrspaces(si_t *sih) 367 { 368 return 2; 369 } 370 371 /* Return the address of the nth address space in the current core */ 372 uint32 373 ai_addrspace(si_t *sih, uint asidx) 374 { 375 si_info_t *sii; 376 uint cidx; 377 378 sii = SI_INFO(sih); 379 cidx = sii->curidx; 380 381 if (asidx == 0) 382 return sii->common_info->coresba[cidx]; 383 else if (asidx == 1) 384 return sii->common_info->coresba2[cidx]; 385 else { 386 SI_ERROR(("%s: Need to parse the erom again to find addr space %d\n", 387 __FUNCTION__, asidx)); 388 return 0; 389 } 390 } 391 392 /* Return the size of the nth address space in the current core */ 393 uint32 394 ai_addrspacesize(si_t *sih, uint asidx) 395 { 396 si_info_t *sii; 397 uint cidx; 398 399 sii = SI_INFO(sih); 400 cidx = sii->curidx; 401 402 if (asidx == 0) 403 return sii->common_info->coresba_size[cidx]; 404 else if (asidx == 1) 405 return sii->common_info->coresba2_size[cidx]; 406 else { 407 SI_ERROR(("%s: Need to parse the erom again to find addr space %d\n", 408 __FUNCTION__, asidx)); 409 return 0; 410 } 411 } 412 413 uint 414 ai_flag(si_t *sih) 415 { 416 si_info_t *sii; 417 aidmp_t *ai; 418 419 sii = SI_INFO(sih); 420 ai = sii->curwrap; 421 422 return (R_REG(sii->osh, &ai->oobselouta30) & 0x1f); 423 } 424 425 void 426 ai_setint(si_t *sih, int siflag) 427 { 428 } 429 430 void 431 ai_write_wrap_reg(si_t *sih, uint32 offset, uint32 val) 432 { 433 si_info_t *sii = SI_INFO(sih); 434 aidmp_t *ai = sii->curwrap; 435 W_REG(sii->osh, (uint32 *)((uint8 *)ai+offset), val); 436 return; 437 } 438 439 uint 440 ai_corevendor(si_t *sih) 441 { 442 si_info_t *sii; 443 uint32 cia; 444 445 sii = SI_INFO(sih); 446 cia = sii->common_info->cia[sii->curidx]; 447 return ((cia & CIA_MFG_MASK) >> CIA_MFG_SHIFT); 448 } 449 450 uint 451 ai_corerev(si_t *sih) 452 { 453 si_info_t *sii; 454 uint32 cib; 455 456 sii = SI_INFO(sih); 457 cib = sii->common_info->cib[sii->curidx]; 458 return ((cib & CIB_REV_MASK) >> CIB_REV_SHIFT); 459 } 460 461 bool 462 ai_iscoreup(si_t *sih) 463 { 464 si_info_t *sii; 465 aidmp_t *ai; 466 467 sii = SI_INFO(sih); 468 ai = sii->curwrap; 469 470 return (((R_REG(sii->osh, &ai->ioctrl) & (SICF_FGC | SICF_CLOCK_EN)) == SICF_CLOCK_EN) && 471 ((R_REG(sii->osh, &ai->resetctrl) & AIRC_RESET) == 0)); 472 } 473 474 /* 475 * Switch to 'coreidx', issue a single arbitrary 32bit register mask&set operation, 476 * switch back to the original core, and return the new value. 477 * 478 * When using the silicon backplane, no fidleing with interrupts or core switches are needed. 479 * 480 * Also, when using pci/pcie, we can optimize away the core switching for pci registers 481 * and (on newer pci cores) chipcommon registers. 482 */ 483 uint 484 ai_corereg(si_t *sih, uint coreidx, uint regoff, uint mask, uint val) 485 { 486 uint origidx = 0; 487 uint32 *r = NULL; 488 uint w; 489 uint intr_val = 0; 490 bool fast = FALSE; 491 si_info_t *sii; 492 493 sii = SI_INFO(sih); 494 495 ASSERT(GOODIDX(coreidx)); 496 ASSERT(regoff < SI_CORE_SIZE); 497 ASSERT((val & ~mask) == 0); 498 499 if (coreidx >= SI_MAXCORES) 500 return 0; 501 502 if (BUSTYPE(sih->bustype) == SI_BUS) { 503 /* If internal bus, we can always get at everything */ 504 fast = TRUE; 505 /* map if does not exist */ 506 if (!sii->common_info->wrappers[coreidx]) { 507 sii->common_info->regs[coreidx] = 508 REG_MAP(sii->common_info->coresba[coreidx], SI_CORE_SIZE); 509 ASSERT(GOODREGS(sii->common_info->regs[coreidx])); 510 } 511 r = (uint32 *)((uchar *)sii->common_info->regs[coreidx] + regoff); 512 } else if (BUSTYPE(sih->bustype) == PCI_BUS) { 513 /* If pci/pcie, we can get at pci/pcie regs and on newer cores to chipc */ 514 515 if ((sii->common_info->coreid[coreidx] == CC_CORE_ID) && SI_FAST(sii)) { 516 /* Chipc registers are mapped at 12KB */ 517 518 fast = TRUE; 519 r = (uint32 *)((char *)sii->curmap + PCI_16KB0_CCREGS_OFFSET + regoff); 520 } else if (sii->pub.buscoreidx == coreidx) { 521 /* pci registers are at either in the last 2KB of an 8KB window 522 * or, in pcie and pci rev 13 at 8KB 523 */ 524 fast = TRUE; 525 if (SI_FAST(sii)) 526 r = (uint32 *)((char *)sii->curmap + 527 PCI_16KB0_PCIREGS_OFFSET + regoff); 528 else 529 r = (uint32 *)((char *)sii->curmap + 530 ((regoff >= SBCONFIGOFF) ? 531 PCI_BAR0_PCISBR_OFFSET : PCI_BAR0_PCIREGS_OFFSET) + 532 regoff); 533 } 534 } 535 536 if (!fast) { 537 INTR_OFF(sii, intr_val); 538 539 /* save current core index */ 540 origidx = si_coreidx(&sii->pub); 541 542 /* switch core */ 543 r = (uint32*) ((uchar*) ai_setcoreidx(&sii->pub, coreidx) + regoff); 544 } 545 ASSERT(r != NULL); 546 547 /* mask and set */ 548 if (mask || val) { 549 w = (R_REG(sii->osh, r) & ~mask) | val; 550 W_REG(sii->osh, r, w); 551 } 552 553 /* readback */ 554 w = R_REG(sii->osh, r); 555 556 if (!fast) { 557 /* restore core index */ 558 if (origidx != coreidx) 559 ai_setcoreidx(&sii->pub, origidx); 560 561 INTR_RESTORE(sii, intr_val); 562 } 563 564 return (w); 565 } 566 567 void 568 ai_core_disable(si_t *sih, uint32 bits) 569 { 570 si_info_t *sii; 571 volatile uint32 dummy; 572 aidmp_t *ai; 573 574 sii = SI_INFO(sih); 575 576 ASSERT(GOODREGS(sii->curwrap)); 577 ai = sii->curwrap; 578 579 /* if core is already in reset, just return */ 580 if (R_REG(sii->osh, &ai->resetctrl) & AIRC_RESET) 581 return; 582 583 W_REG(sii->osh, &ai->ioctrl, bits); 584 dummy = R_REG(sii->osh, &ai->ioctrl); 585 OSL_DELAY(10); 586 587 W_REG(sii->osh, &ai->resetctrl, AIRC_RESET); 588 OSL_DELAY(1); 589 } 590 591 /* reset and re-enable a core 592 * inputs: 593 * bits - core specific bits that are set during and after reset sequence 594 * resetbits - core specific bits that are set only during reset sequence 595 */ 596 void 597 ai_core_reset(si_t *sih, uint32 bits, uint32 resetbits) 598 { 599 si_info_t *sii; 600 aidmp_t *ai; 601 volatile uint32 dummy; 602 603 sii = SI_INFO(sih); 604 ASSERT(GOODREGS(sii->curwrap)); 605 ai = sii->curwrap; 606 607 /* 608 * Must do the disable sequence first to work for arbitrary current core state. 609 */ 610 ai_core_disable(sih, (bits | resetbits)); 611 612 /* 613 * Now do the initialization sequence. 614 */ 615 W_REG(sii->osh, &ai->ioctrl, (bits | SICF_FGC | SICF_CLOCK_EN)); 616 dummy = R_REG(sii->osh, &ai->ioctrl); 617 W_REG(sii->osh, &ai->resetctrl, 0); 618 OSL_DELAY(1); 619 620 W_REG(sii->osh, &ai->ioctrl, (bits | SICF_CLOCK_EN)); 621 dummy = R_REG(sii->osh, &ai->ioctrl); 622 OSL_DELAY(1); 623 } 624 625 626 void 627 ai_core_cflags_wo(si_t *sih, uint32 mask, uint32 val) 628 { 629 si_info_t *sii; 630 aidmp_t *ai; 631 uint32 w; 632 633 sii = SI_INFO(sih); 634 ASSERT(GOODREGS(sii->curwrap)); 635 ai = sii->curwrap; 636 637 ASSERT((val & ~mask) == 0); 638 639 if (mask || val) { 640 w = ((R_REG(sii->osh, &ai->ioctrl) & ~mask) | val); 641 W_REG(sii->osh, &ai->ioctrl, w); 642 } 643 } 644 645 uint32 646 ai_core_cflags(si_t *sih, uint32 mask, uint32 val) 647 { 648 si_info_t *sii; 649 aidmp_t *ai; 650 uint32 w; 651 652 sii = SI_INFO(sih); 653 ASSERT(GOODREGS(sii->curwrap)); 654 ai = sii->curwrap; 655 656 ASSERT((val & ~mask) == 0); 657 658 if (mask || val) { 659 w = ((R_REG(sii->osh, &ai->ioctrl) & ~mask) | val); 660 W_REG(sii->osh, &ai->ioctrl, w); 661 } 662 663 return R_REG(sii->osh, &ai->ioctrl); 664 } 665 666 uint32 667 ai_core_sflags(si_t *sih, uint32 mask, uint32 val) 668 { 669 si_info_t *sii; 670 aidmp_t *ai; 671 uint32 w; 672 673 sii = SI_INFO(sih); 674 ASSERT(GOODREGS(sii->curwrap)); 675 ai = sii->curwrap; 676 677 ASSERT((val & ~mask) == 0); 678 ASSERT((mask & ~SISF_CORE_BITS) == 0); 679 680 if (mask || val) { 681 w = ((R_REG(sii->osh, &ai->iostatus) & ~mask) | val); 682 W_REG(sii->osh, &ai->iostatus, w); 683 } 684 685 return R_REG(sii->osh, &ai->iostatus); 686 } 687