Home | History | Annotate | Download | only in src
      1 /*-
      2  * Copyright (c) 2005 David Schultz <das (at) FreeBSD.ORG>
      3  * All rights reserved.
      4  *
      5  * Redistribution and use in source and binary forms, with or without
      6  * modification, are permitted provided that the following conditions
      7  * are met:
      8  * 1. Redistributions of source code must retain the above copyright
      9  *    notice, this list of conditions and the following disclaimer.
     10  * 2. Redistributions in binary form must reproduce the above copyright
     11  *    notice, this list of conditions and the following disclaimer in the
     12  *    documentation and/or other materials provided with the distribution.
     13  *
     14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     24  * SUCH DAMAGE.
     25  */
     26 
     27 #include <sys/cdefs.h>
     28 /* __FBSDID("$FreeBSD: src/lib/msun/src/s_fmal.c,v 1.2 2005/03/18 02:27:59 das Exp $"); */
     29 
     30 #include <fenv.h>
     31 #include <float.h>
     32 #include <math.h>
     33 
     34 /*
     35  * Fused multiply-add: Compute x * y + z with a single rounding error.
     36  *
     37  * We use scaling to avoid overflow/underflow, along with the
     38  * canonical precision-doubling technique adapted from:
     39  *
     40  *	Dekker, T.  A Floating-Point Technique for Extending the
     41  *	Available Precision.  Numer. Math. 18, 224-242 (1971).
     42  */
     43 long double
     44 fmal(long double x, long double y, long double z)
     45 {
     46 #if LDBL_MANT_DIG == 64
     47 	static const long double split = 0x1p32L + 1.0;
     48 #elif LDBL_MANT_DIG == 113
     49 	static const long double split = 0x1p57L + 1.0;
     50 #endif
     51 	long double xs, ys, zs;
     52 	long double c, cc, hx, hy, p, q, tx, ty;
     53 	long double r, rr, s;
     54 	int oround;
     55 	int ex, ey, ez;
     56 	int spread;
     57 
     58 	if (z == 0.0)
     59 		return (x * y);
     60 	if (x == 0.0 || y == 0.0)
     61 		return (x * y + z);
     62 
     63 	/* Results of frexp() are undefined for these cases. */
     64 	if (!isfinite(x) || !isfinite(y) || !isfinite(z))
     65 		return (x * y + z);
     66 
     67 	xs = frexpl(x, &ex);
     68 	ys = frexpl(y, &ey);
     69 	zs = frexpl(z, &ez);
     70 	oround = fegetround();
     71 	spread = ex + ey - ez;
     72 
     73 	/*
     74 	 * If x * y and z are many orders of magnitude apart, the scaling
     75 	 * will overflow, so we handle these cases specially.  Rounding
     76 	 * modes other than FE_TONEAREST are painful.
     77 	 */
     78 	if (spread > LDBL_MANT_DIG * 2) {
     79 		fenv_t env;
     80 		feraiseexcept(FE_INEXACT);
     81 		switch(oround) {
     82 		case FE_TONEAREST:
     83 			return (x * y);
     84 		case FE_TOWARDZERO:
     85 			if (x > 0.0 ^ y < 0.0 ^ z < 0.0)
     86 				return (x * y);
     87 			feholdexcept(&env);
     88 			r = x * y;
     89 			if (!fetestexcept(FE_INEXACT))
     90 				r = nextafterl(r, 0);
     91 			feupdateenv(&env);
     92 			return (r);
     93 		case FE_DOWNWARD:
     94 			if (z > 0.0)
     95 				return (x * y);
     96 			feholdexcept(&env);
     97 			r = x * y;
     98 			if (!fetestexcept(FE_INEXACT))
     99 				r = nextafterl(r, -INFINITY);
    100 			feupdateenv(&env);
    101 			return (r);
    102 		default:	/* FE_UPWARD */
    103 			if (z < 0.0)
    104 				return (x * y);
    105 			feholdexcept(&env);
    106 			r = x * y;
    107 			if (!fetestexcept(FE_INEXACT))
    108 				r = nextafterl(r, INFINITY);
    109 			feupdateenv(&env);
    110 			return (r);
    111 		}
    112 	}
    113 	if (spread < -LDBL_MANT_DIG) {
    114 		feraiseexcept(FE_INEXACT);
    115 		if (!isnormal(z))
    116 			feraiseexcept(FE_UNDERFLOW);
    117 		switch (oround) {
    118 		case FE_TONEAREST:
    119 			return (z);
    120 		case FE_TOWARDZERO:
    121 			if (x > 0.0 ^ y < 0.0 ^ z < 0.0)
    122 				return (z);
    123 			else
    124 				return (nextafterl(z, 0));
    125 		case FE_DOWNWARD:
    126 			if (x > 0.0 ^ y < 0.0)
    127 				return (z);
    128 			else
    129 				return (nextafterl(z, -INFINITY));
    130 		default:	/* FE_UPWARD */
    131 			if (x > 0.0 ^ y < 0.0)
    132 				return (nextafterl(z, INFINITY));
    133 			else
    134 				return (z);
    135 		}
    136 	}
    137 
    138 	/*
    139 	 * Use Dekker's algorithm to perform the multiplication and
    140 	 * subsequent addition in twice the machine precision.
    141 	 * Arrange so that x * y = c + cc, and x * y + z = r + rr.
    142 	 */
    143 	fesetround(FE_TONEAREST);
    144 
    145 	p = xs * split;
    146 	hx = xs - p;
    147 	hx += p;
    148 	tx = xs - hx;
    149 
    150 	p = ys * split;
    151 	hy = ys - p;
    152 	hy += p;
    153 	ty = ys - hy;
    154 
    155 	p = hx * hy;
    156 	q = hx * ty + tx * hy;
    157 	c = p + q;
    158 	cc = p - c + q + tx * ty;
    159 
    160 	zs = ldexpl(zs, -spread);
    161 	r = c + zs;
    162 	s = r - c;
    163 	rr = (c - (r - s)) + (zs - s) + cc;
    164 
    165 	spread = ex + ey;
    166 	if (spread + ilogbl(r) > -16383) {
    167 		fesetround(oround);
    168 		r = r + rr;
    169 	} else {
    170 		/*
    171 		 * The result is subnormal, so we round before scaling to
    172 		 * avoid double rounding.
    173 		 */
    174 		p = ldexpl(copysignl(0x1p-16382L, r), -spread);
    175 		c = r + p;
    176 		s = c - r;
    177 		cc = (r - (c - s)) + (p - s) + rr;
    178 		fesetround(oround);
    179 		r = (c + cc) - p;
    180 	}
    181 	return (ldexpl(r, spread));
    182 }
    183