Home | History | Annotate | Download | only in sbc
      1 /*
      2  *
      3  *  Bluetooth low-complexity, subband codec (SBC) library
      4  *
      5  *  Copyright (C) 2004-2009  Marcel Holtmann <marcel (at) holtmann.org>
      6  *  Copyright (C) 2004-2005  Henryk Ploetz <henryk (at) ploetzli.ch>
      7  *  Copyright (C) 2005-2006  Brad Midgley <bmidgley (at) xmission.com>
      8  *
      9  *
     10  *  This library is free software; you can redistribute it and/or
     11  *  modify it under the terms of the GNU Lesser General Public
     12  *  License as published by the Free Software Foundation; either
     13  *  version 2.1 of the License, or (at your option) any later version.
     14  *
     15  *  This library is distributed in the hope that it will be useful,
     16  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
     17  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     18  *  Lesser General Public License for more details.
     19  *
     20  *  You should have received a copy of the GNU Lesser General Public
     21  *  License along with this library; if not, write to the Free Software
     22  *  Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
     23  *
     24  */
     25 
     26 #include <stdint.h>
     27 #include <limits.h>
     28 #include <string.h>
     29 #include "sbc.h"
     30 #include "sbc_math.h"
     31 #include "sbc_tables.h"
     32 
     33 #include "sbc_primitives.h"
     34 #include "sbc_primitives_mmx.h"
     35 #include "sbc_primitives_neon.h"
     36 
     37 /*
     38  * A reference C code of analysis filter with SIMD-friendly tables
     39  * reordering and code layout. This code can be used to develop platform
     40  * specific SIMD optimizations. Also it may be used as some kind of test
     41  * for compiler autovectorization capabilities (who knows, if the compiler
     42  * is very good at this stuff, hand optimized assembly may be not strictly
     43  * needed for some platform).
     44  *
     45  * Note: It is also possible to make a simple variant of analysis filter,
     46  * which needs only a single constants table without taking care about
     47  * even/odd cases. This simple variant of filter can be implemented without
     48  * input data permutation. The only thing that would be lost is the
     49  * possibility to use pairwise SIMD multiplications. But for some simple
     50  * CPU cores without SIMD extensions it can be useful. If anybody is
     51  * interested in implementing such variant of a filter, sourcecode from
     52  * bluez versions 4.26/4.27 can be used as a reference and the history of
     53  * the changes in git repository done around that time may be worth checking.
     54  */
     55 
     56 static inline void sbc_analyze_four_simd(const int16_t *in, int32_t *out,
     57 							const FIXED_T *consts)
     58 {
     59 	FIXED_A t1[4];
     60 	FIXED_T t2[4];
     61 	int hop = 0;
     62 
     63 	/* rounding coefficient */
     64 	t1[0] = t1[1] = t1[2] = t1[3] =
     65 		(FIXED_A) 1 << (SBC_PROTO_FIXED4_SCALE - 1);
     66 
     67 	/* low pass polyphase filter */
     68 	for (hop = 0; hop < 40; hop += 8) {
     69 		t1[0] += (FIXED_A) in[hop] * consts[hop];
     70 		t1[0] += (FIXED_A) in[hop + 1] * consts[hop + 1];
     71 		t1[1] += (FIXED_A) in[hop + 2] * consts[hop + 2];
     72 		t1[1] += (FIXED_A) in[hop + 3] * consts[hop + 3];
     73 		t1[2] += (FIXED_A) in[hop + 4] * consts[hop + 4];
     74 		t1[2] += (FIXED_A) in[hop + 5] * consts[hop + 5];
     75 		t1[3] += (FIXED_A) in[hop + 6] * consts[hop + 6];
     76 		t1[3] += (FIXED_A) in[hop + 7] * consts[hop + 7];
     77 	}
     78 
     79 	/* scaling */
     80 	t2[0] = t1[0] >> SBC_PROTO_FIXED4_SCALE;
     81 	t2[1] = t1[1] >> SBC_PROTO_FIXED4_SCALE;
     82 	t2[2] = t1[2] >> SBC_PROTO_FIXED4_SCALE;
     83 	t2[3] = t1[3] >> SBC_PROTO_FIXED4_SCALE;
     84 
     85 	/* do the cos transform */
     86 	t1[0]  = (FIXED_A) t2[0] * consts[40 + 0];
     87 	t1[0] += (FIXED_A) t2[1] * consts[40 + 1];
     88 	t1[1]  = (FIXED_A) t2[0] * consts[40 + 2];
     89 	t1[1] += (FIXED_A) t2[1] * consts[40 + 3];
     90 	t1[2]  = (FIXED_A) t2[0] * consts[40 + 4];
     91 	t1[2] += (FIXED_A) t2[1] * consts[40 + 5];
     92 	t1[3]  = (FIXED_A) t2[0] * consts[40 + 6];
     93 	t1[3] += (FIXED_A) t2[1] * consts[40 + 7];
     94 
     95 	t1[0] += (FIXED_A) t2[2] * consts[40 + 8];
     96 	t1[0] += (FIXED_A) t2[3] * consts[40 + 9];
     97 	t1[1] += (FIXED_A) t2[2] * consts[40 + 10];
     98 	t1[1] += (FIXED_A) t2[3] * consts[40 + 11];
     99 	t1[2] += (FIXED_A) t2[2] * consts[40 + 12];
    100 	t1[2] += (FIXED_A) t2[3] * consts[40 + 13];
    101 	t1[3] += (FIXED_A) t2[2] * consts[40 + 14];
    102 	t1[3] += (FIXED_A) t2[3] * consts[40 + 15];
    103 
    104 	out[0] = t1[0] >>
    105 		(SBC_COS_TABLE_FIXED4_SCALE - SCALE_OUT_BITS);
    106 	out[1] = t1[1] >>
    107 		(SBC_COS_TABLE_FIXED4_SCALE - SCALE_OUT_BITS);
    108 	out[2] = t1[2] >>
    109 		(SBC_COS_TABLE_FIXED4_SCALE - SCALE_OUT_BITS);
    110 	out[3] = t1[3] >>
    111 		(SBC_COS_TABLE_FIXED4_SCALE - SCALE_OUT_BITS);
    112 }
    113 
    114 static inline void sbc_analyze_eight_simd(const int16_t *in, int32_t *out,
    115 							const FIXED_T *consts)
    116 {
    117 	FIXED_A t1[8];
    118 	FIXED_T t2[8];
    119 	int i, hop;
    120 
    121 	/* rounding coefficient */
    122 	t1[0] = t1[1] = t1[2] = t1[3] = t1[4] = t1[5] = t1[6] = t1[7] =
    123 		(FIXED_A) 1 << (SBC_PROTO_FIXED8_SCALE-1);
    124 
    125 	/* low pass polyphase filter */
    126 	for (hop = 0; hop < 80; hop += 16) {
    127 		t1[0] += (FIXED_A) in[hop] * consts[hop];
    128 		t1[0] += (FIXED_A) in[hop + 1] * consts[hop + 1];
    129 		t1[1] += (FIXED_A) in[hop + 2] * consts[hop + 2];
    130 		t1[1] += (FIXED_A) in[hop + 3] * consts[hop + 3];
    131 		t1[2] += (FIXED_A) in[hop + 4] * consts[hop + 4];
    132 		t1[2] += (FIXED_A) in[hop + 5] * consts[hop + 5];
    133 		t1[3] += (FIXED_A) in[hop + 6] * consts[hop + 6];
    134 		t1[3] += (FIXED_A) in[hop + 7] * consts[hop + 7];
    135 		t1[4] += (FIXED_A) in[hop + 8] * consts[hop + 8];
    136 		t1[4] += (FIXED_A) in[hop + 9] * consts[hop + 9];
    137 		t1[5] += (FIXED_A) in[hop + 10] * consts[hop + 10];
    138 		t1[5] += (FIXED_A) in[hop + 11] * consts[hop + 11];
    139 		t1[6] += (FIXED_A) in[hop + 12] * consts[hop + 12];
    140 		t1[6] += (FIXED_A) in[hop + 13] * consts[hop + 13];
    141 		t1[7] += (FIXED_A) in[hop + 14] * consts[hop + 14];
    142 		t1[7] += (FIXED_A) in[hop + 15] * consts[hop + 15];
    143 	}
    144 
    145 	/* scaling */
    146 	t2[0] = t1[0] >> SBC_PROTO_FIXED8_SCALE;
    147 	t2[1] = t1[1] >> SBC_PROTO_FIXED8_SCALE;
    148 	t2[2] = t1[2] >> SBC_PROTO_FIXED8_SCALE;
    149 	t2[3] = t1[3] >> SBC_PROTO_FIXED8_SCALE;
    150 	t2[4] = t1[4] >> SBC_PROTO_FIXED8_SCALE;
    151 	t2[5] = t1[5] >> SBC_PROTO_FIXED8_SCALE;
    152 	t2[6] = t1[6] >> SBC_PROTO_FIXED8_SCALE;
    153 	t2[7] = t1[7] >> SBC_PROTO_FIXED8_SCALE;
    154 
    155 
    156 	/* do the cos transform */
    157 	t1[0] = t1[1] = t1[2] = t1[3] = t1[4] = t1[5] = t1[6] = t1[7] = 0;
    158 
    159 	for (i = 0; i < 4; i++) {
    160 		t1[0] += (FIXED_A) t2[i * 2 + 0] * consts[80 + i * 16 + 0];
    161 		t1[0] += (FIXED_A) t2[i * 2 + 1] * consts[80 + i * 16 + 1];
    162 		t1[1] += (FIXED_A) t2[i * 2 + 0] * consts[80 + i * 16 + 2];
    163 		t1[1] += (FIXED_A) t2[i * 2 + 1] * consts[80 + i * 16 + 3];
    164 		t1[2] += (FIXED_A) t2[i * 2 + 0] * consts[80 + i * 16 + 4];
    165 		t1[2] += (FIXED_A) t2[i * 2 + 1] * consts[80 + i * 16 + 5];
    166 		t1[3] += (FIXED_A) t2[i * 2 + 0] * consts[80 + i * 16 + 6];
    167 		t1[3] += (FIXED_A) t2[i * 2 + 1] * consts[80 + i * 16 + 7];
    168 		t1[4] += (FIXED_A) t2[i * 2 + 0] * consts[80 + i * 16 + 8];
    169 		t1[4] += (FIXED_A) t2[i * 2 + 1] * consts[80 + i * 16 + 9];
    170 		t1[5] += (FIXED_A) t2[i * 2 + 0] * consts[80 + i * 16 + 10];
    171 		t1[5] += (FIXED_A) t2[i * 2 + 1] * consts[80 + i * 16 + 11];
    172 		t1[6] += (FIXED_A) t2[i * 2 + 0] * consts[80 + i * 16 + 12];
    173 		t1[6] += (FIXED_A) t2[i * 2 + 1] * consts[80 + i * 16 + 13];
    174 		t1[7] += (FIXED_A) t2[i * 2 + 0] * consts[80 + i * 16 + 14];
    175 		t1[7] += (FIXED_A) t2[i * 2 + 1] * consts[80 + i * 16 + 15];
    176 	}
    177 
    178 	for (i = 0; i < 8; i++)
    179 		out[i] = t1[i] >>
    180 			(SBC_COS_TABLE_FIXED8_SCALE - SCALE_OUT_BITS);
    181 }
    182 
    183 static inline void sbc_analyze_4b_4s_simd(int16_t *x,
    184 						int32_t *out, int out_stride)
    185 {
    186 	/* Analyze blocks */
    187 	sbc_analyze_four_simd(x + 12, out, analysis_consts_fixed4_simd_odd);
    188 	out += out_stride;
    189 	sbc_analyze_four_simd(x + 8, out, analysis_consts_fixed4_simd_even);
    190 	out += out_stride;
    191 	sbc_analyze_four_simd(x + 4, out, analysis_consts_fixed4_simd_odd);
    192 	out += out_stride;
    193 	sbc_analyze_four_simd(x + 0, out, analysis_consts_fixed4_simd_even);
    194 }
    195 
    196 static inline void sbc_analyze_4b_8s_simd(int16_t *x,
    197 					  int32_t *out, int out_stride)
    198 {
    199 	/* Analyze blocks */
    200 	sbc_analyze_eight_simd(x + 24, out, analysis_consts_fixed8_simd_odd);
    201 	out += out_stride;
    202 	sbc_analyze_eight_simd(x + 16, out, analysis_consts_fixed8_simd_even);
    203 	out += out_stride;
    204 	sbc_analyze_eight_simd(x + 8, out, analysis_consts_fixed8_simd_odd);
    205 	out += out_stride;
    206 	sbc_analyze_eight_simd(x + 0, out, analysis_consts_fixed8_simd_even);
    207 }
    208 
    209 static inline int16_t unaligned16_be(const uint8_t *ptr)
    210 {
    211 	return (int16_t) ((ptr[0] << 8) | ptr[1]);
    212 }
    213 
    214 static inline int16_t unaligned16_le(const uint8_t *ptr)
    215 {
    216 	return (int16_t) (ptr[0] | (ptr[1] << 8));
    217 }
    218 
    219 /*
    220  * Internal helper functions for input data processing. In order to get
    221  * optimal performance, it is important to have "nsamples", "nchannels"
    222  * and "big_endian" arguments used with this inline function as compile
    223  * time constants.
    224  */
    225 
    226 static SBC_ALWAYS_INLINE int sbc_encoder_process_input_s4_internal(
    227 	int position,
    228 	const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE],
    229 	int nsamples, int nchannels, int big_endian)
    230 {
    231 	/* handle X buffer wraparound */
    232 	if (position < nsamples) {
    233 		if (nchannels > 0)
    234 			memcpy(&X[0][SBC_X_BUFFER_SIZE - 40], &X[0][position],
    235 							36 * sizeof(int16_t));
    236 		if (nchannels > 1)
    237 			memcpy(&X[1][SBC_X_BUFFER_SIZE - 40], &X[1][position],
    238 							36 * sizeof(int16_t));
    239 		position = SBC_X_BUFFER_SIZE - 40;
    240 	}
    241 
    242 	#define PCM(i) (big_endian ? \
    243 		unaligned16_be(pcm + (i) * 2) : unaligned16_le(pcm + (i) * 2))
    244 
    245 	/* copy/permutate audio samples */
    246 	while ((nsamples -= 8) >= 0) {
    247 		position -= 8;
    248 		if (nchannels > 0) {
    249 			int16_t *x = &X[0][position];
    250 			x[0]  = PCM(0 + 7 * nchannels);
    251 			x[1]  = PCM(0 + 3 * nchannels);
    252 			x[2]  = PCM(0 + 6 * nchannels);
    253 			x[3]  = PCM(0 + 4 * nchannels);
    254 			x[4]  = PCM(0 + 0 * nchannels);
    255 			x[5]  = PCM(0 + 2 * nchannels);
    256 			x[6]  = PCM(0 + 1 * nchannels);
    257 			x[7]  = PCM(0 + 5 * nchannels);
    258 		}
    259 		if (nchannels > 1) {
    260 			int16_t *x = &X[1][position];
    261 			x[0]  = PCM(1 + 7 * nchannels);
    262 			x[1]  = PCM(1 + 3 * nchannels);
    263 			x[2]  = PCM(1 + 6 * nchannels);
    264 			x[3]  = PCM(1 + 4 * nchannels);
    265 			x[4]  = PCM(1 + 0 * nchannels);
    266 			x[5]  = PCM(1 + 2 * nchannels);
    267 			x[6]  = PCM(1 + 1 * nchannels);
    268 			x[7]  = PCM(1 + 5 * nchannels);
    269 		}
    270 		pcm += 16 * nchannels;
    271 	}
    272 	#undef PCM
    273 
    274 	return position;
    275 }
    276 
    277 static SBC_ALWAYS_INLINE int sbc_encoder_process_input_s8_internal(
    278 	int position,
    279 	const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE],
    280 	int nsamples, int nchannels, int big_endian)
    281 {
    282 	/* handle X buffer wraparound */
    283 	if (position < nsamples) {
    284 		if (nchannels > 0)
    285 			memcpy(&X[0][SBC_X_BUFFER_SIZE - 72], &X[0][position],
    286 							72 * sizeof(int16_t));
    287 		if (nchannels > 1)
    288 			memcpy(&X[1][SBC_X_BUFFER_SIZE - 72], &X[1][position],
    289 							72 * sizeof(int16_t));
    290 		position = SBC_X_BUFFER_SIZE - 72;
    291 	}
    292 
    293 	#define PCM(i) (big_endian ? \
    294 		unaligned16_be(pcm + (i) * 2) : unaligned16_le(pcm + (i) * 2))
    295 
    296 	/* copy/permutate audio samples */
    297 	while ((nsamples -= 16) >= 0) {
    298 		position -= 16;
    299 		if (nchannels > 0) {
    300 			int16_t *x = &X[0][position];
    301 			x[0]  = PCM(0 + 15 * nchannels);
    302 			x[1]  = PCM(0 + 7 * nchannels);
    303 			x[2]  = PCM(0 + 14 * nchannels);
    304 			x[3]  = PCM(0 + 8 * nchannels);
    305 			x[4]  = PCM(0 + 13 * nchannels);
    306 			x[5]  = PCM(0 + 9 * nchannels);
    307 			x[6]  = PCM(0 + 12 * nchannels);
    308 			x[7]  = PCM(0 + 10 * nchannels);
    309 			x[8]  = PCM(0 + 11 * nchannels);
    310 			x[9]  = PCM(0 + 3 * nchannels);
    311 			x[10] = PCM(0 + 6 * nchannels);
    312 			x[11] = PCM(0 + 0 * nchannels);
    313 			x[12] = PCM(0 + 5 * nchannels);
    314 			x[13] = PCM(0 + 1 * nchannels);
    315 			x[14] = PCM(0 + 4 * nchannels);
    316 			x[15] = PCM(0 + 2 * nchannels);
    317 		}
    318 		if (nchannels > 1) {
    319 			int16_t *x = &X[1][position];
    320 			x[0]  = PCM(1 + 15 * nchannels);
    321 			x[1]  = PCM(1 + 7 * nchannels);
    322 			x[2]  = PCM(1 + 14 * nchannels);
    323 			x[3]  = PCM(1 + 8 * nchannels);
    324 			x[4]  = PCM(1 + 13 * nchannels);
    325 			x[5]  = PCM(1 + 9 * nchannels);
    326 			x[6]  = PCM(1 + 12 * nchannels);
    327 			x[7]  = PCM(1 + 10 * nchannels);
    328 			x[8]  = PCM(1 + 11 * nchannels);
    329 			x[9]  = PCM(1 + 3 * nchannels);
    330 			x[10] = PCM(1 + 6 * nchannels);
    331 			x[11] = PCM(1 + 0 * nchannels);
    332 			x[12] = PCM(1 + 5 * nchannels);
    333 			x[13] = PCM(1 + 1 * nchannels);
    334 			x[14] = PCM(1 + 4 * nchannels);
    335 			x[15] = PCM(1 + 2 * nchannels);
    336 		}
    337 		pcm += 32 * nchannels;
    338 	}
    339 	#undef PCM
    340 
    341 	return position;
    342 }
    343 
    344 /*
    345  * Input data processing functions. The data is endian converted if needed,
    346  * channels are deintrleaved and audio samples are reordered for use in
    347  * SIMD-friendly analysis filter function. The results are put into "X"
    348  * array, getting appended to the previous data (or it is better to say
    349  * prepended, as the buffer is filled from top to bottom). Old data is
    350  * discarded when neededed, but availability of (10 * nrof_subbands)
    351  * contiguous samples is always guaranteed for the input to the analysis
    352  * filter. This is achieved by copying a sufficient part of old data
    353  * to the top of the buffer on buffer wraparound.
    354  */
    355 
    356 static int sbc_enc_process_input_4s_le(int position,
    357 		const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE],
    358 		int nsamples, int nchannels)
    359 {
    360 	if (nchannels > 1)
    361 		return sbc_encoder_process_input_s4_internal(
    362 			position, pcm, X, nsamples, 2, 0);
    363 	else
    364 		return sbc_encoder_process_input_s4_internal(
    365 			position, pcm, X, nsamples, 1, 0);
    366 }
    367 
    368 static int sbc_enc_process_input_4s_be(int position,
    369 		const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE],
    370 		int nsamples, int nchannels)
    371 {
    372 	if (nchannels > 1)
    373 		return sbc_encoder_process_input_s4_internal(
    374 			position, pcm, X, nsamples, 2, 1);
    375 	else
    376 		return sbc_encoder_process_input_s4_internal(
    377 			position, pcm, X, nsamples, 1, 1);
    378 }
    379 
    380 static int sbc_enc_process_input_8s_le(int position,
    381 		const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE],
    382 		int nsamples, int nchannels)
    383 {
    384 	if (nchannels > 1)
    385 		return sbc_encoder_process_input_s8_internal(
    386 			position, pcm, X, nsamples, 2, 0);
    387 	else
    388 		return sbc_encoder_process_input_s8_internal(
    389 			position, pcm, X, nsamples, 1, 0);
    390 }
    391 
    392 static int sbc_enc_process_input_8s_be(int position,
    393 		const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE],
    394 		int nsamples, int nchannels)
    395 {
    396 	if (nchannels > 1)
    397 		return sbc_encoder_process_input_s8_internal(
    398 			position, pcm, X, nsamples, 2, 1);
    399 	else
    400 		return sbc_encoder_process_input_s8_internal(
    401 			position, pcm, X, nsamples, 1, 1);
    402 }
    403 
    404 /* Supplementary function to count the number of leading zeros */
    405 
    406 static inline int sbc_clz(uint32_t x)
    407 {
    408 #ifdef __GNUC__
    409 	return __builtin_clz(x);
    410 #else
    411 	/* TODO: this should be replaced with something better if good
    412 	 * performance is wanted when using compilers other than gcc */
    413 	int cnt = 0;
    414 	while (x) {
    415 		cnt++;
    416 		x >>= 1;
    417 	}
    418 	return 32 - cnt;
    419 #endif
    420 }
    421 
    422 static void sbc_calc_scalefactors(
    423 	int32_t sb_sample_f[16][2][8],
    424 	uint32_t scale_factor[2][8],
    425 	int blocks, int channels, int subbands)
    426 {
    427 	int ch, sb, blk;
    428 	for (ch = 0; ch < channels; ch++) {
    429 		for (sb = 0; sb < subbands; sb++) {
    430 			uint32_t x = 1 << SCALE_OUT_BITS;
    431 			for (blk = 0; blk < blocks; blk++) {
    432 				int32_t tmp = fabs(sb_sample_f[blk][ch][sb]);
    433 				if (tmp != 0)
    434 					x |= tmp - 1;
    435 			}
    436 			scale_factor[ch][sb] = (31 - SCALE_OUT_BITS) -
    437 				sbc_clz(x);
    438 		}
    439 	}
    440 }
    441 
    442 /*
    443  * Detect CPU features and setup function pointers
    444  */
    445 void sbc_init_primitives(struct sbc_encoder_state *state)
    446 {
    447 	/* Default implementation for analyze functions */
    448 	state->sbc_analyze_4b_4s = sbc_analyze_4b_4s_simd;
    449 	state->sbc_analyze_4b_8s = sbc_analyze_4b_8s_simd;
    450 
    451 	/* Default implementation for input reordering / deinterleaving */
    452 	state->sbc_enc_process_input_4s_le = sbc_enc_process_input_4s_le;
    453 	state->sbc_enc_process_input_4s_be = sbc_enc_process_input_4s_be;
    454 	state->sbc_enc_process_input_8s_le = sbc_enc_process_input_8s_le;
    455 	state->sbc_enc_process_input_8s_be = sbc_enc_process_input_8s_be;
    456 
    457 	/* Default implementation for scale factors calculation */
    458 	state->sbc_calc_scalefactors = sbc_calc_scalefactors;
    459 	state->implementation_info = "Generic C";
    460 
    461 	/* X86/AMD64 optimizations */
    462 #ifdef SBC_BUILD_WITH_MMX_SUPPORT
    463 	sbc_init_primitives_mmx(state);
    464 #endif
    465 
    466 	/* ARM optimizations */
    467 #ifdef SBC_BUILD_WITH_NEON_SUPPORT
    468 	sbc_init_primitives_neon(state);
    469 #endif
    470 }
    471