Home | History | Annotate | Download | only in src
      1 // Copyright 2006-2008 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 #ifndef V8_JSREGEXP_H_
     29 #define V8_JSREGEXP_H_
     30 
     31 #include "macro-assembler.h"
     32 
     33 namespace v8 {
     34 namespace internal {
     35 
     36 
     37 class RegExpMacroAssembler;
     38 
     39 
     40 class RegExpImpl {
     41  public:
     42   // Whether V8 is compiled with native regexp support or not.
     43   static bool UsesNativeRegExp() {
     44 #ifdef V8_NATIVE_REGEXP
     45     return true;
     46 #else
     47     return false;
     48 #endif
     49   }
     50 
     51   // Creates a regular expression literal in the old space.
     52   // This function calls the garbage collector if necessary.
     53   static Handle<Object> CreateRegExpLiteral(Handle<JSFunction> constructor,
     54                                             Handle<String> pattern,
     55                                             Handle<String> flags,
     56                                             bool* has_pending_exception);
     57 
     58   // Returns a string representation of a regular expression.
     59   // Implements RegExp.prototype.toString, see ECMA-262 section 15.10.6.4.
     60   // This function calls the garbage collector if necessary.
     61   static Handle<String> ToString(Handle<Object> value);
     62 
     63   // Parses the RegExp pattern and prepares the JSRegExp object with
     64   // generic data and choice of implementation - as well as what
     65   // the implementation wants to store in the data field.
     66   // Returns false if compilation fails.
     67   static Handle<Object> Compile(Handle<JSRegExp> re,
     68                                 Handle<String> pattern,
     69                                 Handle<String> flags);
     70 
     71   // See ECMA-262 section 15.10.6.2.
     72   // This function calls the garbage collector if necessary.
     73   static Handle<Object> Exec(Handle<JSRegExp> regexp,
     74                              Handle<String> subject,
     75                              int index,
     76                              Handle<JSArray> lastMatchInfo);
     77 
     78   // Prepares a JSRegExp object with Irregexp-specific data.
     79   static void IrregexpPrepare(Handle<JSRegExp> re,
     80                               Handle<String> pattern,
     81                               JSRegExp::Flags flags,
     82                               int capture_register_count);
     83 
     84 
     85   static void AtomCompile(Handle<JSRegExp> re,
     86                           Handle<String> pattern,
     87                           JSRegExp::Flags flags,
     88                           Handle<String> match_pattern);
     89 
     90   static Handle<Object> AtomExec(Handle<JSRegExp> regexp,
     91                                  Handle<String> subject,
     92                                  int index,
     93                                  Handle<JSArray> lastMatchInfo);
     94 
     95   // Execute an Irregexp bytecode pattern.
     96   // On a successful match, the result is a JSArray containing
     97   // captured positions. On a failure, the result is the null value.
     98   // Returns an empty handle in case of an exception.
     99   static Handle<Object> IrregexpExec(Handle<JSRegExp> regexp,
    100                                      Handle<String> subject,
    101                                      int index,
    102                                      Handle<JSArray> lastMatchInfo);
    103 
    104   // Array index in the lastMatchInfo array.
    105   static const int kLastCaptureCount = 0;
    106   static const int kLastSubject = 1;
    107   static const int kLastInput = 2;
    108   static const int kFirstCapture = 3;
    109   static const int kLastMatchOverhead = 3;
    110 
    111   // Direct offset into the lastMatchInfo array.
    112   static const int kLastCaptureCountOffset =
    113       FixedArray::kHeaderSize + kLastCaptureCount * kPointerSize;
    114   static const int kLastSubjectOffset =
    115       FixedArray::kHeaderSize + kLastSubject * kPointerSize;
    116   static const int kLastInputOffset =
    117       FixedArray::kHeaderSize + kLastInput * kPointerSize;
    118   static const int kFirstCaptureOffset =
    119       FixedArray::kHeaderSize + kFirstCapture * kPointerSize;
    120 
    121   // Used to access the lastMatchInfo array.
    122   static int GetCapture(FixedArray* array, int index) {
    123     return Smi::cast(array->get(index + kFirstCapture))->value();
    124   }
    125 
    126   static void SetLastCaptureCount(FixedArray* array, int to) {
    127     array->set(kLastCaptureCount, Smi::FromInt(to));
    128   }
    129 
    130   static void SetLastSubject(FixedArray* array, String* to) {
    131     array->set(kLastSubject, to);
    132   }
    133 
    134   static void SetLastInput(FixedArray* array, String* to) {
    135     array->set(kLastInput, to);
    136   }
    137 
    138   static void SetCapture(FixedArray* array, int index, int to) {
    139     array->set(index + kFirstCapture, Smi::FromInt(to));
    140   }
    141 
    142   static int GetLastCaptureCount(FixedArray* array) {
    143     return Smi::cast(array->get(kLastCaptureCount))->value();
    144   }
    145 
    146   // For acting on the JSRegExp data FixedArray.
    147   static int IrregexpMaxRegisterCount(FixedArray* re);
    148   static void SetIrregexpMaxRegisterCount(FixedArray* re, int value);
    149   static int IrregexpNumberOfCaptures(FixedArray* re);
    150   static int IrregexpNumberOfRegisters(FixedArray* re);
    151   static ByteArray* IrregexpByteCode(FixedArray* re, bool is_ascii);
    152   static Code* IrregexpNativeCode(FixedArray* re, bool is_ascii);
    153 
    154  private:
    155   static String* last_ascii_string_;
    156   static String* two_byte_cached_string_;
    157 
    158   static bool CompileIrregexp(Handle<JSRegExp> re, bool is_ascii);
    159   static inline bool EnsureCompiledIrregexp(Handle<JSRegExp> re, bool is_ascii);
    160 
    161 
    162   // Set the subject cache.  The previous string buffer is not deleted, so the
    163   // caller should ensure that it doesn't leak.
    164   static void SetSubjectCache(String* subject,
    165                               char* utf8_subject,
    166                               int uft8_length,
    167                               int character_position,
    168                               int utf8_position);
    169 
    170   // A one element cache of the last utf8_subject string and its length.  The
    171   // subject JS String object is cached in the heap.  We also cache a
    172   // translation between position and utf8 position.
    173   static char* utf8_subject_cache_;
    174   static int utf8_length_cache_;
    175   static int utf8_position_;
    176   static int character_position_;
    177 };
    178 
    179 
    180 // Represents the location of one element relative to the intersection of
    181 // two sets. Corresponds to the four areas of a Venn diagram.
    182 enum ElementInSetsRelation {
    183   kInsideNone = 0,
    184   kInsideFirst = 1,
    185   kInsideSecond = 2,
    186   kInsideBoth = 3
    187 };
    188 
    189 
    190 // Represents the relation of two sets.
    191 // Sets can be either disjoint, partially or fully overlapping, or equal.
    192 class SetRelation BASE_EMBEDDED {
    193  public:
    194   // Relation is represented by a bit saying whether there are elements in
    195   // one set that is not in the other, and a bit saying that there are elements
    196   // that are in both sets.
    197 
    198   // Location of an element. Corresponds to the internal areas of
    199   // a Venn diagram.
    200   enum {
    201     kInFirst = 1 << kInsideFirst,
    202     kInSecond = 1 << kInsideSecond,
    203     kInBoth = 1 << kInsideBoth
    204   };
    205   SetRelation() : bits_(0) {}
    206   ~SetRelation() {}
    207   // Add the existence of objects in a particular
    208   void SetElementsInFirstSet() { bits_ |= kInFirst; }
    209   void SetElementsInSecondSet() { bits_ |= kInSecond; }
    210   void SetElementsInBothSets() { bits_ |= kInBoth; }
    211   // Check the currently known relation of the sets (common functions only,
    212   // for other combinations, use value() to get the bits and check them
    213   // manually).
    214   // Sets are completely disjoint.
    215   bool Disjoint() { return (bits_ & kInBoth) == 0; }
    216   // Sets are equal.
    217   bool Equals() { return (bits_ & (kInFirst | kInSecond)) == 0; }
    218   // First set contains second.
    219   bool Contains() { return (bits_ & kInSecond) == 0; }
    220   // Second set contains first.
    221   bool ContainedIn() { return (bits_ & kInFirst) == 0; }
    222   bool NonTrivialIntersection() {
    223     return (bits_ == (kInFirst | kInSecond | kInBoth));
    224   }
    225   int value() { return bits_; }
    226  private:
    227   int bits_;
    228 };
    229 
    230 
    231 class CharacterRange {
    232  public:
    233   CharacterRange() : from_(0), to_(0) { }
    234   // For compatibility with the CHECK_OK macro
    235   CharacterRange(void* null) { ASSERT_EQ(NULL, null); }  //NOLINT
    236   CharacterRange(uc16 from, uc16 to) : from_(from), to_(to) { }
    237   static void AddClassEscape(uc16 type, ZoneList<CharacterRange>* ranges);
    238   static Vector<const uc16> GetWordBounds();
    239   static inline CharacterRange Singleton(uc16 value) {
    240     return CharacterRange(value, value);
    241   }
    242   static inline CharacterRange Range(uc16 from, uc16 to) {
    243     ASSERT(from <= to);
    244     return CharacterRange(from, to);
    245   }
    246   static inline CharacterRange Everything() {
    247     return CharacterRange(0, 0xFFFF);
    248   }
    249   bool Contains(uc16 i) { return from_ <= i && i <= to_; }
    250   uc16 from() const { return from_; }
    251   void set_from(uc16 value) { from_ = value; }
    252   uc16 to() const { return to_; }
    253   void set_to(uc16 value) { to_ = value; }
    254   bool is_valid() { return from_ <= to_; }
    255   bool IsEverything(uc16 max) { return from_ == 0 && to_ >= max; }
    256   bool IsSingleton() { return (from_ == to_); }
    257   void AddCaseEquivalents(ZoneList<CharacterRange>* ranges, bool is_ascii);
    258   static void Split(ZoneList<CharacterRange>* base,
    259                     Vector<const uc16> overlay,
    260                     ZoneList<CharacterRange>** included,
    261                     ZoneList<CharacterRange>** excluded);
    262   // Whether a range list is in canonical form: Ranges ordered by from value,
    263   // and ranges non-overlapping and non-adjacent.
    264   static bool IsCanonical(ZoneList<CharacterRange>* ranges);
    265   // Convert range list to canonical form. The characters covered by the ranges
    266   // will still be the same, but no character is in more than one range, and
    267   // adjacent ranges are merged. The resulting list may be shorter than the
    268   // original, but cannot be longer.
    269   static void Canonicalize(ZoneList<CharacterRange>* ranges);
    270   // Check how the set of characters defined by a CharacterRange list relates
    271   // to the set of word characters. List must be in canonical form.
    272   static SetRelation WordCharacterRelation(ZoneList<CharacterRange>* ranges);
    273   // Takes two character range lists (representing character sets) in canonical
    274   // form and merges them.
    275   // The characters that are only covered by the first set are added to
    276   // first_set_only_out. the characters that are only in the second set are
    277   // added to second_set_only_out, and the characters that are in both are
    278   // added to both_sets_out.
    279   // The pointers to first_set_only_out, second_set_only_out and both_sets_out
    280   // should be to empty lists, but they need not be distinct, and may be NULL.
    281   // If NULL, the characters are dropped, and if two arguments are the same
    282   // pointer, the result is the union of the two sets that would be created
    283   // if the pointers had been distinct.
    284   // This way, the Merge function can compute all the usual set operations:
    285   // union (all three out-sets are equal), intersection (only both_sets_out is
    286   // non-NULL), and set difference (only first_set is non-NULL).
    287   static void Merge(ZoneList<CharacterRange>* first_set,
    288                     ZoneList<CharacterRange>* second_set,
    289                     ZoneList<CharacterRange>* first_set_only_out,
    290                     ZoneList<CharacterRange>* second_set_only_out,
    291                     ZoneList<CharacterRange>* both_sets_out);
    292   // Negate the contents of a character range in canonical form.
    293   static void Negate(ZoneList<CharacterRange>* src,
    294                      ZoneList<CharacterRange>* dst);
    295   static const int kRangeCanonicalizeMax = 0x346;
    296   static const int kStartMarker = (1 << 24);
    297   static const int kPayloadMask = (1 << 24) - 1;
    298 
    299  private:
    300   uc16 from_;
    301   uc16 to_;
    302 };
    303 
    304 
    305 // A set of unsigned integers that behaves especially well on small
    306 // integers (< 32).  May do zone-allocation.
    307 class OutSet: public ZoneObject {
    308  public:
    309   OutSet() : first_(0), remaining_(NULL), successors_(NULL) { }
    310   OutSet* Extend(unsigned value);
    311   bool Get(unsigned value);
    312   static const unsigned kFirstLimit = 32;
    313 
    314  private:
    315   // Destructively set a value in this set.  In most cases you want
    316   // to use Extend instead to ensure that only one instance exists
    317   // that contains the same values.
    318   void Set(unsigned value);
    319 
    320   // The successors are a list of sets that contain the same values
    321   // as this set and the one more value that is not present in this
    322   // set.
    323   ZoneList<OutSet*>* successors() { return successors_; }
    324 
    325   OutSet(uint32_t first, ZoneList<unsigned>* remaining)
    326       : first_(first), remaining_(remaining), successors_(NULL) { }
    327   uint32_t first_;
    328   ZoneList<unsigned>* remaining_;
    329   ZoneList<OutSet*>* successors_;
    330   friend class Trace;
    331 };
    332 
    333 
    334 // A mapping from integers, specified as ranges, to a set of integers.
    335 // Used for mapping character ranges to choices.
    336 class DispatchTable : public ZoneObject {
    337  public:
    338   class Entry {
    339    public:
    340     Entry() : from_(0), to_(0), out_set_(NULL) { }
    341     Entry(uc16 from, uc16 to, OutSet* out_set)
    342         : from_(from), to_(to), out_set_(out_set) { }
    343     uc16 from() { return from_; }
    344     uc16 to() { return to_; }
    345     void set_to(uc16 value) { to_ = value; }
    346     void AddValue(int value) { out_set_ = out_set_->Extend(value); }
    347     OutSet* out_set() { return out_set_; }
    348    private:
    349     uc16 from_;
    350     uc16 to_;
    351     OutSet* out_set_;
    352   };
    353 
    354   class Config {
    355    public:
    356     typedef uc16 Key;
    357     typedef Entry Value;
    358     static const uc16 kNoKey;
    359     static const Entry kNoValue;
    360     static inline int Compare(uc16 a, uc16 b) {
    361       if (a == b)
    362         return 0;
    363       else if (a < b)
    364         return -1;
    365       else
    366         return 1;
    367     }
    368   };
    369 
    370   void AddRange(CharacterRange range, int value);
    371   OutSet* Get(uc16 value);
    372   void Dump();
    373 
    374   template <typename Callback>
    375   void ForEach(Callback* callback) { return tree()->ForEach(callback); }
    376  private:
    377   // There can't be a static empty set since it allocates its
    378   // successors in a zone and caches them.
    379   OutSet* empty() { return &empty_; }
    380   OutSet empty_;
    381   ZoneSplayTree<Config>* tree() { return &tree_; }
    382   ZoneSplayTree<Config> tree_;
    383 };
    384 
    385 
    386 #define FOR_EACH_NODE_TYPE(VISIT)                                    \
    387   VISIT(End)                                                         \
    388   VISIT(Action)                                                      \
    389   VISIT(Choice)                                                      \
    390   VISIT(BackReference)                                               \
    391   VISIT(Assertion)                                                   \
    392   VISIT(Text)
    393 
    394 
    395 #define FOR_EACH_REG_EXP_TREE_TYPE(VISIT)                            \
    396   VISIT(Disjunction)                                                 \
    397   VISIT(Alternative)                                                 \
    398   VISIT(Assertion)                                                   \
    399   VISIT(CharacterClass)                                              \
    400   VISIT(Atom)                                                        \
    401   VISIT(Quantifier)                                                  \
    402   VISIT(Capture)                                                     \
    403   VISIT(Lookahead)                                                   \
    404   VISIT(BackReference)                                               \
    405   VISIT(Empty)                                                       \
    406   VISIT(Text)
    407 
    408 
    409 #define FORWARD_DECLARE(Name) class RegExp##Name;
    410 FOR_EACH_REG_EXP_TREE_TYPE(FORWARD_DECLARE)
    411 #undef FORWARD_DECLARE
    412 
    413 
    414 class TextElement {
    415  public:
    416   enum Type {UNINITIALIZED, ATOM, CHAR_CLASS};
    417   TextElement() : type(UNINITIALIZED) { }
    418   explicit TextElement(Type t) : type(t), cp_offset(-1) { }
    419   static TextElement Atom(RegExpAtom* atom);
    420   static TextElement CharClass(RegExpCharacterClass* char_class);
    421   int length();
    422   Type type;
    423   union {
    424     RegExpAtom* u_atom;
    425     RegExpCharacterClass* u_char_class;
    426   } data;
    427   int cp_offset;
    428 };
    429 
    430 
    431 class Trace;
    432 
    433 
    434 struct NodeInfo {
    435   NodeInfo()
    436       : being_analyzed(false),
    437         been_analyzed(false),
    438         follows_word_interest(false),
    439         follows_newline_interest(false),
    440         follows_start_interest(false),
    441         at_end(false),
    442         visited(false) { }
    443 
    444   // Returns true if the interests and assumptions of this node
    445   // matches the given one.
    446   bool Matches(NodeInfo* that) {
    447     return (at_end == that->at_end) &&
    448            (follows_word_interest == that->follows_word_interest) &&
    449            (follows_newline_interest == that->follows_newline_interest) &&
    450            (follows_start_interest == that->follows_start_interest);
    451   }
    452 
    453   // Updates the interests of this node given the interests of the
    454   // node preceding it.
    455   void AddFromPreceding(NodeInfo* that) {
    456     at_end |= that->at_end;
    457     follows_word_interest |= that->follows_word_interest;
    458     follows_newline_interest |= that->follows_newline_interest;
    459     follows_start_interest |= that->follows_start_interest;
    460   }
    461 
    462   bool HasLookbehind() {
    463     return follows_word_interest ||
    464            follows_newline_interest ||
    465            follows_start_interest;
    466   }
    467 
    468   // Sets the interests of this node to include the interests of the
    469   // following node.
    470   void AddFromFollowing(NodeInfo* that) {
    471     follows_word_interest |= that->follows_word_interest;
    472     follows_newline_interest |= that->follows_newline_interest;
    473     follows_start_interest |= that->follows_start_interest;
    474   }
    475 
    476   void ResetCompilationState() {
    477     being_analyzed = false;
    478     been_analyzed = false;
    479   }
    480 
    481   bool being_analyzed: 1;
    482   bool been_analyzed: 1;
    483 
    484   // These bits are set of this node has to know what the preceding
    485   // character was.
    486   bool follows_word_interest: 1;
    487   bool follows_newline_interest: 1;
    488   bool follows_start_interest: 1;
    489 
    490   bool at_end: 1;
    491   bool visited: 1;
    492 };
    493 
    494 
    495 class SiblingList {
    496  public:
    497   SiblingList() : list_(NULL) { }
    498   int length() {
    499     return list_ == NULL ? 0 : list_->length();
    500   }
    501   void Ensure(RegExpNode* parent) {
    502     if (list_ == NULL) {
    503       list_ = new ZoneList<RegExpNode*>(2);
    504       list_->Add(parent);
    505     }
    506   }
    507   void Add(RegExpNode* node) { list_->Add(node); }
    508   RegExpNode* Get(int index) { return list_->at(index); }
    509  private:
    510   ZoneList<RegExpNode*>* list_;
    511 };
    512 
    513 
    514 // Details of a quick mask-compare check that can look ahead in the
    515 // input stream.
    516 class QuickCheckDetails {
    517  public:
    518   QuickCheckDetails()
    519       : characters_(0),
    520         mask_(0),
    521         value_(0),
    522         cannot_match_(false) { }
    523   explicit QuickCheckDetails(int characters)
    524       : characters_(characters),
    525         mask_(0),
    526         value_(0),
    527         cannot_match_(false) { }
    528   bool Rationalize(bool ascii);
    529   // Merge in the information from another branch of an alternation.
    530   void Merge(QuickCheckDetails* other, int from_index);
    531   // Advance the current position by some amount.
    532   void Advance(int by, bool ascii);
    533   void Clear();
    534   bool cannot_match() { return cannot_match_; }
    535   void set_cannot_match() { cannot_match_ = true; }
    536   struct Position {
    537     Position() : mask(0), value(0), determines_perfectly(false) { }
    538     uc16 mask;
    539     uc16 value;
    540     bool determines_perfectly;
    541   };
    542   int characters() { return characters_; }
    543   void set_characters(int characters) { characters_ = characters; }
    544   Position* positions(int index) {
    545     ASSERT(index >= 0);
    546     ASSERT(index < characters_);
    547     return positions_ + index;
    548   }
    549   uint32_t mask() { return mask_; }
    550   uint32_t value() { return value_; }
    551 
    552  private:
    553   // How many characters do we have quick check information from.  This is
    554   // the same for all branches of a choice node.
    555   int characters_;
    556   Position positions_[4];
    557   // These values are the condensate of the above array after Rationalize().
    558   uint32_t mask_;
    559   uint32_t value_;
    560   // If set to true, there is no way this quick check can match at all.
    561   // E.g., if it requires to be at the start of the input, and isn't.
    562   bool cannot_match_;
    563 };
    564 
    565 
    566 class RegExpNode: public ZoneObject {
    567  public:
    568   RegExpNode() : first_character_set_(NULL), trace_count_(0) { }
    569   virtual ~RegExpNode();
    570   virtual void Accept(NodeVisitor* visitor) = 0;
    571   // Generates a goto to this node or actually generates the code at this point.
    572   virtual void Emit(RegExpCompiler* compiler, Trace* trace) = 0;
    573   // How many characters must this node consume at a minimum in order to
    574   // succeed.  If we have found at least 'still_to_find' characters that
    575   // must be consumed there is no need to ask any following nodes whether
    576   // they are sure to eat any more characters.
    577   virtual int EatsAtLeast(int still_to_find, int recursion_depth) = 0;
    578   // Emits some quick code that checks whether the preloaded characters match.
    579   // Falls through on certain failure, jumps to the label on possible success.
    580   // If the node cannot make a quick check it does nothing and returns false.
    581   bool EmitQuickCheck(RegExpCompiler* compiler,
    582                       Trace* trace,
    583                       bool preload_has_checked_bounds,
    584                       Label* on_possible_success,
    585                       QuickCheckDetails* details_return,
    586                       bool fall_through_on_failure);
    587   // For a given number of characters this returns a mask and a value.  The
    588   // next n characters are anded with the mask and compared with the value.
    589   // A comparison failure indicates the node cannot match the next n characters.
    590   // A comparison success indicates the node may match.
    591   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
    592                                     RegExpCompiler* compiler,
    593                                     int characters_filled_in,
    594                                     bool not_at_start) = 0;
    595   static const int kNodeIsTooComplexForGreedyLoops = -1;
    596   virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; }
    597   Label* label() { return &label_; }
    598   // If non-generic code is generated for a node (ie the node is not at the
    599   // start of the trace) then it cannot be reused.  This variable sets a limit
    600   // on how often we allow that to happen before we insist on starting a new
    601   // trace and generating generic code for a node that can be reused by flushing
    602   // the deferred actions in the current trace and generating a goto.
    603   static const int kMaxCopiesCodeGenerated = 10;
    604 
    605   NodeInfo* info() { return &info_; }
    606 
    607   void AddSibling(RegExpNode* node) { siblings_.Add(node); }
    608 
    609   // Static version of EnsureSibling that expresses the fact that the
    610   // result has the same type as the input.
    611   template <class C>
    612   static C* EnsureSibling(C* node, NodeInfo* info, bool* cloned) {
    613     return static_cast<C*>(node->EnsureSibling(info, cloned));
    614   }
    615 
    616   SiblingList* siblings() { return &siblings_; }
    617   void set_siblings(SiblingList* other) { siblings_ = *other; }
    618 
    619   // Return the set of possible next characters recognized by the regexp
    620   // (or a safe subset, potentially the set of all characters).
    621   ZoneList<CharacterRange>* FirstCharacterSet();
    622 
    623   // Compute (if possible within the budget of traversed nodes) the
    624   // possible first characters of the input matched by this node and
    625   // its continuation. Returns the remaining budget after the computation.
    626   // If the budget is spent, the result is negative, and the cached
    627   // first_character_set_ value isn't set.
    628   virtual int ComputeFirstCharacterSet(int budget);
    629 
    630   // Get and set the cached first character set value.
    631   ZoneList<CharacterRange>* first_character_set() {
    632     return first_character_set_;
    633   }
    634   void set_first_character_set(ZoneList<CharacterRange>* character_set) {
    635     first_character_set_ = character_set;
    636   }
    637 
    638  protected:
    639   enum LimitResult { DONE, CONTINUE };
    640   static const int kComputeFirstCharacterSetFail = -1;
    641 
    642   LimitResult LimitVersions(RegExpCompiler* compiler, Trace* trace);
    643 
    644   // Returns a sibling of this node whose interests and assumptions
    645   // match the ones in the given node info.  If no sibling exists NULL
    646   // is returned.
    647   RegExpNode* TryGetSibling(NodeInfo* info);
    648 
    649   // Returns a sibling of this node whose interests match the ones in
    650   // the given node info.  The info must not contain any assertions.
    651   // If no node exists a new one will be created by cloning the current
    652   // node.  The result will always be an instance of the same concrete
    653   // class as this node.
    654   RegExpNode* EnsureSibling(NodeInfo* info, bool* cloned);
    655 
    656   // Returns a clone of this node initialized using the copy constructor
    657   // of its concrete class.  Note that the node may have to be pre-
    658   // processed before it is on a usable state.
    659   virtual RegExpNode* Clone() = 0;
    660 
    661  private:
    662   static const int kFirstCharBudget = 10;
    663   Label label_;
    664   NodeInfo info_;
    665   SiblingList siblings_;
    666   ZoneList<CharacterRange>* first_character_set_;
    667   // This variable keeps track of how many times code has been generated for
    668   // this node (in different traces).  We don't keep track of where the
    669   // generated code is located unless the code is generated at the start of
    670   // a trace, in which case it is generic and can be reused by flushing the
    671   // deferred operations in the current trace and generating a goto.
    672   int trace_count_;
    673 };
    674 
    675 
    676 // A simple closed interval.
    677 class Interval {
    678  public:
    679   Interval() : from_(kNone), to_(kNone) { }
    680   Interval(int from, int to) : from_(from), to_(to) { }
    681   Interval Union(Interval that) {
    682     if (that.from_ == kNone)
    683       return *this;
    684     else if (from_ == kNone)
    685       return that;
    686     else
    687       return Interval(Min(from_, that.from_), Max(to_, that.to_));
    688   }
    689   bool Contains(int value) {
    690     return (from_ <= value) && (value <= to_);
    691   }
    692   bool is_empty() { return from_ == kNone; }
    693   int from() { return from_; }
    694   int to() { return to_; }
    695   static Interval Empty() { return Interval(); }
    696   static const int kNone = -1;
    697  private:
    698   int from_;
    699   int to_;
    700 };
    701 
    702 
    703 class SeqRegExpNode: public RegExpNode {
    704  public:
    705   explicit SeqRegExpNode(RegExpNode* on_success)
    706       : on_success_(on_success) { }
    707   RegExpNode* on_success() { return on_success_; }
    708   void set_on_success(RegExpNode* node) { on_success_ = node; }
    709  private:
    710   RegExpNode* on_success_;
    711 };
    712 
    713 
    714 class ActionNode: public SeqRegExpNode {
    715  public:
    716   enum Type {
    717     SET_REGISTER,
    718     INCREMENT_REGISTER,
    719     STORE_POSITION,
    720     BEGIN_SUBMATCH,
    721     POSITIVE_SUBMATCH_SUCCESS,
    722     EMPTY_MATCH_CHECK,
    723     CLEAR_CAPTURES
    724   };
    725   static ActionNode* SetRegister(int reg, int val, RegExpNode* on_success);
    726   static ActionNode* IncrementRegister(int reg, RegExpNode* on_success);
    727   static ActionNode* StorePosition(int reg,
    728                                    bool is_capture,
    729                                    RegExpNode* on_success);
    730   static ActionNode* ClearCaptures(Interval range, RegExpNode* on_success);
    731   static ActionNode* BeginSubmatch(int stack_pointer_reg,
    732                                    int position_reg,
    733                                    RegExpNode* on_success);
    734   static ActionNode* PositiveSubmatchSuccess(int stack_pointer_reg,
    735                                              int restore_reg,
    736                                              int clear_capture_count,
    737                                              int clear_capture_from,
    738                                              RegExpNode* on_success);
    739   static ActionNode* EmptyMatchCheck(int start_register,
    740                                      int repetition_register,
    741                                      int repetition_limit,
    742                                      RegExpNode* on_success);
    743   virtual void Accept(NodeVisitor* visitor);
    744   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
    745   virtual int EatsAtLeast(int still_to_find, int recursion_depth);
    746   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
    747                                     RegExpCompiler* compiler,
    748                                     int filled_in,
    749                                     bool not_at_start) {
    750     return on_success()->GetQuickCheckDetails(
    751         details, compiler, filled_in, not_at_start);
    752   }
    753   Type type() { return type_; }
    754   // TODO(erikcorry): We should allow some action nodes in greedy loops.
    755   virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; }
    756   virtual ActionNode* Clone() { return new ActionNode(*this); }
    757   virtual int ComputeFirstCharacterSet(int budget);
    758  private:
    759   union {
    760     struct {
    761       int reg;
    762       int value;
    763     } u_store_register;
    764     struct {
    765       int reg;
    766     } u_increment_register;
    767     struct {
    768       int reg;
    769       bool is_capture;
    770     } u_position_register;
    771     struct {
    772       int stack_pointer_register;
    773       int current_position_register;
    774       int clear_register_count;
    775       int clear_register_from;
    776     } u_submatch;
    777     struct {
    778       int start_register;
    779       int repetition_register;
    780       int repetition_limit;
    781     } u_empty_match_check;
    782     struct {
    783       int range_from;
    784       int range_to;
    785     } u_clear_captures;
    786   } data_;
    787   ActionNode(Type type, RegExpNode* on_success)
    788       : SeqRegExpNode(on_success),
    789         type_(type) { }
    790   Type type_;
    791   friend class DotPrinter;
    792 };
    793 
    794 
    795 class TextNode: public SeqRegExpNode {
    796  public:
    797   TextNode(ZoneList<TextElement>* elms,
    798            RegExpNode* on_success)
    799       : SeqRegExpNode(on_success),
    800         elms_(elms) { }
    801   TextNode(RegExpCharacterClass* that,
    802            RegExpNode* on_success)
    803       : SeqRegExpNode(on_success),
    804         elms_(new ZoneList<TextElement>(1)) {
    805     elms_->Add(TextElement::CharClass(that));
    806   }
    807   virtual void Accept(NodeVisitor* visitor);
    808   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
    809   virtual int EatsAtLeast(int still_to_find, int recursion_depth);
    810   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
    811                                     RegExpCompiler* compiler,
    812                                     int characters_filled_in,
    813                                     bool not_at_start);
    814   ZoneList<TextElement>* elements() { return elms_; }
    815   void MakeCaseIndependent(bool is_ascii);
    816   virtual int GreedyLoopTextLength();
    817   virtual TextNode* Clone() {
    818     TextNode* result = new TextNode(*this);
    819     result->CalculateOffsets();
    820     return result;
    821   }
    822   void CalculateOffsets();
    823   virtual int ComputeFirstCharacterSet(int budget);
    824  private:
    825   enum TextEmitPassType {
    826     NON_ASCII_MATCH,             // Check for characters that can't match.
    827     SIMPLE_CHARACTER_MATCH,      // Case-dependent single character check.
    828     NON_LETTER_CHARACTER_MATCH,  // Check characters that have no case equivs.
    829     CASE_CHARACTER_MATCH,        // Case-independent single character check.
    830     CHARACTER_CLASS_MATCH        // Character class.
    831   };
    832   static bool SkipPass(int pass, bool ignore_case);
    833   static const int kFirstRealPass = SIMPLE_CHARACTER_MATCH;
    834   static const int kLastPass = CHARACTER_CLASS_MATCH;
    835   void TextEmitPass(RegExpCompiler* compiler,
    836                     TextEmitPassType pass,
    837                     bool preloaded,
    838                     Trace* trace,
    839                     bool first_element_checked,
    840                     int* checked_up_to);
    841   int Length();
    842   ZoneList<TextElement>* elms_;
    843 };
    844 
    845 
    846 class AssertionNode: public SeqRegExpNode {
    847  public:
    848   enum AssertionNodeType {
    849     AT_END,
    850     AT_START,
    851     AT_BOUNDARY,
    852     AT_NON_BOUNDARY,
    853     AFTER_NEWLINE,
    854     // Types not directly expressible in regexp syntax.
    855     // Used for modifying a boundary node if its following character is
    856     // known to be word and/or non-word.
    857     AFTER_NONWORD_CHARACTER,
    858     AFTER_WORD_CHARACTER
    859   };
    860   static AssertionNode* AtEnd(RegExpNode* on_success) {
    861     return new AssertionNode(AT_END, on_success);
    862   }
    863   static AssertionNode* AtStart(RegExpNode* on_success) {
    864     return new AssertionNode(AT_START, on_success);
    865   }
    866   static AssertionNode* AtBoundary(RegExpNode* on_success) {
    867     return new AssertionNode(AT_BOUNDARY, on_success);
    868   }
    869   static AssertionNode* AtNonBoundary(RegExpNode* on_success) {
    870     return new AssertionNode(AT_NON_BOUNDARY, on_success);
    871   }
    872   static AssertionNode* AfterNewline(RegExpNode* on_success) {
    873     return new AssertionNode(AFTER_NEWLINE, on_success);
    874   }
    875   virtual void Accept(NodeVisitor* visitor);
    876   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
    877   virtual int EatsAtLeast(int still_to_find, int recursion_depth);
    878   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
    879                                     RegExpCompiler* compiler,
    880                                     int filled_in,
    881                                     bool not_at_start);
    882   virtual int ComputeFirstCharacterSet(int budget);
    883   virtual AssertionNode* Clone() { return new AssertionNode(*this); }
    884   AssertionNodeType type() { return type_; }
    885   void set_type(AssertionNodeType type) { type_ = type; }
    886  private:
    887   AssertionNode(AssertionNodeType t, RegExpNode* on_success)
    888       : SeqRegExpNode(on_success), type_(t) { }
    889   AssertionNodeType type_;
    890 };
    891 
    892 
    893 class BackReferenceNode: public SeqRegExpNode {
    894  public:
    895   BackReferenceNode(int start_reg,
    896                     int end_reg,
    897                     RegExpNode* on_success)
    898       : SeqRegExpNode(on_success),
    899         start_reg_(start_reg),
    900         end_reg_(end_reg) { }
    901   virtual void Accept(NodeVisitor* visitor);
    902   int start_register() { return start_reg_; }
    903   int end_register() { return end_reg_; }
    904   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
    905   virtual int EatsAtLeast(int still_to_find, int recursion_depth);
    906   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
    907                                     RegExpCompiler* compiler,
    908                                     int characters_filled_in,
    909                                     bool not_at_start) {
    910     return;
    911   }
    912   virtual BackReferenceNode* Clone() { return new BackReferenceNode(*this); }
    913   virtual int ComputeFirstCharacterSet(int budget);
    914  private:
    915   int start_reg_;
    916   int end_reg_;
    917 };
    918 
    919 
    920 class EndNode: public RegExpNode {
    921  public:
    922   enum Action { ACCEPT, BACKTRACK, NEGATIVE_SUBMATCH_SUCCESS };
    923   explicit EndNode(Action action) : action_(action) { }
    924   virtual void Accept(NodeVisitor* visitor);
    925   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
    926   virtual int EatsAtLeast(int still_to_find, int recursion_depth) { return 0; }
    927   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
    928                                     RegExpCompiler* compiler,
    929                                     int characters_filled_in,
    930                                     bool not_at_start) {
    931     // Returning 0 from EatsAtLeast should ensure we never get here.
    932     UNREACHABLE();
    933   }
    934   virtual EndNode* Clone() { return new EndNode(*this); }
    935  private:
    936   Action action_;
    937 };
    938 
    939 
    940 class NegativeSubmatchSuccess: public EndNode {
    941  public:
    942   NegativeSubmatchSuccess(int stack_pointer_reg,
    943                           int position_reg,
    944                           int clear_capture_count,
    945                           int clear_capture_start)
    946       : EndNode(NEGATIVE_SUBMATCH_SUCCESS),
    947         stack_pointer_register_(stack_pointer_reg),
    948         current_position_register_(position_reg),
    949         clear_capture_count_(clear_capture_count),
    950         clear_capture_start_(clear_capture_start) { }
    951   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
    952 
    953  private:
    954   int stack_pointer_register_;
    955   int current_position_register_;
    956   int clear_capture_count_;
    957   int clear_capture_start_;
    958 };
    959 
    960 
    961 class Guard: public ZoneObject {
    962  public:
    963   enum Relation { LT, GEQ };
    964   Guard(int reg, Relation op, int value)
    965       : reg_(reg),
    966         op_(op),
    967         value_(value) { }
    968   int reg() { return reg_; }
    969   Relation op() { return op_; }
    970   int value() { return value_; }
    971 
    972  private:
    973   int reg_;
    974   Relation op_;
    975   int value_;
    976 };
    977 
    978 
    979 class GuardedAlternative {
    980  public:
    981   explicit GuardedAlternative(RegExpNode* node) : node_(node), guards_(NULL) { }
    982   void AddGuard(Guard* guard);
    983   RegExpNode* node() { return node_; }
    984   void set_node(RegExpNode* node) { node_ = node; }
    985   ZoneList<Guard*>* guards() { return guards_; }
    986 
    987  private:
    988   RegExpNode* node_;
    989   ZoneList<Guard*>* guards_;
    990 };
    991 
    992 
    993 class AlternativeGeneration;
    994 
    995 
    996 class ChoiceNode: public RegExpNode {
    997  public:
    998   explicit ChoiceNode(int expected_size)
    999       : alternatives_(new ZoneList<GuardedAlternative>(expected_size)),
   1000         table_(NULL),
   1001         not_at_start_(false),
   1002         being_calculated_(false) { }
   1003   virtual void Accept(NodeVisitor* visitor);
   1004   void AddAlternative(GuardedAlternative node) { alternatives()->Add(node); }
   1005   ZoneList<GuardedAlternative>* alternatives() { return alternatives_; }
   1006   DispatchTable* GetTable(bool ignore_case);
   1007   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
   1008   virtual int EatsAtLeast(int still_to_find, int recursion_depth);
   1009   int EatsAtLeastHelper(int still_to_find,
   1010                         int recursion_depth,
   1011                         RegExpNode* ignore_this_node);
   1012   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
   1013                                     RegExpCompiler* compiler,
   1014                                     int characters_filled_in,
   1015                                     bool not_at_start);
   1016   virtual ChoiceNode* Clone() { return new ChoiceNode(*this); }
   1017 
   1018   bool being_calculated() { return being_calculated_; }
   1019   bool not_at_start() { return not_at_start_; }
   1020   void set_not_at_start() { not_at_start_ = true; }
   1021   void set_being_calculated(bool b) { being_calculated_ = b; }
   1022   virtual bool try_to_emit_quick_check_for_alternative(int i) { return true; }
   1023 
   1024  protected:
   1025   int GreedyLoopTextLength(GuardedAlternative* alternative);
   1026   ZoneList<GuardedAlternative>* alternatives_;
   1027 
   1028  private:
   1029   friend class DispatchTableConstructor;
   1030   friend class Analysis;
   1031   void GenerateGuard(RegExpMacroAssembler* macro_assembler,
   1032                      Guard* guard,
   1033                      Trace* trace);
   1034   int CalculatePreloadCharacters(RegExpCompiler* compiler);
   1035   void EmitOutOfLineContinuation(RegExpCompiler* compiler,
   1036                                  Trace* trace,
   1037                                  GuardedAlternative alternative,
   1038                                  AlternativeGeneration* alt_gen,
   1039                                  int preload_characters,
   1040                                  bool next_expects_preload);
   1041   DispatchTable* table_;
   1042   // If true, this node is never checked at the start of the input.
   1043   // Allows a new trace to start with at_start() set to false.
   1044   bool not_at_start_;
   1045   bool being_calculated_;
   1046 };
   1047 
   1048 
   1049 class NegativeLookaheadChoiceNode: public ChoiceNode {
   1050  public:
   1051   explicit NegativeLookaheadChoiceNode(GuardedAlternative this_must_fail,
   1052                                        GuardedAlternative then_do_this)
   1053       : ChoiceNode(2) {
   1054     AddAlternative(this_must_fail);
   1055     AddAlternative(then_do_this);
   1056   }
   1057   virtual int EatsAtLeast(int still_to_find, int recursion_depth);
   1058   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
   1059                                     RegExpCompiler* compiler,
   1060                                     int characters_filled_in,
   1061                                     bool not_at_start);
   1062   // For a negative lookahead we don't emit the quick check for the
   1063   // alternative that is expected to fail.  This is because quick check code
   1064   // starts by loading enough characters for the alternative that takes fewest
   1065   // characters, but on a negative lookahead the negative branch did not take
   1066   // part in that calculation (EatsAtLeast) so the assumptions don't hold.
   1067   virtual bool try_to_emit_quick_check_for_alternative(int i) { return i != 0; }
   1068   virtual int ComputeFirstCharacterSet(int budget);
   1069 };
   1070 
   1071 
   1072 class LoopChoiceNode: public ChoiceNode {
   1073  public:
   1074   explicit LoopChoiceNode(bool body_can_be_zero_length)
   1075       : ChoiceNode(2),
   1076         loop_node_(NULL),
   1077         continue_node_(NULL),
   1078         body_can_be_zero_length_(body_can_be_zero_length) { }
   1079   void AddLoopAlternative(GuardedAlternative alt);
   1080   void AddContinueAlternative(GuardedAlternative alt);
   1081   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
   1082   virtual int EatsAtLeast(int still_to_find, int recursion_depth);
   1083   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
   1084                                     RegExpCompiler* compiler,
   1085                                     int characters_filled_in,
   1086                                     bool not_at_start);
   1087   virtual int ComputeFirstCharacterSet(int budget);
   1088   virtual LoopChoiceNode* Clone() { return new LoopChoiceNode(*this); }
   1089   RegExpNode* loop_node() { return loop_node_; }
   1090   RegExpNode* continue_node() { return continue_node_; }
   1091   bool body_can_be_zero_length() { return body_can_be_zero_length_; }
   1092   virtual void Accept(NodeVisitor* visitor);
   1093 
   1094  private:
   1095   // AddAlternative is made private for loop nodes because alternatives
   1096   // should not be added freely, we need to keep track of which node
   1097   // goes back to the node itself.
   1098   void AddAlternative(GuardedAlternative node) {
   1099     ChoiceNode::AddAlternative(node);
   1100   }
   1101 
   1102   RegExpNode* loop_node_;
   1103   RegExpNode* continue_node_;
   1104   bool body_can_be_zero_length_;
   1105 };
   1106 
   1107 
   1108 // There are many ways to generate code for a node.  This class encapsulates
   1109 // the current way we should be generating.  In other words it encapsulates
   1110 // the current state of the code generator.  The effect of this is that we
   1111 // generate code for paths that the matcher can take through the regular
   1112 // expression.  A given node in the regexp can be code-generated several times
   1113 // as it can be part of several traces.  For example for the regexp:
   1114 // /foo(bar|ip)baz/ the code to match baz will be generated twice, once as part
   1115 // of the foo-bar-baz trace and once as part of the foo-ip-baz trace.  The code
   1116 // to match foo is generated only once (the traces have a common prefix).  The
   1117 // code to store the capture is deferred and generated (twice) after the places
   1118 // where baz has been matched.
   1119 class Trace {
   1120  public:
   1121   // A value for a property that is either known to be true, know to be false,
   1122   // or not known.
   1123   enum TriBool {
   1124     UNKNOWN = -1, FALSE = 0, TRUE = 1
   1125   };
   1126 
   1127   class DeferredAction {
   1128    public:
   1129     DeferredAction(ActionNode::Type type, int reg)
   1130         : type_(type), reg_(reg), next_(NULL) { }
   1131     DeferredAction* next() { return next_; }
   1132     bool Mentions(int reg);
   1133     int reg() { return reg_; }
   1134     ActionNode::Type type() { return type_; }
   1135    private:
   1136     ActionNode::Type type_;
   1137     int reg_;
   1138     DeferredAction* next_;
   1139     friend class Trace;
   1140   };
   1141 
   1142   class DeferredCapture : public DeferredAction {
   1143    public:
   1144     DeferredCapture(int reg, bool is_capture, Trace* trace)
   1145         : DeferredAction(ActionNode::STORE_POSITION, reg),
   1146           cp_offset_(trace->cp_offset()),
   1147           is_capture_(is_capture) { }
   1148     int cp_offset() { return cp_offset_; }
   1149     bool is_capture() { return is_capture_; }
   1150    private:
   1151     int cp_offset_;
   1152     bool is_capture_;
   1153     void set_cp_offset(int cp_offset) { cp_offset_ = cp_offset; }
   1154   };
   1155 
   1156   class DeferredSetRegister : public DeferredAction {
   1157    public:
   1158     DeferredSetRegister(int reg, int value)
   1159         : DeferredAction(ActionNode::SET_REGISTER, reg),
   1160           value_(value) { }
   1161     int value() { return value_; }
   1162    private:
   1163     int value_;
   1164   };
   1165 
   1166   class DeferredClearCaptures : public DeferredAction {
   1167    public:
   1168     explicit DeferredClearCaptures(Interval range)
   1169         : DeferredAction(ActionNode::CLEAR_CAPTURES, -1),
   1170           range_(range) { }
   1171     Interval range() { return range_; }
   1172    private:
   1173     Interval range_;
   1174   };
   1175 
   1176   class DeferredIncrementRegister : public DeferredAction {
   1177    public:
   1178     explicit DeferredIncrementRegister(int reg)
   1179         : DeferredAction(ActionNode::INCREMENT_REGISTER, reg) { }
   1180   };
   1181 
   1182   Trace()
   1183       : cp_offset_(0),
   1184         actions_(NULL),
   1185         backtrack_(NULL),
   1186         stop_node_(NULL),
   1187         loop_label_(NULL),
   1188         characters_preloaded_(0),
   1189         bound_checked_up_to_(0),
   1190         flush_budget_(100),
   1191         at_start_(UNKNOWN) { }
   1192 
   1193   // End the trace.  This involves flushing the deferred actions in the trace
   1194   // and pushing a backtrack location onto the backtrack stack.  Once this is
   1195   // done we can start a new trace or go to one that has already been
   1196   // generated.
   1197   void Flush(RegExpCompiler* compiler, RegExpNode* successor);
   1198   int cp_offset() { return cp_offset_; }
   1199   DeferredAction* actions() { return actions_; }
   1200   // A trivial trace is one that has no deferred actions or other state that
   1201   // affects the assumptions used when generating code.  There is no recorded
   1202   // backtrack location in a trivial trace, so with a trivial trace we will
   1203   // generate code that, on a failure to match, gets the backtrack location
   1204   // from the backtrack stack rather than using a direct jump instruction.  We
   1205   // always start code generation with a trivial trace and non-trivial traces
   1206   // are created as we emit code for nodes or add to the list of deferred
   1207   // actions in the trace.  The location of the code generated for a node using
   1208   // a trivial trace is recorded in a label in the node so that gotos can be
   1209   // generated to that code.
   1210   bool is_trivial() {
   1211     return backtrack_ == NULL &&
   1212            actions_ == NULL &&
   1213            cp_offset_ == 0 &&
   1214            characters_preloaded_ == 0 &&
   1215            bound_checked_up_to_ == 0 &&
   1216            quick_check_performed_.characters() == 0 &&
   1217            at_start_ == UNKNOWN;
   1218   }
   1219   TriBool at_start() { return at_start_; }
   1220   void set_at_start(bool at_start) { at_start_ = at_start ? TRUE : FALSE; }
   1221   Label* backtrack() { return backtrack_; }
   1222   Label* loop_label() { return loop_label_; }
   1223   RegExpNode* stop_node() { return stop_node_; }
   1224   int characters_preloaded() { return characters_preloaded_; }
   1225   int bound_checked_up_to() { return bound_checked_up_to_; }
   1226   int flush_budget() { return flush_budget_; }
   1227   QuickCheckDetails* quick_check_performed() { return &quick_check_performed_; }
   1228   bool mentions_reg(int reg);
   1229   // Returns true if a deferred position store exists to the specified
   1230   // register and stores the offset in the out-parameter.  Otherwise
   1231   // returns false.
   1232   bool GetStoredPosition(int reg, int* cp_offset);
   1233   // These set methods and AdvanceCurrentPositionInTrace should be used only on
   1234   // new traces - the intention is that traces are immutable after creation.
   1235   void add_action(DeferredAction* new_action) {
   1236     ASSERT(new_action->next_ == NULL);
   1237     new_action->next_ = actions_;
   1238     actions_ = new_action;
   1239   }
   1240   void set_backtrack(Label* backtrack) { backtrack_ = backtrack; }
   1241   void set_stop_node(RegExpNode* node) { stop_node_ = node; }
   1242   void set_loop_label(Label* label) { loop_label_ = label; }
   1243   void set_characters_preloaded(int count) { characters_preloaded_ = count; }
   1244   void set_bound_checked_up_to(int to) { bound_checked_up_to_ = to; }
   1245   void set_flush_budget(int to) { flush_budget_ = to; }
   1246   void set_quick_check_performed(QuickCheckDetails* d) {
   1247     quick_check_performed_ = *d;
   1248   }
   1249   void InvalidateCurrentCharacter();
   1250   void AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler);
   1251  private:
   1252   int FindAffectedRegisters(OutSet* affected_registers);
   1253   void PerformDeferredActions(RegExpMacroAssembler* macro,
   1254                                int max_register,
   1255                                OutSet& affected_registers,
   1256                                OutSet* registers_to_pop,
   1257                                OutSet* registers_to_clear);
   1258   void RestoreAffectedRegisters(RegExpMacroAssembler* macro,
   1259                                 int max_register,
   1260                                 OutSet& registers_to_pop,
   1261                                 OutSet& registers_to_clear);
   1262   int cp_offset_;
   1263   DeferredAction* actions_;
   1264   Label* backtrack_;
   1265   RegExpNode* stop_node_;
   1266   Label* loop_label_;
   1267   int characters_preloaded_;
   1268   int bound_checked_up_to_;
   1269   QuickCheckDetails quick_check_performed_;
   1270   int flush_budget_;
   1271   TriBool at_start_;
   1272 };
   1273 
   1274 
   1275 class NodeVisitor {
   1276  public:
   1277   virtual ~NodeVisitor() { }
   1278 #define DECLARE_VISIT(Type)                                          \
   1279   virtual void Visit##Type(Type##Node* that) = 0;
   1280 FOR_EACH_NODE_TYPE(DECLARE_VISIT)
   1281 #undef DECLARE_VISIT
   1282   virtual void VisitLoopChoice(LoopChoiceNode* that) { VisitChoice(that); }
   1283 };
   1284 
   1285 
   1286 // Node visitor used to add the start set of the alternatives to the
   1287 // dispatch table of a choice node.
   1288 class DispatchTableConstructor: public NodeVisitor {
   1289  public:
   1290   DispatchTableConstructor(DispatchTable* table, bool ignore_case)
   1291       : table_(table),
   1292         choice_index_(-1),
   1293         ignore_case_(ignore_case) { }
   1294 
   1295   void BuildTable(ChoiceNode* node);
   1296 
   1297   void AddRange(CharacterRange range) {
   1298     table()->AddRange(range, choice_index_);
   1299   }
   1300 
   1301   void AddInverse(ZoneList<CharacterRange>* ranges);
   1302 
   1303 #define DECLARE_VISIT(Type)                                          \
   1304   virtual void Visit##Type(Type##Node* that);
   1305 FOR_EACH_NODE_TYPE(DECLARE_VISIT)
   1306 #undef DECLARE_VISIT
   1307 
   1308   DispatchTable* table() { return table_; }
   1309   void set_choice_index(int value) { choice_index_ = value; }
   1310 
   1311  protected:
   1312   DispatchTable* table_;
   1313   int choice_index_;
   1314   bool ignore_case_;
   1315 };
   1316 
   1317 
   1318 // Assertion propagation moves information about assertions such as
   1319 // \b to the affected nodes.  For instance, in /.\b./ information must
   1320 // be propagated to the first '.' that whatever follows needs to know
   1321 // if it matched a word or a non-word, and to the second '.' that it
   1322 // has to check if it succeeds a word or non-word.  In this case the
   1323 // result will be something like:
   1324 //
   1325 //   +-------+        +------------+
   1326 //   |   .   |        |      .     |
   1327 //   +-------+  --->  +------------+
   1328 //   | word? |        | check word |
   1329 //   +-------+        +------------+
   1330 class Analysis: public NodeVisitor {
   1331  public:
   1332   Analysis(bool ignore_case, bool is_ascii)
   1333       : ignore_case_(ignore_case),
   1334         is_ascii_(is_ascii),
   1335         error_message_(NULL) { }
   1336   void EnsureAnalyzed(RegExpNode* node);
   1337 
   1338 #define DECLARE_VISIT(Type)                                          \
   1339   virtual void Visit##Type(Type##Node* that);
   1340 FOR_EACH_NODE_TYPE(DECLARE_VISIT)
   1341 #undef DECLARE_VISIT
   1342   virtual void VisitLoopChoice(LoopChoiceNode* that);
   1343 
   1344   bool has_failed() { return error_message_ != NULL; }
   1345   const char* error_message() {
   1346     ASSERT(error_message_ != NULL);
   1347     return error_message_;
   1348   }
   1349   void fail(const char* error_message) {
   1350     error_message_ = error_message;
   1351   }
   1352  private:
   1353   bool ignore_case_;
   1354   bool is_ascii_;
   1355   const char* error_message_;
   1356 
   1357   DISALLOW_IMPLICIT_CONSTRUCTORS(Analysis);
   1358 };
   1359 
   1360 
   1361 struct RegExpCompileData {
   1362   RegExpCompileData()
   1363     : tree(NULL),
   1364       node(NULL),
   1365       simple(true),
   1366       contains_anchor(false),
   1367       capture_count(0) { }
   1368   RegExpTree* tree;
   1369   RegExpNode* node;
   1370   bool simple;
   1371   bool contains_anchor;
   1372   Handle<String> error;
   1373   int capture_count;
   1374 };
   1375 
   1376 
   1377 class RegExpEngine: public AllStatic {
   1378  public:
   1379   struct CompilationResult {
   1380     explicit CompilationResult(const char* error_message)
   1381         : error_message(error_message),
   1382           code(Heap::the_hole_value()),
   1383           num_registers(0) {}
   1384     CompilationResult(Object* code, int registers)
   1385       : error_message(NULL),
   1386         code(code),
   1387         num_registers(registers) {}
   1388     const char* error_message;
   1389     Object* code;
   1390     int num_registers;
   1391   };
   1392 
   1393   static CompilationResult Compile(RegExpCompileData* input,
   1394                                    bool ignore_case,
   1395                                    bool multiline,
   1396                                    Handle<String> pattern,
   1397                                    bool is_ascii);
   1398 
   1399   static void DotPrint(const char* label, RegExpNode* node, bool ignore_case);
   1400 };
   1401 
   1402 
   1403 class OffsetsVector {
   1404  public:
   1405   inline OffsetsVector(int num_registers)
   1406       : offsets_vector_length_(num_registers) {
   1407     if (offsets_vector_length_ > kStaticOffsetsVectorSize) {
   1408       vector_ = NewArray<int>(offsets_vector_length_);
   1409     } else {
   1410       vector_ = static_offsets_vector_;
   1411     }
   1412   }
   1413   inline ~OffsetsVector() {
   1414     if (offsets_vector_length_ > kStaticOffsetsVectorSize) {
   1415       DeleteArray(vector_);
   1416       vector_ = NULL;
   1417     }
   1418   }
   1419   inline int* vector() { return vector_; }
   1420   inline int length() { return offsets_vector_length_; }
   1421 
   1422   static const int kStaticOffsetsVectorSize = 50;
   1423 
   1424  private:
   1425   static Address static_offsets_vector_address() {
   1426     return reinterpret_cast<Address>(&static_offsets_vector_);
   1427   }
   1428 
   1429   int* vector_;
   1430   int offsets_vector_length_;
   1431   static int static_offsets_vector_[kStaticOffsetsVectorSize];
   1432 
   1433   friend class ExternalReference;
   1434 };
   1435 
   1436 
   1437 } }  // namespace v8::internal
   1438 
   1439 #endif  // V8_JSREGEXP_H_
   1440