1 /******************************************************************** 2 * COPYRIGHT: 3 * Copyright (c) 2005-2009, International Business Machines Corporation and 4 * others. All Rights Reserved. 5 ********************************************************************/ 6 /************************************************************************ 7 * Tests for the UText and UTextIterator text abstraction classses 8 * 9 ************************************************************************/ 10 11 #include "unicode/utypes.h" 12 13 #include <string.h> 14 #include <stdio.h> 15 #include <stdlib.h> 16 #include <unicode/utext.h> 17 #include <unicode/utf8.h> 18 #include <unicode/ustring.h> 19 #include <unicode/uchriter.h> 20 #include "utxttest.h" 21 22 static UBool gFailed = FALSE; 23 static int gTestNum = 0; 24 25 // Forward decl 26 UText *openFragmentedUnicodeString(UText *ut, UnicodeString *s, UErrorCode *status); 27 28 #define TEST_ASSERT(x) \ 29 { if ((x)==FALSE) {errln("Test #%d failure in file %s at line %d\n", gTestNum, __FILE__, __LINE__);\ 30 gFailed = TRUE;\ 31 }} 32 33 34 #define TEST_SUCCESS(status) \ 35 { if (U_FAILURE(status)) {errln("Test #%d failure in file %s at line %d. Error = \"%s\"\n", \ 36 gTestNum, __FILE__, __LINE__, u_errorName(status)); \ 37 gFailed = TRUE;\ 38 }} 39 40 UTextTest::UTextTest() { 41 } 42 43 UTextTest::~UTextTest() { 44 } 45 46 47 void 48 UTextTest::runIndexedTest(int32_t index, UBool exec, 49 const char* &name, char* /*par*/) { 50 switch (index) { 51 case 0: name = "TextTest"; 52 if (exec) TextTest(); break; 53 case 1: name = "ErrorTest"; 54 if (exec) ErrorTest(); break; 55 case 2: name = "FreezeTest"; 56 if (exec) FreezeTest(); break; 57 case 3: name = "Ticket5560"; 58 if (exec) Ticket5560(); break; 59 case 4: name = "Ticket6847"; 60 if (exec) Ticket6847(); break; 61 default: name = ""; break; 62 } 63 } 64 65 // 66 // Quick and dirty random number generator. 67 // (don't use library so that results are portable. 68 static uint32_t m_seed = 1; 69 static uint32_t m_rand() 70 { 71 m_seed = m_seed * 1103515245 + 12345; 72 return (uint32_t)(m_seed/65536) % 32768; 73 } 74 75 76 // 77 // TextTest() 78 // 79 // Top Level function for UText testing. 80 // Specifies the strings to be tested, with the acutal testing itself 81 // being carried out in another function, TestString(). 82 // 83 void UTextTest::TextTest() { 84 int32_t i, j; 85 86 TestString("abcd\\U00010001xyz"); 87 TestString(""); 88 89 // Supplementary chars at start or end 90 TestString("\\U00010001"); 91 TestString("abc\\U00010001"); 92 TestString("\\U00010001abc"); 93 94 // Test simple strings of lengths 1 to 60, looking for glitches at buffer boundaries 95 UnicodeString s; 96 for (i=1; i<60; i++) { 97 s.truncate(0); 98 for (j=0; j<i; j++) { 99 if (j+0x30 == 0x5c) { 100 // backslash. Needs to be escaped 101 s.append((UChar)0x5c); 102 } 103 s.append(UChar(j+0x30)); 104 } 105 TestString(s); 106 } 107 108 // Test strings with odd-aligned supplementary chars, 109 // looking for glitches at buffer boundaries 110 for (i=1; i<60; i++) { 111 s.truncate(0); 112 s.append((UChar)0x41); 113 for (j=0; j<i; j++) { 114 s.append(UChar32(j+0x11000)); 115 } 116 TestString(s); 117 } 118 119 // String of chars of randomly varying size in utf-8 representation. 120 // Exercise the mapping, and the varying sized buffer. 121 // 122 s.truncate(0); 123 UChar32 c1 = 0; 124 UChar32 c2 = 0x100; 125 UChar32 c3 = 0xa000; 126 UChar32 c4 = 0x11000; 127 for (i=0; i<1000; i++) { 128 int len8 = m_rand()%4 + 1; 129 switch (len8) { 130 case 1: 131 c1 = (c1+1)%0x80; 132 // don't put 0 into string (0 terminated strings for some tests) 133 // don't put '\', will cause unescape() to fail. 134 if (c1==0x5c || c1==0) { 135 c1++; 136 } 137 s.append(c1); 138 break; 139 case 2: 140 s.append(c2++); 141 break; 142 case 3: 143 s.append(c3++); 144 break; 145 case 4: 146 s.append(c4++); 147 break; 148 } 149 } 150 TestString(s); 151 } 152 153 154 // 155 // TestString() Run a suite of UText tests on a string. 156 // The test string is unescaped before use. 157 // 158 void UTextTest::TestString(const UnicodeString &s) { 159 int32_t i; 160 int32_t j; 161 UChar32 c; 162 int32_t cpCount = 0; 163 UErrorCode status = U_ZERO_ERROR; 164 UText *ut = NULL; 165 int32_t saLen; 166 167 UnicodeString sa = s.unescape(); 168 saLen = sa.length(); 169 170 // 171 // Build up a mapping between code points and UTF-16 code unit indexes. 172 // 173 m *cpMap = new m[sa.length() + 1]; 174 j = 0; 175 for (i=0; i<sa.length(); i=sa.moveIndex32(i, 1)) { 176 c = sa.char32At(i); 177 cpMap[j].nativeIdx = i; 178 cpMap[j].cp = c; 179 j++; 180 cpCount++; 181 } 182 cpMap[j].nativeIdx = i; // position following the last char in utf-16 string. 183 184 185 // UChar * test, null terminated 186 status = U_ZERO_ERROR; 187 UChar *buf = new UChar[saLen+1]; 188 sa.extract(buf, saLen+1, status); 189 TEST_SUCCESS(status); 190 ut = utext_openUChars(NULL, buf, -1, &status); 191 TEST_SUCCESS(status); 192 TestAccess(sa, ut, cpCount, cpMap); 193 utext_close(ut); 194 delete [] buf; 195 196 // UChar * test, with length 197 status = U_ZERO_ERROR; 198 buf = new UChar[saLen+1]; 199 sa.extract(buf, saLen+1, status); 200 TEST_SUCCESS(status); 201 ut = utext_openUChars(NULL, buf, saLen, &status); 202 TEST_SUCCESS(status); 203 TestAccess(sa, ut, cpCount, cpMap); 204 utext_close(ut); 205 delete [] buf; 206 207 208 // UnicodeString test 209 status = U_ZERO_ERROR; 210 ut = utext_openUnicodeString(NULL, &sa, &status); 211 TEST_SUCCESS(status); 212 TestAccess(sa, ut, cpCount, cpMap); 213 TestCMR(sa, ut, cpCount, cpMap, cpMap); 214 utext_close(ut); 215 216 217 // Const UnicodeString test 218 status = U_ZERO_ERROR; 219 ut = utext_openConstUnicodeString(NULL, &sa, &status); 220 TEST_SUCCESS(status); 221 TestAccess(sa, ut, cpCount, cpMap); 222 utext_close(ut); 223 224 225 // Replaceable test. (UnicodeString inherits Replaceable) 226 status = U_ZERO_ERROR; 227 ut = utext_openReplaceable(NULL, &sa, &status); 228 TEST_SUCCESS(status); 229 TestAccess(sa, ut, cpCount, cpMap); 230 TestCMR(sa, ut, cpCount, cpMap, cpMap); 231 utext_close(ut); 232 233 // Character Iterator Tests 234 status = U_ZERO_ERROR; 235 const UChar *cbuf = sa.getBuffer(); 236 CharacterIterator *ci = new UCharCharacterIterator(cbuf, saLen, status); 237 TEST_SUCCESS(status); 238 ut = utext_openCharacterIterator(NULL, ci, &status); 239 TEST_SUCCESS(status); 240 TestAccess(sa, ut, cpCount, cpMap); 241 utext_close(ut); 242 delete ci; 243 244 245 // Fragmented UnicodeString (Chunk size of one) 246 // 247 status = U_ZERO_ERROR; 248 ut = openFragmentedUnicodeString(NULL, &sa, &status); 249 TEST_SUCCESS(status); 250 TestAccess(sa, ut, cpCount, cpMap); 251 utext_close(ut); 252 253 // 254 // UTF-8 test 255 // 256 257 // Convert the test string from UnicodeString to (char *) in utf-8 format 258 int32_t u8Len = sa.extract(0, sa.length(), NULL, 0, "utf-8"); 259 char *u8String = new char[u8Len + 1]; 260 sa.extract(0, sa.length(), u8String, u8Len+1, "utf-8"); 261 262 // Build up the map of code point indices in the utf-8 string 263 m * u8Map = new m[sa.length() + 1]; 264 i = 0; // native utf-8 index 265 for (j=0; j<cpCount ; j++) { // code point number 266 u8Map[j].nativeIdx = i; 267 U8_NEXT(u8String, i, u8Len, c) 268 u8Map[j].cp = c; 269 } 270 u8Map[cpCount].nativeIdx = u8Len; // position following the last char in utf-8 string. 271 272 // Do the test itself 273 status = U_ZERO_ERROR; 274 ut = utext_openUTF8(NULL, u8String, -1, &status); 275 TEST_SUCCESS(status); 276 TestAccess(sa, ut, cpCount, u8Map); 277 utext_close(ut); 278 279 280 281 delete []cpMap; 282 delete []u8Map; 283 delete []u8String; 284 } 285 286 // TestCMR test Copy, Move and Replace operations. 287 // us UnicodeString containing the test text. 288 // ut UText containing the same test text. 289 // cpCount number of code points in the test text. 290 // nativeMap Mapping from code points to native indexes for the UText. 291 // u16Map Mapping from code points to UTF-16 indexes, for use with the UnicodeString. 292 // 293 // This function runs a whole series of opertions on each incoming UText. 294 // The UText is deep-cloned prior to each operation, so that the original UText remains unchanged. 295 // 296 void UTextTest::TestCMR(const UnicodeString &us, UText *ut, int cpCount, m *nativeMap, m *u16Map) { 297 TEST_ASSERT(utext_isWritable(ut) == TRUE); 298 299 int srcLengthType; // Loop variables for selecting the postion and length 300 int srcPosType; // of the block to operate on within the source text. 301 int destPosType; 302 303 int srcIndex = 0; // Code Point indexes of the block to operate on for 304 int srcLength = 0; // a specific test. 305 306 int destIndex = 0; // Code point index of the destination for a copy/move test. 307 308 int32_t nativeStart = 0; // Native unit indexes for a test. 309 int32_t nativeLimit = 0; 310 int32_t nativeDest = 0; 311 312 int32_t u16Start = 0; // UTF-16 indexes for a test. 313 int32_t u16Limit = 0; // used when performing the same operation in a Unicode String 314 int32_t u16Dest = 0; 315 316 // Iterate over a whole series of source index, length and a target indexes. 317 // This is done with code point indexes; these will be later translated to native 318 // indexes using the cpMap. 319 for (srcLengthType=1; srcLengthType<=3; srcLengthType++) { 320 switch (srcLengthType) { 321 case 1: srcLength = 1; break; 322 case 2: srcLength = 5; break; 323 case 3: srcLength = cpCount / 3; 324 } 325 for (srcPosType=1; srcPosType<=5; srcPosType++) { 326 switch (srcPosType) { 327 case 1: srcIndex = 0; break; 328 case 2: srcIndex = 1; break; 329 case 3: srcIndex = cpCount - srcLength; break; 330 case 4: srcIndex = cpCount - srcLength - 1; break; 331 case 5: srcIndex = cpCount / 2; break; 332 } 333 if (srcIndex < 0 || srcIndex + srcLength > cpCount) { 334 // filter out bogus test cases - 335 // those with a source range that falls of an edge of the string. 336 continue; 337 } 338 339 // 340 // Copy and move tests. 341 // iterate over a variety of destination positions. 342 // 343 for (destPosType=1; destPosType<=4; destPosType++) { 344 switch (destPosType) { 345 case 1: destIndex = 0; break; 346 case 2: destIndex = 1; break; 347 case 3: destIndex = srcIndex - 1; break; 348 case 4: destIndex = srcIndex + srcLength + 1; break; 349 case 5: destIndex = cpCount-1; break; 350 case 6: destIndex = cpCount; break; 351 } 352 if (destIndex<0 || destIndex>cpCount) { 353 // filter out bogus test cases. 354 continue; 355 } 356 357 nativeStart = nativeMap[srcIndex].nativeIdx; 358 nativeLimit = nativeMap[srcIndex+srcLength].nativeIdx; 359 nativeDest = nativeMap[destIndex].nativeIdx; 360 361 u16Start = u16Map[srcIndex].nativeIdx; 362 u16Limit = u16Map[srcIndex+srcLength].nativeIdx; 363 u16Dest = u16Map[destIndex].nativeIdx; 364 365 gFailed = FALSE; 366 TestCopyMove(us, ut, FALSE, 367 nativeStart, nativeLimit, nativeDest, 368 u16Start, u16Limit, u16Dest); 369 370 TestCopyMove(us, ut, TRUE, 371 nativeStart, nativeLimit, nativeDest, 372 u16Start, u16Limit, u16Dest); 373 374 if (gFailed) { 375 return; 376 } 377 } 378 379 // 380 // Replace tests. 381 // 382 UnicodeString fullRepString("This is an arbitrary string that will be used as replacement text"); 383 for (int32_t replStrLen=0; replStrLen<20; replStrLen++) { 384 UnicodeString repStr(fullRepString, 0, replStrLen); 385 TestReplace(us, ut, 386 nativeStart, nativeLimit, 387 u16Start, u16Limit, 388 repStr); 389 if (gFailed) { 390 return; 391 } 392 } 393 394 } 395 } 396 397 } 398 399 // 400 // TestCopyMove run a single test case for utext_copy. 401 // Test cases are created in TestCMR and dispatched here for execution. 402 // 403 void UTextTest::TestCopyMove(const UnicodeString &us, UText *ut, UBool move, 404 int32_t nativeStart, int32_t nativeLimit, int32_t nativeDest, 405 int32_t u16Start, int32_t u16Limit, int32_t u16Dest) 406 { 407 UErrorCode status = U_ZERO_ERROR; 408 UText *targetUT = NULL; 409 gTestNum++; 410 gFailed = FALSE; 411 412 // 413 // clone the UText. The test will be run in the cloned copy 414 // so that we don't alter the original. 415 // 416 targetUT = utext_clone(NULL, ut, TRUE, FALSE, &status); 417 TEST_SUCCESS(status); 418 UnicodeString targetUS(us); // And copy the reference string. 419 420 // do the test operation first in the reference 421 targetUS.copy(u16Start, u16Limit, u16Dest); 422 if (move) { 423 // delete out the source range. 424 if (u16Limit < u16Dest) { 425 targetUS.removeBetween(u16Start, u16Limit); 426 } else { 427 int32_t amtCopied = u16Limit - u16Start; 428 targetUS.removeBetween(u16Start+amtCopied, u16Limit+amtCopied); 429 } 430 } 431 432 // Do the same operation in the UText under test 433 utext_copy(targetUT, nativeStart, nativeLimit, nativeDest, move, &status); 434 if (nativeDest > nativeStart && nativeDest < nativeLimit) { 435 TEST_ASSERT(status == U_INDEX_OUTOFBOUNDS_ERROR); 436 } else { 437 TEST_SUCCESS(status); 438 439 // Compare the results of the two parallel tests 440 int32_t usi = 0; // UnicodeString postion, utf-16 index. 441 int64_t uti = 0; // UText position, native index. 442 int32_t cpi; // char32 position (code point index) 443 UChar32 usc; // code point from Unicode String 444 UChar32 utc; // code point from UText 445 utext_setNativeIndex(targetUT, 0); 446 for (cpi=0; ; cpi++) { 447 usc = targetUS.char32At(usi); 448 utc = utext_next32(targetUT); 449 if (utc < 0) { 450 break; 451 } 452 TEST_ASSERT(uti == usi); 453 TEST_ASSERT(utc == usc); 454 usi = targetUS.moveIndex32(usi, 1); 455 uti = utext_getNativeIndex(targetUT); 456 if (gFailed) { 457 goto cleanupAndReturn; 458 } 459 } 460 int64_t expectedNativeLength = utext_nativeLength(ut); 461 if (move == FALSE) { 462 expectedNativeLength += nativeLimit - nativeStart; 463 } 464 uti = utext_getNativeIndex(targetUT); 465 TEST_ASSERT(uti == expectedNativeLength); 466 } 467 468 cleanupAndReturn: 469 utext_close(targetUT); 470 } 471 472 473 // 474 // TestReplace Test a single Replace operation. 475 // 476 void UTextTest::TestReplace( 477 const UnicodeString &us, // reference UnicodeString in which to do the replace 478 UText *ut, // UnicodeText object under test. 479 int32_t nativeStart, // Range to be replaced, in UText native units. 480 int32_t nativeLimit, 481 int32_t u16Start, // Range to be replaced, in UTF-16 units 482 int32_t u16Limit, // for use in the reference UnicodeString. 483 const UnicodeString &repStr) // The replacement string 484 { 485 UErrorCode status = U_ZERO_ERROR; 486 UText *targetUT = NULL; 487 gTestNum++; 488 gFailed = FALSE; 489 490 // 491 // clone the target UText. The test will be run in the cloned copy 492 // so that we don't alter the original. 493 // 494 targetUT = utext_clone(NULL, ut, TRUE, FALSE, &status); 495 TEST_SUCCESS(status); 496 UnicodeString targetUS(us); // And copy the reference string. 497 498 // 499 // Do the replace operation in the Unicode String, to 500 // produce a reference result. 501 // 502 targetUS.replace(u16Start, u16Limit-u16Start, repStr); 503 504 // 505 // Do the replace on the UText under test 506 // 507 const UChar *rs = repStr.getBuffer(); 508 int32_t rsLen = repStr.length(); 509 int32_t actualDelta = utext_replace(targetUT, nativeStart, nativeLimit, rs, rsLen, &status); 510 int32_t expectedDelta = repStr.length() - (nativeLimit - nativeStart); 511 TEST_ASSERT(actualDelta == expectedDelta); 512 513 // 514 // Compare the results 515 // 516 int32_t usi = 0; // UnicodeString postion, utf-16 index. 517 int64_t uti = 0; // UText position, native index. 518 int32_t cpi; // char32 position (code point index) 519 UChar32 usc; // code point from Unicode String 520 UChar32 utc; // code point from UText 521 int64_t expectedNativeLength = 0; 522 utext_setNativeIndex(targetUT, 0); 523 for (cpi=0; ; cpi++) { 524 usc = targetUS.char32At(usi); 525 utc = utext_next32(targetUT); 526 if (utc < 0) { 527 break; 528 } 529 TEST_ASSERT(uti == usi); 530 TEST_ASSERT(utc == usc); 531 usi = targetUS.moveIndex32(usi, 1); 532 uti = utext_getNativeIndex(targetUT); 533 if (gFailed) { 534 goto cleanupAndReturn; 535 } 536 } 537 expectedNativeLength = utext_nativeLength(ut) + expectedDelta; 538 uti = utext_getNativeIndex(targetUT); 539 TEST_ASSERT(uti == expectedNativeLength); 540 541 cleanupAndReturn: 542 utext_close(targetUT); 543 } 544 545 // 546 // TestAccess Test the read only access functions on a UText, including cloning. 547 // The text is accessed in a variety of ways, and compared with 548 // the reference UnicodeString. 549 // 550 void UTextTest::TestAccess(const UnicodeString &us, UText *ut, int cpCount, m *cpMap) { 551 // Run the standard tests on the caller-supplied UText. 552 TestAccessNoClone(us, ut, cpCount, cpMap); 553 554 // Re-run tests on a shallow clone. 555 utext_setNativeIndex(ut, 0); 556 UErrorCode status = U_ZERO_ERROR; 557 UText *shallowClone = utext_clone(NULL, ut, FALSE /*deep*/, FALSE /*readOnly*/, &status); 558 TEST_SUCCESS(status); 559 TestAccessNoClone(us, shallowClone, cpCount, cpMap); 560 561 // 562 // Rerun again on a deep clone. 563 // Note that text providers are not required to provide deep cloning, 564 // so unsupported errors are ignored. 565 // 566 status = U_ZERO_ERROR; 567 utext_setNativeIndex(shallowClone, 0); 568 UText *deepClone = utext_clone(NULL, shallowClone, TRUE, FALSE, &status); 569 utext_close(shallowClone); 570 if (status != U_UNSUPPORTED_ERROR) { 571 TEST_SUCCESS(status); 572 TestAccessNoClone(us, deepClone, cpCount, cpMap); 573 } 574 utext_close(deepClone); 575 } 576 577 578 // 579 // TestAccessNoClone() Test the read only access functions on a UText. 580 // The text is accessed in a variety of ways, and compared with 581 // the reference UnicodeString. 582 // 583 void UTextTest::TestAccessNoClone(const UnicodeString &us, UText *ut, int cpCount, m *cpMap) { 584 UErrorCode status = U_ZERO_ERROR; 585 gTestNum++; 586 587 // 588 // Check the length from the UText 589 // 590 int64_t expectedLen = cpMap[cpCount].nativeIdx; 591 int64_t utlen = utext_nativeLength(ut); 592 TEST_ASSERT(expectedLen == utlen); 593 594 // 595 // Iterate forwards, verify that we get the correct code points 596 // at the correct native offsets. 597 // 598 int i = 0; 599 int64_t index; 600 int64_t expectedIndex = 0; 601 int64_t foundIndex = 0; 602 UChar32 expectedC; 603 UChar32 foundC; 604 int64_t len; 605 606 for (i=0; i<cpCount; i++) { 607 expectedIndex = cpMap[i].nativeIdx; 608 foundIndex = utext_getNativeIndex(ut); 609 TEST_ASSERT(expectedIndex == foundIndex); 610 expectedC = cpMap[i].cp; 611 foundC = utext_next32(ut); 612 TEST_ASSERT(expectedC == foundC); 613 foundIndex = utext_getPreviousNativeIndex(ut); 614 TEST_ASSERT(expectedIndex == foundIndex); 615 if (gFailed) { 616 return; 617 } 618 } 619 foundC = utext_next32(ut); 620 TEST_ASSERT(foundC == U_SENTINEL); 621 622 // Repeat above, using macros 623 utext_setNativeIndex(ut, 0); 624 for (i=0; i<cpCount; i++) { 625 expectedIndex = cpMap[i].nativeIdx; 626 foundIndex = UTEXT_GETNATIVEINDEX(ut); 627 TEST_ASSERT(expectedIndex == foundIndex); 628 expectedC = cpMap[i].cp; 629 foundC = UTEXT_NEXT32(ut); 630 TEST_ASSERT(expectedC == foundC); 631 if (gFailed) { 632 return; 633 } 634 } 635 foundC = UTEXT_NEXT32(ut); 636 TEST_ASSERT(foundC == U_SENTINEL); 637 638 // 639 // Forward iteration (above) should have left index at the 640 // end of the input, which should == length(). 641 // 642 len = utext_nativeLength(ut); 643 foundIndex = utext_getNativeIndex(ut); 644 TEST_ASSERT(len == foundIndex); 645 646 // 647 // Iterate backwards over entire test string 648 // 649 len = utext_getNativeIndex(ut); 650 utext_setNativeIndex(ut, len); 651 for (i=cpCount-1; i>=0; i--) { 652 expectedC = cpMap[i].cp; 653 expectedIndex = cpMap[i].nativeIdx; 654 int64_t prevIndex = utext_getPreviousNativeIndex(ut); 655 foundC = utext_previous32(ut); 656 foundIndex = utext_getNativeIndex(ut); 657 TEST_ASSERT(expectedIndex == foundIndex); 658 TEST_ASSERT(expectedC == foundC); 659 TEST_ASSERT(prevIndex == foundIndex); 660 if (gFailed) { 661 return; 662 } 663 } 664 665 // 666 // Backwards iteration, above, should have left our iterator 667 // position at zero, and continued backwards iterationshould fail. 668 // 669 foundIndex = utext_getNativeIndex(ut); 670 TEST_ASSERT(foundIndex == 0); 671 foundIndex = utext_getPreviousNativeIndex(ut); 672 TEST_ASSERT(foundIndex == 0); 673 674 675 foundC = utext_previous32(ut); 676 TEST_ASSERT(foundC == U_SENTINEL); 677 foundIndex = utext_getNativeIndex(ut); 678 TEST_ASSERT(foundIndex == 0); 679 foundIndex = utext_getPreviousNativeIndex(ut); 680 TEST_ASSERT(foundIndex == 0); 681 682 683 // And again, with the macros 684 utext_setNativeIndex(ut, len); 685 for (i=cpCount-1; i>=0; i--) { 686 expectedC = cpMap[i].cp; 687 expectedIndex = cpMap[i].nativeIdx; 688 foundC = UTEXT_PREVIOUS32(ut); 689 foundIndex = UTEXT_GETNATIVEINDEX(ut); 690 TEST_ASSERT(expectedIndex == foundIndex); 691 TEST_ASSERT(expectedC == foundC); 692 if (gFailed) { 693 return; 694 } 695 } 696 697 // 698 // Backwards iteration, above, should have left our iterator 699 // position at zero, and continued backwards iterationshould fail. 700 // 701 foundIndex = UTEXT_GETNATIVEINDEX(ut); 702 TEST_ASSERT(foundIndex == 0); 703 704 foundC = UTEXT_PREVIOUS32(ut); 705 TEST_ASSERT(foundC == U_SENTINEL); 706 foundIndex = UTEXT_GETNATIVEINDEX(ut); 707 TEST_ASSERT(foundIndex == 0); 708 if (gFailed) { 709 return; 710 } 711 712 // 713 // next32From(), prevous32From(), Iterate in a somewhat random order. 714 // 715 int cpIndex = 0; 716 for (i=0; i<cpCount; i++) { 717 cpIndex = (cpIndex + 9973) % cpCount; 718 index = cpMap[cpIndex].nativeIdx; 719 expectedC = cpMap[cpIndex].cp; 720 foundC = utext_next32From(ut, index); 721 TEST_ASSERT(expectedC == foundC); 722 if (gFailed) { 723 return; 724 } 725 } 726 727 cpIndex = 0; 728 for (i=0; i<cpCount; i++) { 729 cpIndex = (cpIndex + 9973) % cpCount; 730 index = cpMap[cpIndex+1].nativeIdx; 731 expectedC = cpMap[cpIndex].cp; 732 foundC = utext_previous32From(ut, index); 733 TEST_ASSERT(expectedC == foundC); 734 if (gFailed) { 735 return; 736 } 737 } 738 739 740 // 741 // moveIndex(int32_t delta); 742 // 743 744 // Walk through frontwards, incrementing by one 745 utext_setNativeIndex(ut, 0); 746 for (i=1; i<=cpCount; i++) { 747 utext_moveIndex32(ut, 1); 748 index = utext_getNativeIndex(ut); 749 expectedIndex = cpMap[i].nativeIdx; 750 TEST_ASSERT(expectedIndex == index); 751 index = UTEXT_GETNATIVEINDEX(ut); 752 TEST_ASSERT(expectedIndex == index); 753 } 754 755 // Walk through frontwards, incrementing by two 756 utext_setNativeIndex(ut, 0); 757 for (i=2; i<cpCount; i+=2) { 758 utext_moveIndex32(ut, 2); 759 index = utext_getNativeIndex(ut); 760 expectedIndex = cpMap[i].nativeIdx; 761 TEST_ASSERT(expectedIndex == index); 762 index = UTEXT_GETNATIVEINDEX(ut); 763 TEST_ASSERT(expectedIndex == index); 764 } 765 766 // walk through the string backwards, decrementing by one. 767 i = cpMap[cpCount].nativeIdx; 768 utext_setNativeIndex(ut, i); 769 for (i=cpCount; i>=0; i--) { 770 expectedIndex = cpMap[i].nativeIdx; 771 index = utext_getNativeIndex(ut); 772 TEST_ASSERT(expectedIndex == index); 773 index = UTEXT_GETNATIVEINDEX(ut); 774 TEST_ASSERT(expectedIndex == index); 775 utext_moveIndex32(ut, -1); 776 } 777 778 779 // walk through backwards, decrementing by three 780 i = cpMap[cpCount].nativeIdx; 781 utext_setNativeIndex(ut, i); 782 for (i=cpCount; i>=0; i-=3) { 783 expectedIndex = cpMap[i].nativeIdx; 784 index = utext_getNativeIndex(ut); 785 TEST_ASSERT(expectedIndex == index); 786 index = UTEXT_GETNATIVEINDEX(ut); 787 TEST_ASSERT(expectedIndex == index); 788 utext_moveIndex32(ut, -3); 789 } 790 791 792 // 793 // Extract 794 // 795 int bufSize = us.length() + 10; 796 UChar *buf = new UChar[bufSize]; 797 status = U_ZERO_ERROR; 798 expectedLen = us.length(); 799 len = utext_extract(ut, 0, utlen, buf, bufSize, &status); 800 TEST_SUCCESS(status); 801 TEST_ASSERT(len == expectedLen); 802 int compareResult = us.compare(buf, -1); 803 TEST_ASSERT(compareResult == 0); 804 805 status = U_ZERO_ERROR; 806 len = utext_extract(ut, 0, utlen, NULL, 0, &status); 807 if (utlen == 0) { 808 TEST_ASSERT(status == U_STRING_NOT_TERMINATED_WARNING); 809 } else { 810 TEST_ASSERT(status == U_BUFFER_OVERFLOW_ERROR); 811 } 812 TEST_ASSERT(len == expectedLen); 813 814 status = U_ZERO_ERROR; 815 u_memset(buf, 0x5555, bufSize); 816 len = utext_extract(ut, 0, utlen, buf, 1, &status); 817 if (us.length() == 0) { 818 TEST_SUCCESS(status); 819 TEST_ASSERT(buf[0] == 0); 820 } else { 821 // Buf len == 1, extracting a single 16 bit value. 822 // If the data char is supplementary, it doesn't matter whether the buffer remains unchanged, 823 // or whether the lead surrogate of the pair is extracted. 824 // It's a buffer overflow error in either case. 825 TEST_ASSERT(buf[0] == us.charAt(0) || 826 buf[0] == 0x5555 && U_IS_SUPPLEMENTARY(us.char32At(0))); 827 TEST_ASSERT(buf[1] == 0x5555); 828 if (us.length() == 1) { 829 TEST_ASSERT(status == U_STRING_NOT_TERMINATED_WARNING); 830 } else { 831 TEST_ASSERT(status == U_BUFFER_OVERFLOW_ERROR); 832 } 833 } 834 835 delete []buf; 836 } 837 838 839 840 // 841 // ErrorTest() Check various error and edge cases. 842 // 843 void UTextTest::ErrorTest() 844 { 845 // Close of an unitialized UText. Shouldn't blow up. 846 { 847 UText ut; 848 memset(&ut, 0, sizeof(UText)); 849 utext_close(&ut); 850 utext_close(NULL); 851 } 852 853 // Double-close of a UText. Shouldn't blow up. UText should still be usable. 854 { 855 UErrorCode status = U_ZERO_ERROR; 856 UText ut = UTEXT_INITIALIZER; 857 UnicodeString s("Hello, World"); 858 UText *ut2 = utext_openUnicodeString(&ut, &s, &status); 859 TEST_SUCCESS(status); 860 TEST_ASSERT(ut2 == &ut); 861 862 UText *ut3 = utext_close(&ut); 863 TEST_ASSERT(ut3 == &ut); 864 865 UText *ut4 = utext_close(&ut); 866 TEST_ASSERT(ut4 == &ut); 867 868 utext_openUnicodeString(&ut, &s, &status); 869 TEST_SUCCESS(status); 870 utext_close(&ut); 871 } 872 873 // Re-use of a UText, chaining through each of the types of UText 874 // (If it doesn't blow up, and doesn't leak, it's probably working fine) 875 { 876 UErrorCode status = U_ZERO_ERROR; 877 UText ut = UTEXT_INITIALIZER; 878 UText *utp; 879 UnicodeString s1("Hello, World"); 880 UChar s2[] = {(UChar)0x41, (UChar)0x42, (UChar)0}; 881 const char *s3 = "\x66\x67\x68"; 882 883 utp = utext_openUnicodeString(&ut, &s1, &status); 884 TEST_SUCCESS(status); 885 TEST_ASSERT(utp == &ut); 886 887 utp = utext_openConstUnicodeString(&ut, &s1, &status); 888 TEST_SUCCESS(status); 889 TEST_ASSERT(utp == &ut); 890 891 utp = utext_openUTF8(&ut, s3, -1, &status); 892 TEST_SUCCESS(status); 893 TEST_ASSERT(utp == &ut); 894 895 utp = utext_openUChars(&ut, s2, -1, &status); 896 TEST_SUCCESS(status); 897 TEST_ASSERT(utp == &ut); 898 899 utp = utext_close(&ut); 900 TEST_ASSERT(utp == &ut); 901 902 utp = utext_openUnicodeString(&ut, &s1, &status); 903 TEST_SUCCESS(status); 904 TEST_ASSERT(utp == &ut); 905 } 906 907 // Invalid parameters on open 908 // 909 { 910 UErrorCode status = U_ZERO_ERROR; 911 UText ut = UTEXT_INITIALIZER; 912 913 utext_openUChars(&ut, NULL, 5, &status); 914 TEST_ASSERT(status == U_ILLEGAL_ARGUMENT_ERROR); 915 916 status = U_ZERO_ERROR; 917 utext_openUChars(&ut, NULL, -1, &status); 918 TEST_ASSERT(status == U_ILLEGAL_ARGUMENT_ERROR); 919 920 status = U_ZERO_ERROR; 921 utext_openUTF8(&ut, NULL, 4, &status); 922 TEST_ASSERT(status == U_ILLEGAL_ARGUMENT_ERROR); 923 924 status = U_ZERO_ERROR; 925 utext_openUTF8(&ut, NULL, -1, &status); 926 TEST_ASSERT(status == U_ILLEGAL_ARGUMENT_ERROR); 927 } 928 929 // 930 // UTF-8 with malformed sequences. 931 // These should come through as the Unicode replacement char, \ufffd 932 // 933 { 934 UErrorCode status = U_ZERO_ERROR; 935 UText *ut = NULL; 936 const char *badUTF8 = "\x41\x81\x42\xf0\x81\x81\x43"; 937 UChar32 c; 938 939 ut = utext_openUTF8(NULL, badUTF8, -1, &status); 940 TEST_SUCCESS(status); 941 c = utext_char32At(ut, 1); 942 TEST_ASSERT(c == 0xfffd); 943 c = utext_char32At(ut, 3); 944 TEST_ASSERT(c == 0xfffd); 945 c = utext_char32At(ut, 5); 946 TEST_ASSERT(c == 0xfffd); 947 c = utext_char32At(ut, 6); 948 TEST_ASSERT(c == 0x43); 949 950 UChar buf[10]; 951 int n = utext_extract(ut, 0, 9, buf, 10, &status); 952 TEST_SUCCESS(status); 953 TEST_ASSERT(n==5); 954 TEST_ASSERT(buf[1] == 0xfffd); 955 TEST_ASSERT(buf[3] == 0xfffd); 956 TEST_ASSERT(buf[2] == 0x42); 957 utext_close(ut); 958 } 959 960 961 // 962 // isLengthExpensive - does it make the exptected transitions after 963 // getting the length of a nul terminated string? 964 // 965 { 966 UErrorCode status = U_ZERO_ERROR; 967 UnicodeString sa("Hello, this is a string"); 968 UBool isExpensive; 969 970 UChar sb[100]; 971 memset(sb, 0x20, sizeof(sb)); 972 sb[99] = 0; 973 974 UText *uta = utext_openUnicodeString(NULL, &sa, &status); 975 TEST_SUCCESS(status); 976 isExpensive = utext_isLengthExpensive(uta); 977 TEST_ASSERT(isExpensive == FALSE); 978 utext_close(uta); 979 980 UText *utb = utext_openUChars(NULL, sb, -1, &status); 981 TEST_SUCCESS(status); 982 isExpensive = utext_isLengthExpensive(utb); 983 TEST_ASSERT(isExpensive == TRUE); 984 int64_t len = utext_nativeLength(utb); 985 TEST_ASSERT(len == 99); 986 isExpensive = utext_isLengthExpensive(utb); 987 TEST_ASSERT(isExpensive == FALSE); 988 utext_close(utb); 989 } 990 991 // 992 // Index to positions not on code point boundaries. 993 // 994 { 995 const char *u8str = "\xc8\x81\xe1\x82\x83\xf1\x84\x85\x86"; 996 int32_t startMap[] = { 0, 0, 2, 2, 2, 5, 5, 5, 5, 9, 9}; 997 int32_t nextMap[] = { 2, 2, 5, 5, 5, 9, 9, 9, 9, 9, 9}; 998 int32_t prevMap[] = { 0, 0, 0, 0, 0, 2, 2, 2, 2, 5, 5}; 999 UChar32 c32Map[] = {0x201, 0x201, 0x1083, 0x1083, 0x1083, 0x044146, 0x044146, 0x044146, 0x044146, -1, -1}; 1000 UChar32 pr32Map[] = { -1, -1, 0x201, 0x201, 0x201, 0x1083, 0x1083, 0x1083, 0x1083, 0x044146, 0x044146}; 1001 1002 // extractLen is the size, in UChars, of what will be extracted between index and index+1. 1003 // is zero when both index positions lie within the same code point. 1004 int32_t exLen[] = { 0, 1, 0, 0, 1, 0, 0, 0, 2, 0, 0}; 1005 1006 1007 UErrorCode status = U_ZERO_ERROR; 1008 UText *ut = utext_openUTF8(NULL, u8str, -1, &status); 1009 TEST_SUCCESS(status); 1010 1011 // Check setIndex 1012 int32_t i; 1013 int32_t startMapLimit = sizeof(startMap) / sizeof(int32_t); 1014 for (i=0; i<startMapLimit; i++) { 1015 utext_setNativeIndex(ut, i); 1016 int64_t cpIndex = utext_getNativeIndex(ut); 1017 TEST_ASSERT(cpIndex == startMap[i]); 1018 cpIndex = UTEXT_GETNATIVEINDEX(ut); 1019 TEST_ASSERT(cpIndex == startMap[i]); 1020 } 1021 1022 // Check char32At 1023 for (i=0; i<startMapLimit; i++) { 1024 UChar32 c32 = utext_char32At(ut, i); 1025 TEST_ASSERT(c32 == c32Map[i]); 1026 int64_t cpIndex = utext_getNativeIndex(ut); 1027 TEST_ASSERT(cpIndex == startMap[i]); 1028 } 1029 1030 // Check utext_next32From 1031 for (i=0; i<startMapLimit; i++) { 1032 UChar32 c32 = utext_next32From(ut, i); 1033 TEST_ASSERT(c32 == c32Map[i]); 1034 int64_t cpIndex = utext_getNativeIndex(ut); 1035 TEST_ASSERT(cpIndex == nextMap[i]); 1036 } 1037 1038 // check utext_previous32From 1039 for (i=0; i<startMapLimit; i++) { 1040 gTestNum++; 1041 UChar32 c32 = utext_previous32From(ut, i); 1042 TEST_ASSERT(c32 == pr32Map[i]); 1043 int64_t cpIndex = utext_getNativeIndex(ut); 1044 TEST_ASSERT(cpIndex == prevMap[i]); 1045 } 1046 1047 // check Extract 1048 // Extract from i to i+1, which may be zero or one code points, 1049 // depending on whether the indices straddle a cp boundary. 1050 for (i=0; i<startMapLimit; i++) { 1051 UChar buf[3]; 1052 status = U_ZERO_ERROR; 1053 int32_t extractedLen = utext_extract(ut, i, i+1, buf, 3, &status); 1054 TEST_SUCCESS(status); 1055 TEST_ASSERT(extractedLen == exLen[i]); 1056 if (extractedLen > 0) { 1057 UChar32 c32; 1058 /* extractedLen-extractedLen == 0 is used to get around a compiler warning. */ 1059 U16_GET(buf, 0, extractedLen-extractedLen, extractedLen, c32); 1060 TEST_ASSERT(c32 == c32Map[i]); 1061 } 1062 } 1063 1064 utext_close(ut); 1065 } 1066 1067 1068 { // Similar test, with utf16 instead of utf8 1069 // TODO: merge the common parts of these tests. 1070 1071 UnicodeString u16str("\\u1000\\U00011000\\u2000\\U00022000", -1, US_INV); 1072 int32_t startMap[] ={ 0, 1, 1, 3, 4, 4, 6, 6}; 1073 int32_t nextMap[] = { 1, 3, 3, 4, 6, 6, 6, 6}; 1074 int32_t prevMap[] = { 0, 0, 0, 1, 3, 3, 4, 4}; 1075 UChar32 c32Map[] = {0x1000, 0x11000, 0x11000, 0x2000, 0x22000, 0x22000, -1, -1}; 1076 UChar32 pr32Map[] = { -1, 0x1000, 0x1000, 0x11000, 0x2000, 0x2000, 0x22000, 0x22000}; 1077 int32_t exLen[] = { 1, 0, 2, 1, 0, 2, 0, 0,}; 1078 1079 u16str = u16str.unescape(); 1080 UErrorCode status = U_ZERO_ERROR; 1081 UText *ut = utext_openUnicodeString(NULL, &u16str, &status); 1082 TEST_SUCCESS(status); 1083 1084 int32_t startMapLimit = sizeof(startMap) / sizeof(int32_t); 1085 int i; 1086 for (i=0; i<startMapLimit; i++) { 1087 utext_setNativeIndex(ut, i); 1088 int64_t cpIndex = utext_getNativeIndex(ut); 1089 TEST_ASSERT(cpIndex == startMap[i]); 1090 } 1091 1092 // Check char32At 1093 for (i=0; i<startMapLimit; i++) { 1094 UChar32 c32 = utext_char32At(ut, i); 1095 TEST_ASSERT(c32 == c32Map[i]); 1096 int64_t cpIndex = utext_getNativeIndex(ut); 1097 TEST_ASSERT(cpIndex == startMap[i]); 1098 } 1099 1100 // Check utext_next32From 1101 for (i=0; i<startMapLimit; i++) { 1102 UChar32 c32 = utext_next32From(ut, i); 1103 TEST_ASSERT(c32 == c32Map[i]); 1104 int64_t cpIndex = utext_getNativeIndex(ut); 1105 TEST_ASSERT(cpIndex == nextMap[i]); 1106 } 1107 1108 // check utext_previous32From 1109 for (i=0; i<startMapLimit; i++) { 1110 UChar32 c32 = utext_previous32From(ut, i); 1111 TEST_ASSERT(c32 == pr32Map[i]); 1112 int64_t cpIndex = utext_getNativeIndex(ut); 1113 TEST_ASSERT(cpIndex == prevMap[i]); 1114 } 1115 1116 // check Extract 1117 // Extract from i to i+1, which may be zero or one code points, 1118 // depending on whether the indices straddle a cp boundary. 1119 for (i=0; i<startMapLimit; i++) { 1120 UChar buf[3]; 1121 status = U_ZERO_ERROR; 1122 int32_t extractedLen = utext_extract(ut, i, i+1, buf, 3, &status); 1123 TEST_SUCCESS(status); 1124 TEST_ASSERT(extractedLen == exLen[i]); 1125 if (extractedLen > 0) { 1126 UChar32 c32; 1127 /* extractedLen-extractedLen == 0 is used to get around a compiler warning. */ 1128 U16_GET(buf, 0, extractedLen-extractedLen, extractedLen, c32); 1129 TEST_ASSERT(c32 == c32Map[i]); 1130 } 1131 } 1132 1133 utext_close(ut); 1134 } 1135 1136 { // Similar test, with UText over Replaceable 1137 // TODO: merge the common parts of these tests. 1138 1139 UnicodeString u16str("\\u1000\\U00011000\\u2000\\U00022000", -1, US_INV); 1140 int32_t startMap[] ={ 0, 1, 1, 3, 4, 4, 6, 6}; 1141 int32_t nextMap[] = { 1, 3, 3, 4, 6, 6, 6, 6}; 1142 int32_t prevMap[] = { 0, 0, 0, 1, 3, 3, 4, 4}; 1143 UChar32 c32Map[] = {0x1000, 0x11000, 0x11000, 0x2000, 0x22000, 0x22000, -1, -1}; 1144 UChar32 pr32Map[] = { -1, 0x1000, 0x1000, 0x11000, 0x2000, 0x2000, 0x22000, 0x22000}; 1145 int32_t exLen[] = { 1, 0, 2, 1, 0, 2, 0, 0,}; 1146 1147 u16str = u16str.unescape(); 1148 UErrorCode status = U_ZERO_ERROR; 1149 UText *ut = utext_openReplaceable(NULL, &u16str, &status); 1150 TEST_SUCCESS(status); 1151 1152 int32_t startMapLimit = sizeof(startMap) / sizeof(int32_t); 1153 int i; 1154 for (i=0; i<startMapLimit; i++) { 1155 utext_setNativeIndex(ut, i); 1156 int64_t cpIndex = utext_getNativeIndex(ut); 1157 TEST_ASSERT(cpIndex == startMap[i]); 1158 } 1159 1160 // Check char32At 1161 for (i=0; i<startMapLimit; i++) { 1162 UChar32 c32 = utext_char32At(ut, i); 1163 TEST_ASSERT(c32 == c32Map[i]); 1164 int64_t cpIndex = utext_getNativeIndex(ut); 1165 TEST_ASSERT(cpIndex == startMap[i]); 1166 } 1167 1168 // Check utext_next32From 1169 for (i=0; i<startMapLimit; i++) { 1170 UChar32 c32 = utext_next32From(ut, i); 1171 TEST_ASSERT(c32 == c32Map[i]); 1172 int64_t cpIndex = utext_getNativeIndex(ut); 1173 TEST_ASSERT(cpIndex == nextMap[i]); 1174 } 1175 1176 // check utext_previous32From 1177 for (i=0; i<startMapLimit; i++) { 1178 UChar32 c32 = utext_previous32From(ut, i); 1179 TEST_ASSERT(c32 == pr32Map[i]); 1180 int64_t cpIndex = utext_getNativeIndex(ut); 1181 TEST_ASSERT(cpIndex == prevMap[i]); 1182 } 1183 1184 // check Extract 1185 // Extract from i to i+1, which may be zero or one code points, 1186 // depending on whether the indices straddle a cp boundary. 1187 for (i=0; i<startMapLimit; i++) { 1188 UChar buf[3]; 1189 status = U_ZERO_ERROR; 1190 int32_t extractedLen = utext_extract(ut, i, i+1, buf, 3, &status); 1191 TEST_SUCCESS(status); 1192 TEST_ASSERT(extractedLen == exLen[i]); 1193 if (extractedLen > 0) { 1194 UChar32 c32; 1195 /* extractedLen-extractedLen == 0 is used to get around a compiler warning. */ 1196 U16_GET(buf, 0, extractedLen-extractedLen, extractedLen, c32); 1197 TEST_ASSERT(c32 == c32Map[i]); 1198 } 1199 } 1200 1201 utext_close(ut); 1202 } 1203 } 1204 1205 1206 void UTextTest::FreezeTest() { 1207 // Check isWritable() and freeze() behavior. 1208 // 1209 1210 UnicodeString ustr("Hello, World."); 1211 const char u8str[] = {char(0x31), (char)0x32, (char)0x33, 0}; 1212 const UChar u16str[] = {(UChar)0x31, (UChar)0x32, (UChar)0x44, 0}; 1213 1214 UErrorCode status = U_ZERO_ERROR; 1215 UText *ut = NULL; 1216 UText *ut2 = NULL; 1217 1218 ut = utext_openUTF8(ut, u8str, -1, &status); 1219 TEST_SUCCESS(status); 1220 UBool writable = utext_isWritable(ut); 1221 TEST_ASSERT(writable == FALSE); 1222 utext_copy(ut, 1, 2, 0, TRUE, &status); 1223 TEST_ASSERT(status == U_NO_WRITE_PERMISSION); 1224 1225 status = U_ZERO_ERROR; 1226 ut = utext_openUChars(ut, u16str, -1, &status); 1227 TEST_SUCCESS(status); 1228 writable = utext_isWritable(ut); 1229 TEST_ASSERT(writable == FALSE); 1230 utext_copy(ut, 1, 2, 0, TRUE, &status); 1231 TEST_ASSERT(status == U_NO_WRITE_PERMISSION); 1232 1233 status = U_ZERO_ERROR; 1234 ut = utext_openUnicodeString(ut, &ustr, &status); 1235 TEST_SUCCESS(status); 1236 writable = utext_isWritable(ut); 1237 TEST_ASSERT(writable == TRUE); 1238 utext_freeze(ut); 1239 writable = utext_isWritable(ut); 1240 TEST_ASSERT(writable == FALSE); 1241 utext_copy(ut, 1, 2, 0, TRUE, &status); 1242 TEST_ASSERT(status == U_NO_WRITE_PERMISSION); 1243 1244 status = U_ZERO_ERROR; 1245 ut = utext_openUnicodeString(ut, &ustr, &status); 1246 TEST_SUCCESS(status); 1247 ut2 = utext_clone(ut2, ut, FALSE, FALSE, &status); // clone with readonly = false 1248 TEST_SUCCESS(status); 1249 writable = utext_isWritable(ut2); 1250 TEST_ASSERT(writable == TRUE); 1251 ut2 = utext_clone(ut2, ut, FALSE, TRUE, &status); // clone with readonly = true 1252 TEST_SUCCESS(status); 1253 writable = utext_isWritable(ut2); 1254 TEST_ASSERT(writable == FALSE); 1255 utext_copy(ut2, 1, 2, 0, TRUE, &status); 1256 TEST_ASSERT(status == U_NO_WRITE_PERMISSION); 1257 1258 status = U_ZERO_ERROR; 1259 ut = utext_openConstUnicodeString(ut, (const UnicodeString *)&ustr, &status); 1260 TEST_SUCCESS(status); 1261 writable = utext_isWritable(ut); 1262 TEST_ASSERT(writable == FALSE); 1263 utext_copy(ut, 1, 2, 0, TRUE, &status); 1264 TEST_ASSERT(status == U_NO_WRITE_PERMISSION); 1265 1266 // Deep Clone of a frozen UText should re-enable writing in the copy. 1267 status = U_ZERO_ERROR; 1268 ut = utext_openUnicodeString(ut, &ustr, &status); 1269 TEST_SUCCESS(status); 1270 utext_freeze(ut); 1271 ut2 = utext_clone(ut2, ut, TRUE, FALSE, &status); // deep clone 1272 TEST_SUCCESS(status); 1273 writable = utext_isWritable(ut2); 1274 TEST_ASSERT(writable == TRUE); 1275 1276 1277 // Deep clone of a frozen UText, where the base type is intrinsically non-writable, 1278 // should NOT enable writing in the copy. 1279 status = U_ZERO_ERROR; 1280 ut = utext_openUChars(ut, u16str, -1, &status); 1281 TEST_SUCCESS(status); 1282 utext_freeze(ut); 1283 ut2 = utext_clone(ut2, ut, TRUE, FALSE, &status); // deep clone 1284 TEST_SUCCESS(status); 1285 writable = utext_isWritable(ut2); 1286 TEST_ASSERT(writable == FALSE); 1287 1288 // cleanup 1289 utext_close(ut); 1290 utext_close(ut2); 1291 } 1292 1293 1294 // 1295 // Fragmented UText 1296 // A UText type that works with a chunk size of 1. 1297 // Intended to test for edge cases. 1298 // Input comes from a UnicodeString. 1299 // 1300 // ut.b the character. Put into both halves. 1301 // 1302 1303 U_CDECL_BEGIN 1304 static UBool U_CALLCONV 1305 fragTextAccess(UText *ut, int64_t index, UBool forward) { 1306 const UnicodeString *us = (const UnicodeString *)ut->context; 1307 UChar c; 1308 int32_t length = us->length(); 1309 if (forward && index>=0 && index<length) { 1310 c = us->charAt((int32_t)index); 1311 ut->b = c | c<<16; 1312 ut->chunkOffset = 0; 1313 ut->chunkLength = 1; 1314 ut->chunkNativeStart = index; 1315 ut->chunkNativeLimit = index+1; 1316 return true; 1317 } 1318 if (!forward && index>0 && index <=length) { 1319 c = us->charAt((int32_t)index-1); 1320 ut->b = c | c<<16; 1321 ut->chunkOffset = 1; 1322 ut->chunkLength = 1; 1323 ut->chunkNativeStart = index-1; 1324 ut->chunkNativeLimit = index; 1325 return true; 1326 } 1327 ut->b = 0; 1328 ut->chunkOffset = 0; 1329 ut->chunkLength = 0; 1330 if (index <= 0) { 1331 ut->chunkNativeStart = 0; 1332 ut->chunkNativeLimit = 0; 1333 } else { 1334 ut->chunkNativeStart = length; 1335 ut->chunkNativeLimit = length; 1336 } 1337 return false; 1338 } 1339 1340 // Function table to be used with this fragmented text provider. 1341 // Initialized in the open function. 1342 static UTextFuncs fragmentFuncs; 1343 1344 // Clone function for fragmented text provider. 1345 // Didn't really want to provide this, but it's easier to provide it than to keep it 1346 // out of the tests. 1347 // 1348 UText * 1349 cloneFragmentedUnicodeString(UText *dest, const UText *src, UBool deep, UErrorCode *status) { 1350 if (U_FAILURE(*status)) { 1351 return NULL; 1352 } 1353 if (deep) { 1354 *status = U_UNSUPPORTED_ERROR; 1355 return NULL; 1356 } 1357 dest = utext_openUnicodeString(dest, (UnicodeString *)src->context, status); 1358 utext_setNativeIndex(dest, utext_getNativeIndex(src)); 1359 return dest; 1360 } 1361 1362 U_CDECL_END 1363 1364 // Open function for the fragmented text provider. 1365 UText * 1366 openFragmentedUnicodeString(UText *ut, UnicodeString *s, UErrorCode *status) { 1367 ut = utext_openUnicodeString(ut, s, status); 1368 if (U_FAILURE(*status)) { 1369 return ut; 1370 } 1371 1372 // Copy of the function table from the stock UnicodeString UText, 1373 // and replace the entry for the access function. 1374 memcpy(&fragmentFuncs, ut->pFuncs, sizeof(fragmentFuncs)); 1375 fragmentFuncs.access = fragTextAccess; 1376 fragmentFuncs.clone = cloneFragmentedUnicodeString; 1377 ut->pFuncs = &fragmentFuncs; 1378 1379 ut->chunkContents = (UChar *)&ut->b; 1380 ut->pFuncs->access(ut, 0, TRUE); 1381 return ut; 1382 } 1383 1384 // Regression test for Ticket 5560 1385 // Clone fails to update chunkContentPointer in the cloned copy. 1386 // This is only an issue for UText types that work in a local buffer, 1387 // (UTF-8 wrapper, for example) 1388 // 1389 // The test: 1390 // 1. Create an inital UText 1391 // 2. Deep clone it. Contents should match original. 1392 // 3. Reset original to something different. 1393 // 4. Check that clone contents did not change. 1394 // 1395 void UTextTest::Ticket5560() { 1396 /* The following two strings are in UTF-8 even on EBCDIC platforms. */ 1397 static const char s1[] = {0x41,0x42,0x43,0x44,0x45,0x46,0}; /* "ABCDEF" */ 1398 static const char s2[] = {0x31,0x32,0x33,0x34,0x35,0x36,0}; /* "123456" */ 1399 UErrorCode status = U_ZERO_ERROR; 1400 1401 UText ut1 = UTEXT_INITIALIZER; 1402 UText ut2 = UTEXT_INITIALIZER; 1403 1404 utext_openUTF8(&ut1, s1, -1, &status); 1405 UChar c = utext_next32(&ut1); 1406 TEST_ASSERT(c == 0x41); // c == 'A' 1407 1408 utext_clone(&ut2, &ut1, TRUE, FALSE, &status); 1409 TEST_SUCCESS(status); 1410 c = utext_next32(&ut2); 1411 TEST_ASSERT(c == 0x42); // c == 'B' 1412 c = utext_next32(&ut1); 1413 TEST_ASSERT(c == 0x42); // c == 'B' 1414 1415 utext_openUTF8(&ut1, s2, -1, &status); 1416 c = utext_next32(&ut1); 1417 TEST_ASSERT(c == 0x31); // c == '1' 1418 c = utext_next32(&ut2); 1419 TEST_ASSERT(c == 0x43); // c == 'C' 1420 1421 utext_close(&ut1); 1422 utext_close(&ut2); 1423 } 1424 1425 1426 // Test for Ticket 6847 1427 // 1428 void UTextTest::Ticket6847() { 1429 const int STRLEN = 90; 1430 UChar s[STRLEN+1]; 1431 u_memset(s, 0x41, STRLEN); 1432 s[STRLEN] = 0; 1433 1434 UErrorCode status = U_ZERO_ERROR; 1435 UText *ut = utext_openUChars(NULL, s, -1, &status); 1436 1437 utext_setNativeIndex(ut, 0); 1438 int32_t count = 0; 1439 UChar32 c = 0; 1440 int32_t nativeIndex = UTEXT_GETNATIVEINDEX(ut); 1441 TEST_ASSERT(nativeIndex == 0); 1442 while ((c = utext_next32(ut)) != U_SENTINEL) { 1443 TEST_ASSERT(c == 0x41); 1444 TEST_ASSERT(count < STRLEN); 1445 if (count >= STRLEN) { 1446 break; 1447 } 1448 count++; 1449 nativeIndex = UTEXT_GETNATIVEINDEX(ut); 1450 TEST_ASSERT(nativeIndex == count); 1451 } 1452 TEST_ASSERT(count == STRLEN); 1453 nativeIndex = UTEXT_GETNATIVEINDEX(ut); 1454 TEST_ASSERT(nativeIndex == STRLEN); 1455 utext_close(ut); 1456 } 1457 1458