1 // ==================================================================== 2 // Written by Andy Polyakov <appro (at) fy.chalmers.se> for the OpenSSL 3 // project. 4 // 5 // Rights for redistribution and usage in source and binary forms are 6 // granted according to the OpenSSL license. Warranty of any kind is 7 // disclaimed. 8 // ==================================================================== 9 10 .ident "rc4-ia64.S, Version 2.0" 11 .ident "IA-64 ISA artwork by Andy Polyakov <appro (at) fy.chalmers.se>" 12 13 // What's wrong with compiler generated code? Because of the nature of 14 // C language, compiler doesn't [dare to] reorder load and stores. But 15 // being memory-bound, RC4 should benefit from reorder [on in-order- 16 // execution core such as IA-64]. But what can we reorder? At the very 17 // least we can safely reorder references to key schedule in respect 18 // to input and output streams. Secondly, from the first [close] glance 19 // it appeared that it's possible to pull up some references to 20 // elements of the key schedule itself. Original rationale ["prior 21 // loads are not safe only for "degenerated" key schedule, when some 22 // elements equal to the same value"] was kind of sloppy. I should have 23 // formulated as it really was: if we assume that pulling up reference 24 // to key[x+1] is not safe, then it would mean that key schedule would 25 // "degenerate," which is never the case. The problem is that this 26 // holds true in respect to references to key[x], but not to key[y]. 27 // Legitimate "collisions" do occur within every 256^2 bytes window. 28 // Fortunately there're enough free instruction slots to keep prior 29 // reference to key[x+1], detect "collision" and compensate for it. 30 // All this without sacrificing a single clock cycle:-) Throughput is 31 // ~210MBps on 900MHz CPU, which is is >3x faster than gcc generated 32 // code and +30% - if compared to HP-UX C. Unrolling loop below should 33 // give >30% on top of that... 34 35 .text 36 .explicit 37 38 #if defined(_HPUX_SOURCE) && !defined(_LP64) 39 # define ADDP addp4 40 #else 41 # define ADDP add 42 #endif 43 44 #ifndef SZ 45 #define SZ 4 // this is set to sizeof(RC4_INT) 46 #endif 47 // SZ==4 seems to be optimal. At least SZ==8 is not any faster, not for 48 // assembler implementation, while SZ==1 code is ~30% slower. 49 #if SZ==1 // RC4_INT is unsigned char 50 # define LDKEY ld1 51 # define STKEY st1 52 # define OFF 0 53 #elif SZ==4 // RC4_INT is unsigned int 54 # define LDKEY ld4 55 # define STKEY st4 56 # define OFF 2 57 #elif SZ==8 // RC4_INT is unsigned long 58 # define LDKEY ld8 59 # define STKEY st8 60 # define OFF 3 61 #endif 62 63 out=r8; // [expanded] output pointer 64 inp=r9; // [expanded] output pointer 65 prsave=r10; 66 key=r28; // [expanded] pointer to RC4_KEY 67 ksch=r29; // (key->data+255)[&~(sizeof(key->data)-1)] 68 xx=r30; 69 yy=r31; 70 71 // void RC4(RC4_KEY *key,size_t len,const void *inp,void *out); 72 .global RC4# 73 .proc RC4# 74 .align 32 75 .skip 16 76 RC4: 77 .prologue 78 .save ar.pfs,r2 79 { .mii; alloc r2=ar.pfs,4,12,0,16 80 .save pr,prsave 81 mov prsave=pr 82 ADDP key=0,in0 };; 83 { .mib; cmp.eq p6,p0=0,in1 // len==0? 84 .save ar.lc,r3 85 mov r3=ar.lc 86 (p6) br.ret.spnt.many b0 };; // emergency exit 87 88 .body 89 .rotr dat[4],key_x[4],tx[2],rnd[2],key_y[2],ty[1]; 90 91 { .mib; LDKEY xx=[key],SZ // load key->x 92 add in1=-1,in1 // adjust len for loop counter 93 nop.b 0 } 94 { .mib; ADDP inp=0,in2 95 ADDP out=0,in3 96 brp.loop.imp .Ltop,.Lexit-16 };; 97 { .mmi; LDKEY yy=[key] // load key->y 98 add ksch=SZ,key 99 mov ar.lc=in1 } 100 { .mmi; mov key_y[1]=r0 // guarantee inequality 101 // in first iteration 102 add xx=1,xx 103 mov pr.rot=1<<16 };; 104 { .mii; nop.m 0 105 dep key_x[1]=xx,r0,OFF,8 106 mov ar.ec=3 };; // note that epilogue counter 107 // is off by 1. I compensate 108 // for this at exit... 109 .Ltop: 110 // The loop is scheduled for 4*(n+2) spin-rate on Itanium 2, which 111 // theoretically gives asymptotic performance of clock frequency 112 // divided by 4 bytes per seconds, or 400MBps on 1.6GHz CPU. This is 113 // for sizeof(RC4_INT)==4. For smaller RC4_INT STKEY inadvertently 114 // splits the last bundle and you end up with 5*n spin-rate:-( 115 // Originally the loop was scheduled for 3*n and relied on key 116 // schedule to be aligned at 256*sizeof(RC4_INT) boundary. But 117 // *(out++)=dat, which maps to st1, had same effect [inadvertent 118 // bundle split] and holded the loop back. Rescheduling for 4*n 119 // made it possible to eliminate dependence on specific alignment 120 // and allow OpenSSH keep "abusing" our API. Reaching for 3*n would 121 // require unrolling, sticking to variable shift instruction for 122 // collecting output [to avoid starvation for integer shifter] and 123 // copying of key schedule to controlled place in stack [so that 124 // deposit instruction can serve as substitute for whole 125 // key->data+((x&255)<<log2(sizeof(key->data[0])))]... 126 { .mmi; (p19) st1 [out]=dat[3],1 // *(out++)=dat 127 (p16) add xx=1,xx // x++ 128 (p18) dep rnd[1]=rnd[1],r0,OFF,8 } // ((tx+ty)&255)<<OFF 129 { .mmi; (p16) add key_x[1]=ksch,key_x[1] // &key[xx&255] 130 (p17) add key_y[1]=ksch,key_y[1] };; // &key[yy&255] 131 { .mmi; (p16) LDKEY tx[0]=[key_x[1]] // tx=key[xx] 132 (p17) LDKEY ty[0]=[key_y[1]] // ty=key[yy] 133 (p16) dep key_x[0]=xx,r0,OFF,8 } // (xx&255)<<OFF 134 { .mmi; (p18) add rnd[1]=ksch,rnd[1] // &key[(tx+ty)&255] 135 (p16) cmp.ne.unc p20,p21=key_x[1],key_y[1] };; 136 { .mmi; (p18) LDKEY rnd[1]=[rnd[1]] // rnd=key[(tx+ty)&255] 137 (p16) ld1 dat[0]=[inp],1 } // dat=*(inp++) 138 .pred.rel "mutex",p20,p21 139 { .mmi; (p21) add yy=yy,tx[1] // (p16) 140 (p20) add yy=yy,tx[0] // (p16) y+=tx 141 (p21) mov tx[0]=tx[1] };; // (p16) 142 { .mmi; (p17) STKEY [key_y[1]]=tx[1] // key[yy]=tx 143 (p17) STKEY [key_x[2]]=ty[0] // key[xx]=ty 144 (p16) dep key_y[0]=yy,r0,OFF,8 } // &key[yy&255] 145 { .mmb; (p17) add rnd[0]=tx[1],ty[0] // tx+=ty 146 (p18) xor dat[2]=dat[2],rnd[1] // dat^=rnd 147 br.ctop.sptk .Ltop };; 148 .Lexit: 149 { .mib; STKEY [key]=yy,-SZ // save key->y 150 mov pr=prsave,0x1ffff 151 nop.b 0 } 152 { .mib; st1 [out]=dat[3],1 // compensate for truncated 153 // epilogue counter 154 add xx=-1,xx 155 nop.b 0 };; 156 { .mib; STKEY [key]=xx // save key->x 157 mov ar.lc=r3 158 br.ret.sptk.many b0 };; 159 .endp RC4# 160