Home | History | Annotate | Download | only in common
      1 /*
      2  *****************************************************************************
      3  * Copyright (C) 1996-2006, International Business Machines Corporation and  *
      4  * others. All Rights Reserved.                                              *
      5  *****************************************************************************
      6  */
      7 
      8 #include "unicode/utypes.h"
      9 
     10 #if !UCONFIG_NO_NORMALIZATION
     11 
     12 #include "unicode/uset.h"
     13 #include "unicode/ustring.h"
     14 #include "hash.h"
     15 #include "unormimp.h"
     16 #include "unicode/caniter.h"
     17 #include "unicode/normlzr.h"
     18 #include "unicode/uchar.h"
     19 #include "cmemory.h"
     20 
     21 /**
     22  * This class allows one to iterate through all the strings that are canonically equivalent to a given
     23  * string. For example, here are some sample results:
     24 Results for: {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA}
     25 1: \u0041\u030A\u0064\u0307\u0327
     26  = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA}
     27 2: \u0041\u030A\u0064\u0327\u0307
     28  = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE}
     29 3: \u0041\u030A\u1E0B\u0327
     30  = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA}
     31 4: \u0041\u030A\u1E11\u0307
     32  = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE}
     33 5: \u00C5\u0064\u0307\u0327
     34  = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA}
     35 6: \u00C5\u0064\u0327\u0307
     36  = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE}
     37 7: \u00C5\u1E0B\u0327
     38  = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA}
     39 8: \u00C5\u1E11\u0307
     40  = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE}
     41 9: \u212B\u0064\u0307\u0327
     42  = {ANGSTROM SIGN}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA}
     43 10: \u212B\u0064\u0327\u0307
     44  = {ANGSTROM SIGN}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE}
     45 11: \u212B\u1E0B\u0327
     46  = {ANGSTROM SIGN}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA}
     47 12: \u212B\u1E11\u0307
     48  = {ANGSTROM SIGN}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE}
     49  *<br>Note: the code is intended for use with small strings, and is not suitable for larger ones,
     50  * since it has not been optimized for that situation.
     51  *@author M. Davis
     52  *@draft
     53  */
     54 
     55 // public
     56 
     57 U_NAMESPACE_BEGIN
     58 
     59 // TODO: add boilerplate methods.
     60 
     61 UOBJECT_DEFINE_RTTI_IMPLEMENTATION(CanonicalIterator)
     62 
     63 /**
     64  *@param source string to get results for
     65  */
     66 CanonicalIterator::CanonicalIterator(const UnicodeString &sourceStr, UErrorCode &status) :
     67     pieces(NULL),
     68     pieces_length(0),
     69     pieces_lengths(NULL),
     70     current(NULL),
     71     current_length(0)
     72 {
     73     if(U_SUCCESS(status)) {
     74       setSource(sourceStr, status);
     75     }
     76 }
     77 
     78 CanonicalIterator::~CanonicalIterator() {
     79   cleanPieces();
     80 }
     81 
     82 void CanonicalIterator::cleanPieces() {
     83     int32_t i = 0;
     84     if(pieces != NULL) {
     85         for(i = 0; i < pieces_length; i++) {
     86             if(pieces[i] != NULL) {
     87                 delete[] pieces[i];
     88             }
     89         }
     90         uprv_free(pieces);
     91         pieces = NULL;
     92         pieces_length = 0;
     93     }
     94     if(pieces_lengths != NULL) {
     95         uprv_free(pieces_lengths);
     96         pieces_lengths = NULL;
     97     }
     98     if(current != NULL) {
     99         uprv_free(current);
    100         current = NULL;
    101         current_length = 0;
    102     }
    103 }
    104 
    105 /**
    106  *@return gets the source: NOTE: it is the NFD form of source
    107  */
    108 UnicodeString CanonicalIterator::getSource() {
    109   return source;
    110 }
    111 
    112 /**
    113  * Resets the iterator so that one can start again from the beginning.
    114  */
    115 void CanonicalIterator::reset() {
    116     done = FALSE;
    117     for (int i = 0; i < current_length; ++i) {
    118         current[i] = 0;
    119     }
    120 }
    121 
    122 /**
    123  *@return the next string that is canonically equivalent. The value null is returned when
    124  * the iteration is done.
    125  */
    126 UnicodeString CanonicalIterator::next() {
    127     int32_t i = 0;
    128 
    129     if (done) {
    130       buffer.setToBogus();
    131       return buffer;
    132     }
    133 
    134     // delete old contents
    135     buffer.remove();
    136 
    137     // construct return value
    138 
    139     for (i = 0; i < pieces_length; ++i) {
    140         buffer.append(pieces[i][current[i]]);
    141     }
    142     //String result = buffer.toString(); // not needed
    143 
    144     // find next value for next time
    145 
    146     for (i = current_length - 1; ; --i) {
    147         if (i < 0) {
    148             done = TRUE;
    149             break;
    150         }
    151         current[i]++;
    152         if (current[i] < pieces_lengths[i]) break; // got sequence
    153         current[i] = 0;
    154     }
    155     return buffer;
    156 }
    157 
    158 /**
    159  *@param set the source string to iterate against. This allows the same iterator to be used
    160  * while changing the source string, saving object creation.
    161  */
    162 void CanonicalIterator::setSource(const UnicodeString &newSource, UErrorCode &status) {
    163     int32_t list_length = 0;
    164     UChar32 cp = 0;
    165     int32_t start = 0;
    166     int32_t i = 0;
    167     UnicodeString *list = NULL;
    168 
    169     Normalizer::normalize(newSource, UNORM_NFD, 0, source, status);
    170     if(U_FAILURE(status)) {
    171       return;
    172     }
    173     done = FALSE;
    174 
    175     cleanPieces();
    176 
    177     // catch degenerate case
    178     if (newSource.length() == 0) {
    179         pieces = (UnicodeString **)uprv_malloc(sizeof(UnicodeString *));
    180         pieces_lengths = (int32_t*)uprv_malloc(1 * sizeof(int32_t));
    181         pieces_length = 1;
    182         current = (int32_t*)uprv_malloc(1 * sizeof(int32_t));
    183         current_length = 1;
    184         if (pieces == NULL || pieces_lengths == NULL || current == NULL) {
    185             status = U_MEMORY_ALLOCATION_ERROR;
    186             goto CleanPartialInitialization;
    187         }
    188         current[0] = 0;
    189         pieces[0] = new UnicodeString[1];
    190         pieces_lengths[0] = 1;
    191         if (pieces[0] == 0) {
    192             status = U_MEMORY_ALLOCATION_ERROR;
    193             goto CleanPartialInitialization;
    194         }
    195         return;
    196     }
    197 
    198 
    199     list = new UnicodeString[source.length()];
    200     if (list == 0) {
    201         status = U_MEMORY_ALLOCATION_ERROR;
    202         goto CleanPartialInitialization;
    203     }
    204 
    205     // i should initialy be the number of code units at the
    206     // start of the string
    207     i = UTF16_CHAR_LENGTH(source.char32At(0));
    208     //int32_t i = 1;
    209     // find the segments
    210     // This code iterates through the source string and
    211     // extracts segments that end up on a codepoint that
    212     // doesn't start any decompositions. (Analysis is done
    213     // on the NFD form - see above).
    214     for (; i < source.length(); i += UTF16_CHAR_LENGTH(cp)) {
    215         cp = source.char32At(i);
    216         if (unorm_isCanonSafeStart(cp)) {
    217             source.extract(start, i-start, list[list_length++]); // add up to i
    218             start = i;
    219         }
    220     }
    221     source.extract(start, i-start, list[list_length++]); // add last one
    222 
    223 
    224     // allocate the arrays, and find the strings that are CE to each segment
    225     pieces = (UnicodeString **)uprv_malloc(list_length * sizeof(UnicodeString *));
    226     pieces_length = list_length;
    227     pieces_lengths = (int32_t*)uprv_malloc(list_length * sizeof(int32_t));
    228     current = (int32_t*)uprv_malloc(list_length * sizeof(int32_t));
    229     current_length = list_length;
    230     if (pieces == NULL || pieces_lengths == NULL || current == NULL) {
    231         status = U_MEMORY_ALLOCATION_ERROR;
    232         goto CleanPartialInitialization;
    233     }
    234 
    235     for (i = 0; i < current_length; i++) {
    236         current[i] = 0;
    237     }
    238     // for each segment, get all the combinations that can produce
    239     // it after NFD normalization
    240     for (i = 0; i < pieces_length; ++i) {
    241         //if (PROGRESS) printf("SEGMENT\n");
    242         pieces[i] = getEquivalents(list[i], pieces_lengths[i], status);
    243     }
    244 
    245     delete[] list;
    246     return;
    247 // Common section to cleanup all local variables and reset object variables.
    248 CleanPartialInitialization:
    249     if (list != NULL) {
    250         delete[] list;
    251     }
    252     cleanPieces();
    253 }
    254 
    255 /**
    256  * Dumb recursive implementation of permutation.
    257  * TODO: optimize
    258  * @param source the string to find permutations for
    259  * @return the results in a set.
    260  */
    261 void U_EXPORT2 CanonicalIterator::permute(UnicodeString &source, UBool skipZeros, Hashtable *result, UErrorCode &status) {
    262     if(U_FAILURE(status)) {
    263         return;
    264     }
    265     //if (PROGRESS) printf("Permute: %s\n", UToS(Tr(source)));
    266     int32_t i = 0;
    267 
    268     // optimization:
    269     // if zero or one character, just return a set with it
    270     // we check for length < 2 to keep from counting code points all the time
    271     if (source.length() <= 2 && source.countChar32() <= 1) {
    272         UnicodeString *toPut = new UnicodeString(source);
    273         /* test for NULL */
    274         if (toPut == 0) {
    275             status = U_MEMORY_ALLOCATION_ERROR;
    276             return;
    277         }
    278         result->put(source, toPut, status);
    279         return;
    280     }
    281 
    282     // otherwise iterate through the string, and recursively permute all the other characters
    283     UChar32 cp;
    284     Hashtable subpermute(status);
    285     if(U_FAILURE(status)) {
    286         return;
    287     }
    288     subpermute.setValueDeleter(uhash_deleteUnicodeString);
    289 
    290     for (i = 0; i < source.length(); i += UTF16_CHAR_LENGTH(cp)) {
    291         cp = source.char32At(i);
    292         const UHashElement *ne = NULL;
    293         int32_t el = -1;
    294         UnicodeString subPermuteString = source;
    295 
    296         // optimization:
    297         // if the character is canonical combining class zero,
    298         // don't permute it
    299         if (skipZeros && i != 0 && u_getCombiningClass(cp) == 0) {
    300             //System.out.println("Skipping " + Utility.hex(UTF16.valueOf(source, i)));
    301             continue;
    302         }
    303 
    304         subpermute.removeAll();
    305 
    306         // see what the permutations of the characters before and after this one are
    307         //Hashtable *subpermute = permute(source.substring(0,i) + source.substring(i + UTF16.getCharCount(cp)));
    308         permute(subPermuteString.replace(i, UTF16_CHAR_LENGTH(cp), NULL, 0), skipZeros, &subpermute, status);
    309         /* Test for buffer overflows */
    310         if(U_FAILURE(status)) {
    311             return;
    312         }
    313         // The upper replace is destructive. The question is do we have to make a copy, or we don't care about the contents
    314         // of source at this point.
    315 
    316         // prefix this character to all of them
    317         ne = subpermute.nextElement(el);
    318         while (ne != NULL) {
    319             UnicodeString *permRes = (UnicodeString *)(ne->value.pointer);
    320             UnicodeString *chStr = new UnicodeString(cp);
    321             //test for  NULL
    322             if (chStr == NULL) {
    323                 status = U_MEMORY_ALLOCATION_ERROR;
    324                 return;
    325             }
    326             chStr->append(*permRes); //*((UnicodeString *)(ne->value.pointer));
    327             //if (PROGRESS) printf("  Piece: %s\n", UToS(*chStr));
    328             result->put(*chStr, chStr, status);
    329             ne = subpermute.nextElement(el);
    330         }
    331     }
    332     //return result;
    333 }
    334 
    335 // privates
    336 
    337 // we have a segment, in NFD. Find all the strings that are canonically equivalent to it.
    338 UnicodeString* CanonicalIterator::getEquivalents(const UnicodeString &segment, int32_t &result_len, UErrorCode &status) {
    339     Hashtable result(status);
    340     Hashtable permutations(status);
    341     Hashtable basic(status);
    342     if (U_FAILURE(status)) {
    343         return 0;
    344     }
    345     result.setValueDeleter(uhash_deleteUnicodeString);
    346     permutations.setValueDeleter(uhash_deleteUnicodeString);
    347     basic.setValueDeleter(uhash_deleteUnicodeString);
    348 
    349     UChar USeg[256];
    350     int32_t segLen = segment.extract(USeg, 256, status);
    351     getEquivalents2(&basic, USeg, segLen, status);
    352 
    353     // now get all the permutations
    354     // add only the ones that are canonically equivalent
    355     // TODO: optimize by not permuting any class zero.
    356 
    357     const UHashElement *ne = NULL;
    358     int32_t el = -1;
    359     //Iterator it = basic.iterator();
    360     ne = basic.nextElement(el);
    361     //while (it.hasNext())
    362     while (ne != NULL) {
    363         //String item = (String) it.next();
    364         UnicodeString item = *((UnicodeString *)(ne->value.pointer));
    365 
    366         permutations.removeAll();
    367         permute(item, CANITER_SKIP_ZEROES, &permutations, status);
    368         const UHashElement *ne2 = NULL;
    369         int32_t el2 = -1;
    370         //Iterator it2 = permutations.iterator();
    371         ne2 = permutations.nextElement(el2);
    372         //while (it2.hasNext())
    373         while (ne2 != NULL) {
    374             //String possible = (String) it2.next();
    375             //UnicodeString *possible = new UnicodeString(*((UnicodeString *)(ne2->value.pointer)));
    376             UnicodeString possible(*((UnicodeString *)(ne2->value.pointer)));
    377             UnicodeString attempt;
    378             Normalizer::normalize(possible, UNORM_NFD, 0, attempt, status);
    379 
    380             // TODO: check if operator == is semanticaly the same as attempt.equals(segment)
    381             if (attempt==segment) {
    382                 //if (PROGRESS) printf("Adding Permutation: %s\n", UToS(Tr(*possible)));
    383                 // TODO: use the hashtable just to catch duplicates - store strings directly (somehow).
    384                 result.put(possible, new UnicodeString(possible), status); //add(possible);
    385             } else {
    386                 //if (PROGRESS) printf("-Skipping Permutation: %s\n", UToS(Tr(*possible)));
    387             }
    388 
    389             ne2 = permutations.nextElement(el2);
    390         }
    391         ne = basic.nextElement(el);
    392     }
    393 
    394     /* Test for buffer overflows */
    395     if(U_FAILURE(status)) {
    396         return 0;
    397     }
    398     // convert into a String[] to clean up storage
    399     //String[] finalResult = new String[result.size()];
    400     UnicodeString *finalResult = NULL;
    401     int32_t resultCount;
    402     if((resultCount = result.count())) {
    403         finalResult = new UnicodeString[resultCount];
    404         if (finalResult == 0) {
    405             status = U_MEMORY_ALLOCATION_ERROR;
    406             return NULL;
    407         }
    408     }
    409     else {
    410         status = U_ILLEGAL_ARGUMENT_ERROR;
    411         return NULL;
    412     }
    413     //result.toArray(finalResult);
    414     result_len = 0;
    415     el = -1;
    416     ne = result.nextElement(el);
    417     while(ne != NULL) {
    418         finalResult[result_len++] = *((UnicodeString *)(ne->value.pointer));
    419         ne = result.nextElement(el);
    420     }
    421 
    422 
    423     return finalResult;
    424 }
    425 
    426 Hashtable *CanonicalIterator::getEquivalents2(Hashtable *fillinResult, const UChar *segment, int32_t segLen, UErrorCode &status) {
    427 
    428     if (U_FAILURE(status)) {
    429         return NULL;
    430     }
    431 
    432     //if (PROGRESS) printf("Adding: %s\n", UToS(Tr(segment)));
    433 
    434     UnicodeString toPut(segment, segLen);
    435 
    436     fillinResult->put(toPut, new UnicodeString(toPut), status);
    437 
    438     USerializedSet starts;
    439 
    440     // cycle through all the characters
    441     UChar32 cp, end = 0;
    442     int32_t i = 0, j;
    443     for (i = 0; i < segLen; i += UTF16_CHAR_LENGTH(cp)) {
    444         // see if any character is at the start of some decomposition
    445         UTF_GET_CHAR(segment, 0, i, segLen, cp);
    446         if (!unorm_getCanonStartSet(cp, &starts)) {
    447             continue;
    448         }
    449         // if so, see which decompositions match
    450         for(j = 0, cp = end+1; cp <= end || uset_getSerializedRange(&starts, j++, &cp, &end); ++cp) {
    451             Hashtable remainder(status);
    452             remainder.setValueDeleter(uhash_deleteUnicodeString);
    453             if (extract(&remainder, cp, segment, segLen, i, status) == NULL) {
    454                 continue;
    455             }
    456 
    457             // there were some matches, so add all the possibilities to the set.
    458             UnicodeString prefix(segment, i);
    459             prefix += cp;
    460 
    461             int32_t el = -1;
    462             const UHashElement *ne = remainder.nextElement(el);
    463             while (ne != NULL) {
    464                 UnicodeString item = *((UnicodeString *)(ne->value.pointer));
    465                 UnicodeString *toAdd = new UnicodeString(prefix);
    466                 /* test for NULL */
    467                 if (toAdd == 0) {
    468                     status = U_MEMORY_ALLOCATION_ERROR;
    469                     return NULL;
    470                 }
    471                 *toAdd += item;
    472                 fillinResult->put(*toAdd, toAdd, status);
    473 
    474                 //if (PROGRESS) printf("Adding: %s\n", UToS(Tr(*toAdd)));
    475 
    476                 ne = remainder.nextElement(el);
    477             }
    478         }
    479     }
    480 
    481     /* Test for buffer overflows */
    482     if(U_FAILURE(status)) {
    483         return NULL;
    484     }
    485     return fillinResult;
    486 }
    487 
    488 /**
    489  * See if the decomposition of cp2 is at segment starting at segmentPos
    490  * (with canonical rearrangment!)
    491  * If so, take the remainder, and return the equivalents
    492  */
    493 Hashtable *CanonicalIterator::extract(Hashtable *fillinResult, UChar32 comp, const UChar *segment, int32_t segLen, int32_t segmentPos, UErrorCode &status) {
    494 //Hashtable *CanonicalIterator::extract(UChar32 comp, const UnicodeString &segment, int32_t segLen, int32_t segmentPos, UErrorCode &status) {
    495     //if (PROGRESS) printf(" extract: %s, ", UToS(Tr(UnicodeString(comp))));
    496     //if (PROGRESS) printf("%s, %i\n", UToS(Tr(segment)), segmentPos);
    497 
    498     if (U_FAILURE(status)) {
    499         return NULL;
    500     }
    501 
    502     const int32_t bufSize = 256;
    503     int32_t bufLen = 0;
    504     UChar temp[bufSize];
    505 
    506     int32_t inputLen = 0, decompLen;
    507     UChar stackBuffer[4];
    508     const UChar *decomp;
    509 
    510     U16_APPEND_UNSAFE(temp, inputLen, comp);
    511     decomp = unorm_getCanonicalDecomposition(comp, stackBuffer, &decompLen);
    512     if(decomp == NULL) {
    513         /* copy temp */
    514         stackBuffer[0] = temp[0];
    515         if(inputLen > 1) {
    516             stackBuffer[1] = temp[1];
    517         }
    518         decomp = stackBuffer;
    519         decompLen = inputLen;
    520     }
    521 
    522     UChar *buff = temp+inputLen;
    523 
    524     // See if it matches the start of segment (at segmentPos)
    525     UBool ok = FALSE;
    526     UChar32 cp;
    527     int32_t decompPos = 0;
    528     UChar32 decompCp;
    529     UTF_NEXT_CHAR(decomp, decompPos, decompLen, decompCp);
    530 
    531     int32_t i;
    532     UBool overflow = FALSE;
    533 
    534     i = segmentPos;
    535     while(i < segLen) {
    536         UTF_NEXT_CHAR(segment, i, segLen, cp);
    537 
    538         if (cp == decompCp) { // if equal, eat another cp from decomp
    539 
    540             //if (PROGRESS) printf("  matches: %s\n", UToS(Tr(UnicodeString(cp))));
    541 
    542             if (decompPos == decompLen) { // done, have all decomp characters!
    543                 //u_strcat(buff+bufLen, segment+i);
    544                 uprv_memcpy(buff+bufLen, segment+i, (segLen-i)*sizeof(UChar));
    545                 bufLen+=segLen-i;
    546 
    547                 ok = TRUE;
    548                 break;
    549             }
    550             UTF_NEXT_CHAR(decomp, decompPos, decompLen, decompCp);
    551         } else {
    552             //if (PROGRESS) printf("  buffer: %s\n", UToS(Tr(UnicodeString(cp))));
    553 
    554             // brute force approach
    555 
    556             U16_APPEND(buff, bufLen, bufSize, cp, overflow);
    557 
    558             if(overflow) {
    559                 /*
    560                  * ### TODO handle buffer overflow
    561                  * The buffer is large, but an overflow may still happen with
    562                  * unusual input (many combining marks?).
    563                  * Reallocate buffer and continue.
    564                  * markus 20020929
    565                  */
    566 
    567                 overflow = FALSE;
    568             }
    569 
    570             /* TODO: optimize
    571             // since we know that the classes are monotonically increasing, after zero
    572             // e.g. 0 5 7 9 0 3
    573             // we can do an optimization
    574             // there are only a few cases that work: zero, less, same, greater
    575             // if both classes are the same, we fail
    576             // if the decomp class < the segment class, we fail
    577 
    578             segClass = getClass(cp);
    579             if (decompClass <= segClass) return null;
    580             */
    581         }
    582     }
    583     if (!ok)
    584         return NULL; // we failed, characters left over
    585 
    586     //if (PROGRESS) printf("Matches\n");
    587 
    588     if (bufLen == 0) {
    589         fillinResult->put(UnicodeString(), new UnicodeString(), status);
    590         return fillinResult; // succeed, but no remainder
    591     }
    592 
    593     // brute force approach
    594     // check to make sure result is canonically equivalent
    595     int32_t tempLen = inputLen + bufLen;
    596 
    597     UChar trial[bufSize];
    598     unorm_decompose(trial, bufSize, temp, tempLen, FALSE, 0, &status);
    599 
    600     if(U_FAILURE(status)
    601         || uprv_memcmp(segment+segmentPos, trial, (segLen - segmentPos)*sizeof(UChar)) != 0)
    602     {
    603         return NULL;
    604     }
    605 
    606     return getEquivalents2(fillinResult, buff, bufLen, status);
    607 }
    608 
    609 U_NAMESPACE_END
    610 
    611 #endif /* #if !UCONFIG_NO_NORMALIZATION */
    612