Home | History | Annotate | Download | only in jpake
      1 #include "jpake.h"
      2 
      3 #include <openssl/crypto.h>
      4 #include <openssl/sha.h>
      5 #include <openssl/err.h>
      6 #include <memory.h>
      7 #include <assert.h>
      8 
      9 /*
     10  * In the definition, (xa, xb, xc, xd) are Alice's (x1, x2, x3, x4) or
     11  * Bob's (x3, x4, x1, x2). If you see what I mean.
     12  */
     13 
     14 typedef struct
     15     {
     16     char *name;  /* Must be unique */
     17     char *peer_name;
     18     BIGNUM *p;
     19     BIGNUM *g;
     20     BIGNUM *q;
     21     BIGNUM *gxc; /* Alice's g^{x3} or Bob's g^{x1} */
     22     BIGNUM *gxd; /* Alice's g^{x4} or Bob's g^{x2} */
     23     } JPAKE_CTX_PUBLIC;
     24 
     25 struct JPAKE_CTX
     26     {
     27     JPAKE_CTX_PUBLIC p;
     28     BIGNUM *secret;   /* The shared secret */
     29     BN_CTX *ctx;
     30     BIGNUM *xa;       /* Alice's x1 or Bob's x3 */
     31     BIGNUM *xb;       /* Alice's x2 or Bob's x4 */
     32     BIGNUM *key;      /* The calculated (shared) key */
     33     };
     34 
     35 static void JPAKE_ZKP_init(JPAKE_ZKP *zkp)
     36     {
     37     zkp->gr = BN_new();
     38     zkp->b = BN_new();
     39     }
     40 
     41 static void JPAKE_ZKP_release(JPAKE_ZKP *zkp)
     42     {
     43     BN_free(zkp->b);
     44     BN_free(zkp->gr);
     45     }
     46 
     47 /* Two birds with one stone - make the global name as expected */
     48 #define JPAKE_STEP_PART_init	JPAKE_STEP2_init
     49 #define JPAKE_STEP_PART_release	JPAKE_STEP2_release
     50 
     51 void JPAKE_STEP_PART_init(JPAKE_STEP_PART *p)
     52     {
     53     p->gx = BN_new();
     54     JPAKE_ZKP_init(&p->zkpx);
     55     }
     56 
     57 void JPAKE_STEP_PART_release(JPAKE_STEP_PART *p)
     58     {
     59     JPAKE_ZKP_release(&p->zkpx);
     60     BN_free(p->gx);
     61     }
     62 
     63 void JPAKE_STEP1_init(JPAKE_STEP1 *s1)
     64     {
     65     JPAKE_STEP_PART_init(&s1->p1);
     66     JPAKE_STEP_PART_init(&s1->p2);
     67     }
     68 
     69 void JPAKE_STEP1_release(JPAKE_STEP1 *s1)
     70     {
     71     JPAKE_STEP_PART_release(&s1->p2);
     72     JPAKE_STEP_PART_release(&s1->p1);
     73     }
     74 
     75 static void JPAKE_CTX_init(JPAKE_CTX *ctx, const char *name,
     76 			   const char *peer_name, const BIGNUM *p,
     77 			   const BIGNUM *g, const BIGNUM *q,
     78 			   const BIGNUM *secret)
     79     {
     80     ctx->p.name = OPENSSL_strdup(name);
     81     ctx->p.peer_name = OPENSSL_strdup(peer_name);
     82     ctx->p.p = BN_dup(p);
     83     ctx->p.g = BN_dup(g);
     84     ctx->p.q = BN_dup(q);
     85     ctx->secret = BN_dup(secret);
     86 
     87     ctx->p.gxc = BN_new();
     88     ctx->p.gxd = BN_new();
     89 
     90     ctx->xa = BN_new();
     91     ctx->xb = BN_new();
     92     ctx->key = BN_new();
     93     ctx->ctx = BN_CTX_new();
     94     }
     95 
     96 static void JPAKE_CTX_release(JPAKE_CTX *ctx)
     97     {
     98     BN_CTX_free(ctx->ctx);
     99     BN_clear_free(ctx->key);
    100     BN_clear_free(ctx->xb);
    101     BN_clear_free(ctx->xa);
    102 
    103     BN_free(ctx->p.gxd);
    104     BN_free(ctx->p.gxc);
    105 
    106     BN_clear_free(ctx->secret);
    107     BN_free(ctx->p.q);
    108     BN_free(ctx->p.g);
    109     BN_free(ctx->p.p);
    110     OPENSSL_free(ctx->p.peer_name);
    111     OPENSSL_free(ctx->p.name);
    112 
    113     memset(ctx, '\0', sizeof *ctx);
    114     }
    115 
    116 JPAKE_CTX *JPAKE_CTX_new(const char *name, const char *peer_name,
    117 			 const BIGNUM *p, const BIGNUM *g, const BIGNUM *q,
    118 			 const BIGNUM *secret)
    119     {
    120     JPAKE_CTX *ctx = OPENSSL_malloc(sizeof *ctx);
    121 
    122     JPAKE_CTX_init(ctx, name, peer_name, p, g, q, secret);
    123 
    124     return ctx;
    125     }
    126 
    127 void JPAKE_CTX_free(JPAKE_CTX *ctx)
    128     {
    129     JPAKE_CTX_release(ctx);
    130     OPENSSL_free(ctx);
    131     }
    132 
    133 static void hashlength(SHA_CTX *sha, size_t l)
    134     {
    135     unsigned char b[2];
    136 
    137     assert(l <= 0xffff);
    138     b[0] = l >> 8;
    139     b[1] = l&0xff;
    140     SHA1_Update(sha, b, 2);
    141     }
    142 
    143 static void hashstring(SHA_CTX *sha, const char *string)
    144     {
    145     size_t l = strlen(string);
    146 
    147     hashlength(sha, l);
    148     SHA1_Update(sha, string, l);
    149     }
    150 
    151 static void hashbn(SHA_CTX *sha, const BIGNUM *bn)
    152     {
    153     size_t l = BN_num_bytes(bn);
    154     unsigned char *bin = OPENSSL_malloc(l);
    155 
    156     hashlength(sha, l);
    157     BN_bn2bin(bn, bin);
    158     SHA1_Update(sha, bin, l);
    159     OPENSSL_free(bin);
    160     }
    161 
    162 /* h=hash(g, g^r, g^x, name) */
    163 static void zkp_hash(BIGNUM *h, const BIGNUM *zkpg, const JPAKE_STEP_PART *p,
    164 		     const char *proof_name)
    165     {
    166     unsigned char md[SHA_DIGEST_LENGTH];
    167     SHA_CTX sha;
    168 
    169    /*
    170     * XXX: hash should not allow moving of the boundaries - Java code
    171     * is flawed in this respect. Length encoding seems simplest.
    172     */
    173     SHA1_Init(&sha);
    174     hashbn(&sha, zkpg);
    175     assert(!BN_is_zero(p->zkpx.gr));
    176     hashbn(&sha, p->zkpx.gr);
    177     hashbn(&sha, p->gx);
    178     hashstring(&sha, proof_name);
    179     SHA1_Final(md, &sha);
    180     BN_bin2bn(md, SHA_DIGEST_LENGTH, h);
    181     }
    182 
    183 /*
    184  * Prove knowledge of x
    185  * Note that p->gx has already been calculated
    186  */
    187 static void generate_zkp(JPAKE_STEP_PART *p, const BIGNUM *x,
    188 			 const BIGNUM *zkpg, JPAKE_CTX *ctx)
    189     {
    190     BIGNUM *r = BN_new();
    191     BIGNUM *h = BN_new();
    192     BIGNUM *t = BN_new();
    193 
    194    /*
    195     * r in [0,q)
    196     * XXX: Java chooses r in [0, 2^160) - i.e. distribution not uniform
    197     */
    198     BN_rand_range(r, ctx->p.q);
    199    /* g^r */
    200     BN_mod_exp(p->zkpx.gr, zkpg, r, ctx->p.p, ctx->ctx);
    201 
    202    /* h=hash... */
    203     zkp_hash(h, zkpg, p, ctx->p.name);
    204 
    205    /* b = r - x*h */
    206     BN_mod_mul(t, x, h, ctx->p.q, ctx->ctx);
    207     BN_mod_sub(p->zkpx.b, r, t, ctx->p.q, ctx->ctx);
    208 
    209    /* cleanup */
    210     BN_free(t);
    211     BN_free(h);
    212     BN_free(r);
    213     }
    214 
    215 static int verify_zkp(const JPAKE_STEP_PART *p, const BIGNUM *zkpg,
    216 		      JPAKE_CTX *ctx)
    217     {
    218     BIGNUM *h = BN_new();
    219     BIGNUM *t1 = BN_new();
    220     BIGNUM *t2 = BN_new();
    221     BIGNUM *t3 = BN_new();
    222     int ret = 0;
    223 
    224     zkp_hash(h, zkpg, p, ctx->p.peer_name);
    225 
    226    /* t1 = g^b */
    227     BN_mod_exp(t1, zkpg, p->zkpx.b, ctx->p.p, ctx->ctx);
    228    /* t2 = (g^x)^h = g^{hx} */
    229     BN_mod_exp(t2, p->gx, h, ctx->p.p, ctx->ctx);
    230    /* t3 = t1 * t2 = g^{hx} * g^b = g^{hx+b} = g^r (allegedly) */
    231     BN_mod_mul(t3, t1, t2, ctx->p.p, ctx->ctx);
    232 
    233    /* verify t3 == g^r */
    234     if(BN_cmp(t3, p->zkpx.gr) == 0)
    235 	ret = 1;
    236     else
    237 	JPAKEerr(JPAKE_F_VERIFY_ZKP, JPAKE_R_ZKP_VERIFY_FAILED);
    238 
    239    /* cleanup */
    240     BN_free(t3);
    241     BN_free(t2);
    242     BN_free(t1);
    243     BN_free(h);
    244 
    245     return ret;
    246     }
    247 
    248 static void generate_step_part(JPAKE_STEP_PART *p, const BIGNUM *x,
    249 			       const BIGNUM *g, JPAKE_CTX *ctx)
    250     {
    251     BN_mod_exp(p->gx, g, x, ctx->p.p, ctx->ctx);
    252     generate_zkp(p, x, g, ctx);
    253     }
    254 
    255 /* Generate each party's random numbers. xa is in [0, q), xb is in [1, q). */
    256 static void genrand(JPAKE_CTX *ctx)
    257     {
    258     BIGNUM *qm1;
    259 
    260    /* xa in [0, q) */
    261     BN_rand_range(ctx->xa, ctx->p.q);
    262 
    263    /* q-1 */
    264     qm1 = BN_new();
    265     BN_copy(qm1, ctx->p.q);
    266     BN_sub_word(qm1, 1);
    267 
    268    /* ... and xb in [0, q-1) */
    269     BN_rand_range(ctx->xb, qm1);
    270    /* [1, q) */
    271     BN_add_word(ctx->xb, 1);
    272 
    273    /* cleanup */
    274     BN_free(qm1);
    275     }
    276 
    277 int JPAKE_STEP1_generate(JPAKE_STEP1 *send, JPAKE_CTX *ctx)
    278     {
    279     genrand(ctx);
    280     generate_step_part(&send->p1, ctx->xa, ctx->p.g, ctx);
    281     generate_step_part(&send->p2, ctx->xb, ctx->p.g, ctx);
    282 
    283     return 1;
    284     }
    285 
    286 int JPAKE_STEP1_process(JPAKE_CTX *ctx, const JPAKE_STEP1 *received)
    287     {
    288    /* verify their ZKP(xc) */
    289     if(!verify_zkp(&received->p1, ctx->p.g, ctx))
    290 	{
    291 	JPAKEerr(JPAKE_F_JPAKE_STEP1_PROCESS, JPAKE_R_VERIFY_X3_FAILED);
    292 	return 0;
    293 	}
    294 
    295    /* verify their ZKP(xd) */
    296     if(!verify_zkp(&received->p2, ctx->p.g, ctx))
    297 	{
    298 	JPAKEerr(JPAKE_F_JPAKE_STEP1_PROCESS, JPAKE_R_VERIFY_X4_FAILED);
    299 	return 0;
    300 	}
    301 
    302    /* g^xd != 1 */
    303     if(BN_is_one(received->p2.gx))
    304 	{
    305 	JPAKEerr(JPAKE_F_JPAKE_STEP1_PROCESS, JPAKE_R_G_TO_THE_X4_IS_ONE);
    306 	return 0;
    307 	}
    308 
    309    /* Save the bits we need for later */
    310     BN_copy(ctx->p.gxc, received->p1.gx);
    311     BN_copy(ctx->p.gxd, received->p2.gx);
    312 
    313     return 1;
    314     }
    315 
    316 
    317 int JPAKE_STEP2_generate(JPAKE_STEP2 *send, JPAKE_CTX *ctx)
    318     {
    319     BIGNUM *t1 = BN_new();
    320     BIGNUM *t2 = BN_new();
    321 
    322    /*
    323     * X = g^{(xa + xc + xd) * xb * s}
    324     * t1 = g^xa
    325     */
    326     BN_mod_exp(t1, ctx->p.g, ctx->xa, ctx->p.p, ctx->ctx);
    327    /* t2 = t1 * g^{xc} = g^{xa} * g^{xc} = g^{xa + xc} */
    328     BN_mod_mul(t2, t1, ctx->p.gxc, ctx->p.p, ctx->ctx);
    329    /* t1 = t2 * g^{xd} = g^{xa + xc + xd} */
    330     BN_mod_mul(t1, t2, ctx->p.gxd, ctx->p.p, ctx->ctx);
    331    /* t2 = xb * s */
    332     BN_mod_mul(t2, ctx->xb, ctx->secret, ctx->p.q, ctx->ctx);
    333 
    334    /*
    335     * ZKP(xb * s)
    336     * XXX: this is kinda funky, because we're using
    337     *
    338     * g' = g^{xa + xc + xd}
    339     *
    340     * as the generator, which means X is g'^{xb * s}
    341     * X = t1^{t2} = t1^{xb * s} = g^{(xa + xc + xd) * xb * s}
    342     */
    343     generate_step_part(send, t2, t1, ctx);
    344 
    345    /* cleanup */
    346     BN_free(t1);
    347     BN_free(t2);
    348 
    349     return 1;
    350     }
    351 
    352 /* gx = g^{xc + xa + xb} * xd * s */
    353 static int compute_key(JPAKE_CTX *ctx, const BIGNUM *gx)
    354     {
    355     BIGNUM *t1 = BN_new();
    356     BIGNUM *t2 = BN_new();
    357     BIGNUM *t3 = BN_new();
    358 
    359    /*
    360     * K = (gx/g^{xb * xd * s})^{xb}
    361     *   = (g^{(xc + xa + xb) * xd * s - xb * xd *s})^{xb}
    362     *   = (g^{(xa + xc) * xd * s})^{xb}
    363     *   = g^{(xa + xc) * xb * xd * s}
    364     * [which is the same regardless of who calculates it]
    365     */
    366 
    367    /* t1 = (g^{xd})^{xb} = g^{xb * xd} */
    368     BN_mod_exp(t1, ctx->p.gxd, ctx->xb, ctx->p.p, ctx->ctx);
    369    /* t2 = -s = q-s */
    370     BN_sub(t2, ctx->p.q, ctx->secret);
    371    /* t3 = t1^t2 = g^{-xb * xd * s} */
    372     BN_mod_exp(t3, t1, t2, ctx->p.p, ctx->ctx);
    373    /* t1 = gx * t3 = X/g^{xb * xd * s} */
    374     BN_mod_mul(t1, gx, t3, ctx->p.p, ctx->ctx);
    375    /* K = t1^{xb} */
    376     BN_mod_exp(ctx->key, t1, ctx->xb, ctx->p.p, ctx->ctx);
    377 
    378    /* cleanup */
    379     BN_free(t3);
    380     BN_free(t2);
    381     BN_free(t1);
    382 
    383     return 1;
    384     }
    385 
    386 int JPAKE_STEP2_process(JPAKE_CTX *ctx, const JPAKE_STEP2 *received)
    387     {
    388     BIGNUM *t1 = BN_new();
    389     BIGNUM *t2 = BN_new();
    390     int ret = 0;
    391 
    392    /*
    393     * g' = g^{xc + xa + xb} [from our POV]
    394     * t1 = xa + xb
    395     */
    396     BN_mod_add(t1, ctx->xa, ctx->xb, ctx->p.q, ctx->ctx);
    397    /* t2 = g^{t1} = g^{xa+xb} */
    398     BN_mod_exp(t2, ctx->p.g, t1, ctx->p.p, ctx->ctx);
    399    /* t1 = g^{xc} * t2 = g^{xc + xa + xb} */
    400     BN_mod_mul(t1, ctx->p.gxc, t2, ctx->p.p, ctx->ctx);
    401 
    402     if(verify_zkp(received, t1, ctx))
    403 	ret = 1;
    404     else
    405 	JPAKEerr(JPAKE_F_JPAKE_STEP2_PROCESS, JPAKE_R_VERIFY_B_FAILED);
    406 
    407     compute_key(ctx, received->gx);
    408 
    409    /* cleanup */
    410     BN_free(t2);
    411     BN_free(t1);
    412 
    413     return ret;
    414     }
    415 
    416 static void quickhashbn(unsigned char *md, const BIGNUM *bn)
    417     {
    418     SHA_CTX sha;
    419 
    420     SHA1_Init(&sha);
    421     hashbn(&sha, bn);
    422     SHA1_Final(md, &sha);
    423     }
    424 
    425 void JPAKE_STEP3A_init(JPAKE_STEP3A *s3a)
    426     {}
    427 
    428 int JPAKE_STEP3A_generate(JPAKE_STEP3A *send, JPAKE_CTX *ctx)
    429     {
    430     quickhashbn(send->hhk, ctx->key);
    431     SHA1(send->hhk, sizeof send->hhk, send->hhk);
    432 
    433     return 1;
    434     }
    435 
    436 int JPAKE_STEP3A_process(JPAKE_CTX *ctx, const JPAKE_STEP3A *received)
    437     {
    438     unsigned char hhk[SHA_DIGEST_LENGTH];
    439 
    440     quickhashbn(hhk, ctx->key);
    441     SHA1(hhk, sizeof hhk, hhk);
    442     if(memcmp(hhk, received->hhk, sizeof hhk))
    443 	{
    444 	JPAKEerr(JPAKE_F_JPAKE_STEP3A_PROCESS, JPAKE_R_HASH_OF_HASH_OF_KEY_MISMATCH);
    445 	return 0;
    446 	}
    447     return 1;
    448     }
    449 
    450 void JPAKE_STEP3A_release(JPAKE_STEP3A *s3a)
    451     {}
    452 
    453 void JPAKE_STEP3B_init(JPAKE_STEP3B *s3b)
    454     {}
    455 
    456 int JPAKE_STEP3B_generate(JPAKE_STEP3B *send, JPAKE_CTX *ctx)
    457     {
    458     quickhashbn(send->hk, ctx->key);
    459 
    460     return 1;
    461     }
    462 
    463 int JPAKE_STEP3B_process(JPAKE_CTX *ctx, const JPAKE_STEP3B *received)
    464     {
    465     unsigned char hk[SHA_DIGEST_LENGTH];
    466 
    467     quickhashbn(hk, ctx->key);
    468     if(memcmp(hk, received->hk, sizeof hk))
    469 	{
    470 	JPAKEerr(JPAKE_F_JPAKE_STEP3B_PROCESS, JPAKE_R_HASH_OF_KEY_MISMATCH);
    471 	return 0;
    472 	}
    473     return 1;
    474     }
    475 
    476 void JPAKE_STEP3B_release(JPAKE_STEP3B *s3b)
    477     {}
    478 
    479 const BIGNUM *JPAKE_get_shared_key(JPAKE_CTX *ctx)
    480     {
    481     return ctx->key;
    482     }
    483 
    484