Home | History | Annotate | Download | only in src
      1 /* Generate the nondeterministic finite state machine for Bison.
      2 
      3    Copyright (C) 1984, 1986, 1989, 2000, 2001, 2002, 2004, 2005 Free
      4    Software Foundation, Inc.
      5 
      6    This file is part of Bison, the GNU Compiler Compiler.
      7 
      8    Bison is free software; you can redistribute it and/or modify
      9    it under the terms of the GNU General Public License as published by
     10    the Free Software Foundation; either version 2, or (at your option)
     11    any later version.
     12 
     13    Bison is distributed in the hope that it will be useful,
     14    but WITHOUT ANY WARRANTY; without even the implied warranty of
     15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     16    GNU General Public License for more details.
     17 
     18    You should have received a copy of the GNU General Public License
     19    along with Bison; see the file COPYING.  If not, write to
     20    the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
     21    Boston, MA 02110-1301, USA.  */
     22 
     23 
     24 /* See comments in state.h for the data structures that represent it.
     25    The entry point is generate_states.  */
     26 
     27 #include <config.h>
     28 #include "system.h"
     29 
     30 #include <bitset.h>
     31 #include <quotearg.h>
     32 
     33 #include "LR0.h"
     34 #include "closure.h"
     35 #include "complain.h"
     36 #include "getargs.h"
     37 #include "gram.h"
     38 #include "gram.h"
     39 #include "lalr.h"
     40 #include "reader.h"
     41 #include "reduce.h"
     42 #include "state.h"
     43 #include "symtab.h"
     44 
     45 typedef struct state_list
     46 {
     47   struct state_list *next;
     48   state *state;
     49 } state_list;
     50 
     51 static state_list *first_state = NULL;
     52 static state_list *last_state = NULL;
     53 
     54 
     55 /*------------------------------------------------------------------.
     56 | A state was just discovered from another state.  Queue it for     |
     57 | later examination, in order to find its transitions.  Return it.  |
     58 `------------------------------------------------------------------*/
     59 
     60 static state *
     61 state_list_append (symbol_number sym, size_t core_size, item_number *core)
     62 {
     63   state_list *node = xmalloc (sizeof *node);
     64   state *s = state_new (sym, core_size, core);
     65 
     66   if (trace_flag & trace_automaton)
     67     fprintf (stderr, "state_list_append (state = %d, symbol = %d (%s))\n",
     68 	     nstates, sym, symbols[sym]->tag);
     69 
     70   node->next = NULL;
     71   node->state = s;
     72 
     73   if (!first_state)
     74     first_state = node;
     75   if (last_state)
     76     last_state->next = node;
     77   last_state = node;
     78 
     79   return s;
     80 }
     81 
     82 static int nshifts;
     83 static symbol_number *shift_symbol;
     84 
     85 static rule **redset;
     86 static state **shiftset;
     87 
     88 static item_number **kernel_base;
     89 static int *kernel_size;
     90 static item_number *kernel_items;
     91 
     92 
     93 static void
     95 allocate_itemsets (void)
     96 {
     97   symbol_number i;
     98   rule_number r;
     99   item_number *rhsp;
    100 
    101   /* Count the number of occurrences of all the symbols in RITEMS.
    102      Note that useless productions (hence useless nonterminals) are
    103      browsed too, hence we need to allocate room for _all_ the
    104      symbols.  */
    105   size_t count = 0;
    106   size_t *symbol_count = xcalloc (nsyms + nuseless_nonterminals,
    107 				  sizeof *symbol_count);
    108 
    109   for (r = 0; r < nrules; ++r)
    110     for (rhsp = rules[r].rhs; *rhsp >= 0; ++rhsp)
    111       {
    112 	count++;
    113 	symbol_count[*rhsp]++;
    114       }
    115 
    116   /* See comments before new_itemsets.  All the vectors of items
    117      live inside KERNEL_ITEMS.  The number of active items after
    118      some symbol S cannot be more than the number of times that S
    119      appears as an item, which is SYMBOL_COUNT[S].
    120      We allocate that much space for each symbol.  */
    121 
    122   kernel_base = xnmalloc (nsyms, sizeof *kernel_base);
    123   kernel_items = xnmalloc (count, sizeof *kernel_items);
    124 
    125   count = 0;
    126   for (i = 0; i < nsyms; i++)
    127     {
    128       kernel_base[i] = kernel_items + count;
    129       count += symbol_count[i];
    130     }
    131 
    132   free (symbol_count);
    133   kernel_size = xnmalloc (nsyms, sizeof *kernel_size);
    134 }
    135 
    136 
    137 static void
    138 allocate_storage (void)
    139 {
    140   allocate_itemsets ();
    141 
    142   shiftset = xnmalloc (nsyms, sizeof *shiftset);
    143   redset = xnmalloc (nrules, sizeof *redset);
    144   state_hash_new ();
    145   shift_symbol = xnmalloc (nsyms, sizeof *shift_symbol);
    146 }
    147 
    148 
    149 static void
    150 free_storage (void)
    151 {
    152   free (shift_symbol);
    153   free (redset);
    154   free (shiftset);
    155   free (kernel_base);
    156   free (kernel_size);
    157   free (kernel_items);
    158   state_hash_free ();
    159 }
    160 
    161 
    162 
    163 
    164 /*---------------------------------------------------------------.
    165 | Find which symbols can be shifted in S, and for each one       |
    166 | record which items would be active after that shift.  Uses the |
    167 | contents of itemset.                                           |
    168 |                                                                |
    169 | shift_symbol is set to a vector of the symbols that can be     |
    170 | shifted.  For each symbol in the grammar, kernel_base[symbol]  |
    171 | points to a vector of item numbers activated if that symbol is |
    172 | shifted, and kernel_size[symbol] is their numbers.             |
    173 `---------------------------------------------------------------*/
    174 
    175 static void
    176 new_itemsets (state *s)
    177 {
    178   size_t i;
    179 
    180   if (trace_flag & trace_automaton)
    181     fprintf (stderr, "Entering new_itemsets, state = %d\n", s->number);
    182 
    183   memset (kernel_size, 0, nsyms * sizeof *kernel_size);
    184 
    185   nshifts = 0;
    186 
    187   for (i = 0; i < nritemset; ++i)
    188     if (ritem[itemset[i]] >= 0)
    189       {
    190 	symbol_number sym = item_number_as_symbol_number (ritem[itemset[i]]);
    191 	if (!kernel_size[sym])
    192 	  {
    193 	    shift_symbol[nshifts] = sym;
    194 	    nshifts++;
    195 	  }
    196 
    197 	kernel_base[sym][kernel_size[sym]] = itemset[i] + 1;
    198 	kernel_size[sym]++;
    199       }
    200 }
    201 
    202 
    203 
    204 /*--------------------------------------------------------------.
    205 | Find the state we would get to (from the current state) by    |
    206 | shifting SYM.  Create a new state if no equivalent one exists |
    207 | already.  Used by append_states.                              |
    208 `--------------------------------------------------------------*/
    209 
    210 static state *
    211 get_state (symbol_number sym, size_t core_size, item_number *core)
    212 {
    213   state *s;
    214 
    215   if (trace_flag & trace_automaton)
    216     fprintf (stderr, "Entering get_state, symbol = %d (%s)\n",
    217 	     sym, symbols[sym]->tag);
    218 
    219   s = state_hash_lookup (core_size, core);
    220   if (!s)
    221     s = state_list_append (sym, core_size, core);
    222 
    223   if (trace_flag & trace_automaton)
    224     fprintf (stderr, "Exiting get_state => %d\n", s->number);
    225 
    226   return s;
    227 }
    228 
    229 /*---------------------------------------------------------------.
    230 | Use the information computed by new_itemsets to find the state |
    231 | numbers reached by each shift transition from S.		 |
    232 |                                                                |
    233 | SHIFTSET is set up as a vector of those states.                |
    234 `---------------------------------------------------------------*/
    235 
    236 static void
    237 append_states (state *s)
    238 {
    239   int i;
    240 
    241   if (trace_flag & trace_automaton)
    242     fprintf (stderr, "Entering append_states, state = %d\n", s->number);
    243 
    244   /* First sort shift_symbol into increasing order.  */
    245 
    246   for (i = 1; i < nshifts; i++)
    247     {
    248       symbol_number sym = shift_symbol[i];
    249       int j;
    250       for (j = i; 0 < j && sym < shift_symbol[j - 1]; j--)
    251 	shift_symbol[j] = shift_symbol[j - 1];
    252       shift_symbol[j] = sym;
    253     }
    254 
    255   for (i = 0; i < nshifts; i++)
    256     {
    257       symbol_number sym = shift_symbol[i];
    258       shiftset[i] = get_state (sym, kernel_size[sym], kernel_base[sym]);
    259     }
    260 }
    261 
    262 
    263 /*----------------------------------------------------------------.
    264 | Find which rules can be used for reduction transitions from the |
    265 | current state and make a reductions structure for the state to  |
    266 | record their rule numbers.                                      |
    267 `----------------------------------------------------------------*/
    268 
    269 static void
    270 save_reductions (state *s)
    271 {
    272   int count = 0;
    273   size_t i;
    274 
    275   /* Find and count the active items that represent ends of rules. */
    276   for (i = 0; i < nritemset; ++i)
    277     {
    278       item_number item = ritem[itemset[i]];
    279       if (item_number_is_rule_number (item))
    280 	{
    281 	  rule_number r = item_number_as_rule_number (item);
    282 	  redset[count++] = &rules[r];
    283 	  if (r == 0)
    284 	    {
    285 	      /* This is "reduce 0", i.e., accept. */
    286 	      assert (!final_state);
    287 	      final_state = s;
    288 	    }
    289 	}
    290     }
    291 
    292   /* Make a reductions structure and copy the data into it.  */
    293   state_reductions_set (s, count, redset);
    294 }
    295 
    296 
    297 /*---------------.
    299 | Build STATES.  |
    300 `---------------*/
    301 
    302 static void
    303 set_states (void)
    304 {
    305   states = xcalloc (nstates, sizeof *states);
    306 
    307   while (first_state)
    308     {
    309       state_list *this = first_state;
    310 
    311       /* Pessimization, but simplification of the code: make sure all
    312 	 the states have valid transitions and reductions members,
    313 	 even if reduced to 0.  It is too soon for errs, which are
    314 	 computed later, but set_conflicts.  */
    315       state *s = this->state;
    316       if (!s->transitions)
    317 	state_transitions_set (s, 0, 0);
    318       if (!s->reductions)
    319 	state_reductions_set (s, 0, 0);
    320 
    321       states[s->number] = s;
    322 
    323       first_state = this->next;
    324       free (this);
    325     }
    326   first_state = NULL;
    327   last_state = NULL;
    328 }
    329 
    330 
    331 /*-------------------------------------------------------------------.
    332 | Compute the nondeterministic finite state machine (see state.h for |
    333 | details) from the grammar.                                         |
    334 `-------------------------------------------------------------------*/
    335 
    336 void
    337 generate_states (void)
    338 {
    339   item_number initial_core = 0;
    340   state_list *list = NULL;
    341   allocate_storage ();
    342   new_closure (nritems);
    343 
    344   /* Create the initial state.  The 0 at the lhs is the index of the
    345      item of this initial rule.  */
    346   state_list_append (0, 1, &initial_core);
    347 
    348   /* States are queued when they are created; process them all.  */
    349   for (list = first_state; list; list = list->next)
    350     {
    351       state *s = list->state;
    352       if (trace_flag & trace_automaton)
    353 	fprintf (stderr, "Processing state %d (reached by %s)\n",
    354 		 s->number,
    355 		 symbols[s->accessing_symbol]->tag);
    356       /* Set up ruleset and itemset for the transitions out of this
    357          state.  ruleset gets a 1 bit for each rule that could reduce
    358          now.  itemset gets a vector of all the items that could be
    359          accepted next.  */
    360       closure (s->items, s->nitems);
    361       /* Record the reductions allowed out of this state.  */
    362       save_reductions (s);
    363       /* Find the itemsets of the states that shifts can reach.  */
    364       new_itemsets (s);
    365       /* Find or create the core structures for those states.  */
    366       append_states (s);
    367 
    368       /* Create the shifts structures for the shifts to those states,
    369 	 now that the state numbers transitioning to are known.  */
    370       state_transitions_set (s, nshifts, shiftset);
    371     }
    372 
    373   /* discard various storage */
    374   free_closure ();
    375   free_storage ();
    376 
    377   /* Set up STATES. */
    378   set_states ();
    379 }
    380