Home | History | Annotate | Download | only in arm
      1 // Copyright 2009 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 #ifndef V8_ARM_VIRTUAL_FRAME_ARM_H_
     29 #define V8_ARM_VIRTUAL_FRAME_ARM_H_
     30 
     31 #include "register-allocator.h"
     32 #include "scopes.h"
     33 
     34 namespace v8 {
     35 namespace internal {
     36 
     37 // -------------------------------------------------------------------------
     38 // Virtual frames
     39 //
     40 // The virtual frame is an abstraction of the physical stack frame.  It
     41 // encapsulates the parameters, frame-allocated locals, and the expression
     42 // stack.  It supports push/pop operations on the expression stack, as well
     43 // as random access to the expression stack elements, locals, and
     44 // parameters.
     45 
     46 class VirtualFrame : public ZoneObject {
     47  public:
     48   // A utility class to introduce a scope where the virtual frame is
     49   // expected to remain spilled.  The constructor spills the code
     50   // generator's current frame, but no attempt is made to require it
     51   // to stay spilled.  It is intended as documentation while the code
     52   // generator is being transformed.
     53   class SpilledScope BASE_EMBEDDED {
     54    public:
     55     SpilledScope() {}
     56   };
     57 
     58   // An illegal index into the virtual frame.
     59   static const int kIllegalIndex = -1;
     60 
     61   // Construct an initial virtual frame on entry to a JS function.
     62   VirtualFrame();
     63 
     64   // Construct a virtual frame as a clone of an existing one.
     65   explicit VirtualFrame(VirtualFrame* original);
     66 
     67   CodeGenerator* cgen() { return CodeGeneratorScope::Current(); }
     68   MacroAssembler* masm() { return cgen()->masm(); }
     69 
     70   // Create a duplicate of an existing valid frame element.
     71   FrameElement CopyElementAt(int index,
     72                              NumberInfo::Type info = NumberInfo::kUnknown);
     73 
     74   // The number of elements on the virtual frame.
     75   int element_count() { return elements_.length(); }
     76 
     77   // The height of the virtual expression stack.
     78   int height() {
     79     return element_count() - expression_base_index();
     80   }
     81 
     82   int register_location(int num) {
     83     ASSERT(num >= 0 && num < RegisterAllocator::kNumRegisters);
     84     return register_locations_[num];
     85   }
     86 
     87   int register_location(Register reg) {
     88     return register_locations_[RegisterAllocator::ToNumber(reg)];
     89   }
     90 
     91   void set_register_location(Register reg, int index) {
     92     register_locations_[RegisterAllocator::ToNumber(reg)] = index;
     93   }
     94 
     95   bool is_used(int num) {
     96     ASSERT(num >= 0 && num < RegisterAllocator::kNumRegisters);
     97     return register_locations_[num] != kIllegalIndex;
     98   }
     99 
    100   bool is_used(Register reg) {
    101     return register_locations_[RegisterAllocator::ToNumber(reg)]
    102         != kIllegalIndex;
    103   }
    104 
    105   // Add extra in-memory elements to the top of the frame to match an actual
    106   // frame (eg, the frame after an exception handler is pushed).  No code is
    107   // emitted.
    108   void Adjust(int count);
    109 
    110   // Forget elements from the top of the frame to match an actual frame (eg,
    111   // the frame after a runtime call).  No code is emitted.
    112   void Forget(int count) {
    113     ASSERT(count >= 0);
    114     ASSERT(stack_pointer_ == element_count() - 1);
    115     stack_pointer_ -= count;
    116     // On ARM, all elements are in memory, so there is no extra bookkeeping
    117     // (registers, copies, etc.) beyond dropping the elements.
    118     elements_.Rewind(stack_pointer_ + 1);
    119   }
    120 
    121   // Forget count elements from the top of the frame and adjust the stack
    122   // pointer downward.  This is used, for example, before merging frames at
    123   // break, continue, and return targets.
    124   void ForgetElements(int count);
    125 
    126   // Spill all values from the frame to memory.
    127   void SpillAll();
    128 
    129   // Spill all occurrences of a specific register from the frame.
    130   void Spill(Register reg) {
    131     if (is_used(reg)) SpillElementAt(register_location(reg));
    132   }
    133 
    134   // Spill all occurrences of an arbitrary register if possible.  Return the
    135   // register spilled or no_reg if it was not possible to free any register
    136   // (ie, they all have frame-external references).
    137   Register SpillAnyRegister();
    138 
    139   // Prepare this virtual frame for merging to an expected frame by
    140   // performing some state changes that do not require generating
    141   // code.  It is guaranteed that no code will be generated.
    142   void PrepareMergeTo(VirtualFrame* expected);
    143 
    144   // Make this virtual frame have a state identical to an expected virtual
    145   // frame.  As a side effect, code may be emitted to make this frame match
    146   // the expected one.
    147   void MergeTo(VirtualFrame* expected);
    148 
    149   // Detach a frame from its code generator, perhaps temporarily.  This
    150   // tells the register allocator that it is free to use frame-internal
    151   // registers.  Used when the code generator's frame is switched from this
    152   // one to NULL by an unconditional jump.
    153   void DetachFromCodeGenerator() {
    154     RegisterAllocator* cgen_allocator = cgen()->allocator();
    155     for (int i = 0; i < RegisterAllocator::kNumRegisters; i++) {
    156       if (is_used(i)) cgen_allocator->Unuse(i);
    157     }
    158   }
    159 
    160   // (Re)attach a frame to its code generator.  This informs the register
    161   // allocator that the frame-internal register references are active again.
    162   // Used when a code generator's frame is switched from NULL to this one by
    163   // binding a label.
    164   void AttachToCodeGenerator() {
    165     RegisterAllocator* cgen_allocator = cgen()->allocator();
    166     for (int i = 0; i < RegisterAllocator::kNumRegisters; i++) {
    167       if (is_used(i)) cgen_allocator->Unuse(i);
    168     }
    169   }
    170 
    171   // Emit code for the physical JS entry and exit frame sequences.  After
    172   // calling Enter, the virtual frame is ready for use; and after calling
    173   // Exit it should not be used.  Note that Enter does not allocate space in
    174   // the physical frame for storing frame-allocated locals.
    175   void Enter();
    176   void Exit();
    177 
    178   // Prepare for returning from the frame by spilling locals and
    179   // dropping all non-locals elements in the virtual frame.  This
    180   // avoids generating unnecessary merge code when jumping to the
    181   // shared return site.  Emits code for spills.
    182   void PrepareForReturn();
    183 
    184   // Number of local variables after when we use a loop for allocating.
    185   static const int kLocalVarBound = 5;
    186 
    187   // Allocate and initialize the frame-allocated locals.
    188   void AllocateStackSlots();
    189 
    190   // The current top of the expression stack as an assembly operand.
    191   MemOperand Top() { return MemOperand(sp, 0); }
    192 
    193   // An element of the expression stack as an assembly operand.
    194   MemOperand ElementAt(int index) {
    195     return MemOperand(sp, index * kPointerSize);
    196   }
    197 
    198   // Random-access store to a frame-top relative frame element.  The result
    199   // becomes owned by the frame and is invalidated.
    200   void SetElementAt(int index, Result* value);
    201 
    202   // Set a frame element to a constant.  The index is frame-top relative.
    203   void SetElementAt(int index, Handle<Object> value) {
    204     Result temp(value);
    205     SetElementAt(index, &temp);
    206   }
    207 
    208   void PushElementAt(int index) {
    209     PushFrameSlotAt(element_count() - index - 1);
    210   }
    211 
    212   // A frame-allocated local as an assembly operand.
    213   MemOperand LocalAt(int index) {
    214     ASSERT(0 <= index);
    215     ASSERT(index < local_count());
    216     return MemOperand(fp, kLocal0Offset - index * kPointerSize);
    217   }
    218 
    219   // Push a copy of the value of a local frame slot on top of the frame.
    220   void PushLocalAt(int index) {
    221     PushFrameSlotAt(local0_index() + index);
    222   }
    223 
    224   // Push the value of a local frame slot on top of the frame and invalidate
    225   // the local slot.  The slot should be written to before trying to read
    226   // from it again.
    227   void TakeLocalAt(int index) {
    228     TakeFrameSlotAt(local0_index() + index);
    229   }
    230 
    231   // Store the top value on the virtual frame into a local frame slot.  The
    232   // value is left in place on top of the frame.
    233   void StoreToLocalAt(int index) {
    234     StoreToFrameSlotAt(local0_index() + index);
    235   }
    236 
    237   // Push the address of the receiver slot on the frame.
    238   void PushReceiverSlotAddress();
    239 
    240   // The function frame slot.
    241   MemOperand Function() { return MemOperand(fp, kFunctionOffset); }
    242 
    243   // Push the function on top of the frame.
    244   void PushFunction() { PushFrameSlotAt(function_index()); }
    245 
    246   // The context frame slot.
    247   MemOperand Context() { return MemOperand(fp, kContextOffset); }
    248 
    249   // Save the value of the esi register to the context frame slot.
    250   void SaveContextRegister();
    251 
    252   // Restore the esi register from the value of the context frame
    253   // slot.
    254   void RestoreContextRegister();
    255 
    256   // A parameter as an assembly operand.
    257   MemOperand ParameterAt(int index) {
    258     // Index -1 corresponds to the receiver.
    259     ASSERT(-1 <= index);  // -1 is the receiver.
    260     ASSERT(index <= parameter_count());
    261     return MemOperand(fp, (1 + parameter_count() - index) * kPointerSize);
    262   }
    263 
    264   // Push a copy of the value of a parameter frame slot on top of the frame.
    265   void PushParameterAt(int index) {
    266     PushFrameSlotAt(param0_index() + index);
    267   }
    268 
    269   // Push the value of a paramter frame slot on top of the frame and
    270   // invalidate the parameter slot.  The slot should be written to before
    271   // trying to read from it again.
    272   void TakeParameterAt(int index) {
    273     TakeFrameSlotAt(param0_index() + index);
    274   }
    275 
    276   // Store the top value on the virtual frame into a parameter frame slot.
    277   // The value is left in place on top of the frame.
    278   void StoreToParameterAt(int index) {
    279     StoreToFrameSlotAt(param0_index() + index);
    280   }
    281 
    282   // The receiver frame slot.
    283   MemOperand Receiver() { return ParameterAt(-1); }
    284 
    285   // Push a try-catch or try-finally handler on top of the virtual frame.
    286   void PushTryHandler(HandlerType type);
    287 
    288   // Call stub given the number of arguments it expects on (and
    289   // removes from) the stack.
    290   void CallStub(CodeStub* stub, int arg_count) {
    291     Forget(arg_count);
    292     ASSERT(cgen()->HasValidEntryRegisters());
    293     masm()->CallStub(stub);
    294   }
    295 
    296   // Call runtime given the number of arguments expected on (and
    297   // removed from) the stack.
    298   void CallRuntime(Runtime::Function* f, int arg_count);
    299   void CallRuntime(Runtime::FunctionId id, int arg_count);
    300 
    301 #ifdef ENABLE_DEBUGGER_SUPPORT
    302   void DebugBreak();
    303 #endif
    304 
    305   // Invoke builtin given the number of arguments it expects on (and
    306   // removes from) the stack.
    307   void InvokeBuiltin(Builtins::JavaScript id,
    308                      InvokeJSFlags flag,
    309                      int arg_count);
    310 
    311   // Call into an IC stub given the number of arguments it removes
    312   // from the stack.  Register arguments to the IC stub are implicit,
    313   // and depend on the type of IC stub.
    314   void CallCodeObject(Handle<Code> ic,
    315                       RelocInfo::Mode rmode,
    316                       int dropped_args);
    317 
    318   // Drop a number of elements from the top of the expression stack.  May
    319   // emit code to affect the physical frame.  Does not clobber any registers
    320   // excepting possibly the stack pointer.
    321   void Drop(int count);
    322 
    323   // Drop one element.
    324   void Drop() { Drop(1); }
    325 
    326   // Duplicate the top element of the frame.
    327   void Dup() { PushFrameSlotAt(element_count() - 1); }
    328 
    329   // Pop an element from the top of the expression stack.  Returns a
    330   // Result, which may be a constant or a register.
    331   Result Pop();
    332 
    333   // Pop and save an element from the top of the expression stack and
    334   // emit a corresponding pop instruction.
    335   void EmitPop(Register reg);
    336 
    337   // Push an element on top of the expression stack and emit a
    338   // corresponding push instruction.
    339   void EmitPush(Register reg);
    340 
    341   // Push multiple registers on the stack and the virtual frame
    342   // Register are selected by setting bit in src_regs and
    343   // are pushed in decreasing order: r15 .. r0.
    344   void EmitPushMultiple(int count, int src_regs);
    345 
    346   // Push an element on the virtual frame.
    347   void Push(Register reg, NumberInfo::Type info = NumberInfo::kUnknown);
    348   void Push(Handle<Object> value);
    349   void Push(Smi* value) { Push(Handle<Object>(value)); }
    350 
    351   // Pushing a result invalidates it (its contents become owned by the frame).
    352   void Push(Result* result) {
    353     if (result->is_register()) {
    354       Push(result->reg());
    355     } else {
    356       ASSERT(result->is_constant());
    357       Push(result->handle());
    358     }
    359     result->Unuse();
    360   }
    361 
    362   // Nip removes zero or more elements from immediately below the top
    363   // of the frame, leaving the previous top-of-frame value on top of
    364   // the frame.  Nip(k) is equivalent to x = Pop(), Drop(k), Push(x).
    365   void Nip(int num_dropped);
    366 
    367  private:
    368   static const int kLocal0Offset = JavaScriptFrameConstants::kLocal0Offset;
    369   static const int kFunctionOffset = JavaScriptFrameConstants::kFunctionOffset;
    370   static const int kContextOffset = StandardFrameConstants::kContextOffset;
    371 
    372   static const int kHandlerSize = StackHandlerConstants::kSize / kPointerSize;
    373   static const int kPreallocatedElements = 5 + 8;  // 8 expression stack slots.
    374 
    375   ZoneList<FrameElement> elements_;
    376 
    377   // The index of the element that is at the processor's stack pointer
    378   // (the sp register).
    379   int stack_pointer_;
    380 
    381   // The index of the register frame element using each register, or
    382   // kIllegalIndex if a register is not on the frame.
    383   int register_locations_[RegisterAllocator::kNumRegisters];
    384 
    385   // The number of frame-allocated locals and parameters respectively.
    386   int parameter_count() { return cgen()->scope()->num_parameters(); }
    387   int local_count() { return cgen()->scope()->num_stack_slots(); }
    388 
    389   // The index of the element that is at the processor's frame pointer
    390   // (the fp register).  The parameters, receiver, function, and context
    391   // are below the frame pointer.
    392   int frame_pointer() { return parameter_count() + 3; }
    393 
    394   // The index of the first parameter.  The receiver lies below the first
    395   // parameter.
    396   int param0_index() { return 1; }
    397 
    398   // The index of the context slot in the frame.  It is immediately
    399   // below the frame pointer.
    400   int context_index() { return frame_pointer() - 1; }
    401 
    402   // The index of the function slot in the frame.  It is below the frame
    403   // pointer and context slot.
    404   int function_index() { return frame_pointer() - 2; }
    405 
    406   // The index of the first local.  Between the frame pointer and the
    407   // locals lies the return address.
    408   int local0_index() { return frame_pointer() + 2; }
    409 
    410   // The index of the base of the expression stack.
    411   int expression_base_index() { return local0_index() + local_count(); }
    412 
    413   // Convert a frame index into a frame pointer relative offset into the
    414   // actual stack.
    415   int fp_relative(int index) {
    416     ASSERT(index < element_count());
    417     ASSERT(frame_pointer() < element_count());  // FP is on the frame.
    418     return (frame_pointer() - index) * kPointerSize;
    419   }
    420 
    421   // Record an occurrence of a register in the virtual frame.  This has the
    422   // effect of incrementing the register's external reference count and
    423   // of updating the index of the register's location in the frame.
    424   void Use(Register reg, int index) {
    425     ASSERT(!is_used(reg));
    426     set_register_location(reg, index);
    427     cgen()->allocator()->Use(reg);
    428   }
    429 
    430   // Record that a register reference has been dropped from the frame.  This
    431   // decrements the register's external reference count and invalidates the
    432   // index of the register's location in the frame.
    433   void Unuse(Register reg) {
    434     ASSERT(is_used(reg));
    435     set_register_location(reg, kIllegalIndex);
    436     cgen()->allocator()->Unuse(reg);
    437   }
    438 
    439   // Spill the element at a particular index---write it to memory if
    440   // necessary, free any associated register, and forget its value if
    441   // constant.
    442   void SpillElementAt(int index);
    443 
    444   // Sync the element at a particular index.  If it is a register or
    445   // constant that disagrees with the value on the stack, write it to memory.
    446   // Keep the element type as register or constant, and clear the dirty bit.
    447   void SyncElementAt(int index);
    448 
    449   // Sync the range of elements in [begin, end] with memory.
    450   void SyncRange(int begin, int end);
    451 
    452   // Sync a single unsynced element that lies beneath or at the stack pointer.
    453   void SyncElementBelowStackPointer(int index);
    454 
    455   // Sync a single unsynced element that lies just above the stack pointer.
    456   void SyncElementByPushing(int index);
    457 
    458   // Push a copy of a frame slot (typically a local or parameter) on top of
    459   // the frame.
    460   void PushFrameSlotAt(int index);
    461 
    462   // Push a the value of a frame slot (typically a local or parameter) on
    463   // top of the frame and invalidate the slot.
    464   void TakeFrameSlotAt(int index);
    465 
    466   // Store the value on top of the frame to a frame slot (typically a local
    467   // or parameter).
    468   void StoreToFrameSlotAt(int index);
    469 
    470   // Spill all elements in registers. Spill the top spilled_args elements
    471   // on the frame.  Sync all other frame elements.
    472   // Then drop dropped_args elements from the virtual frame, to match
    473   // the effect of an upcoming call that will drop them from the stack.
    474   void PrepareForCall(int spilled_args, int dropped_args);
    475 
    476   // Move frame elements currently in registers or constants, that
    477   // should be in memory in the expected frame, to memory.
    478   void MergeMoveRegistersToMemory(VirtualFrame* expected);
    479 
    480   // Make the register-to-register moves necessary to
    481   // merge this frame with the expected frame.
    482   // Register to memory moves must already have been made,
    483   // and memory to register moves must follow this call.
    484   // This is because some new memory-to-register moves are
    485   // created in order to break cycles of register moves.
    486   // Used in the implementation of MergeTo().
    487   void MergeMoveRegistersToRegisters(VirtualFrame* expected);
    488 
    489   // Make the memory-to-register and constant-to-register moves
    490   // needed to make this frame equal the expected frame.
    491   // Called after all register-to-memory and register-to-register
    492   // moves have been made.  After this function returns, the frames
    493   // should be equal.
    494   void MergeMoveMemoryToRegisters(VirtualFrame* expected);
    495 
    496   // Invalidates a frame slot (puts an invalid frame element in it).
    497   // Copies on the frame are correctly handled, and if this slot was
    498   // the backing store of copies, the index of the new backing store
    499   // is returned.  Otherwise, returns kIllegalIndex.
    500   // Register counts are correctly updated.
    501   int InvalidateFrameSlotAt(int index);
    502 
    503   bool Equals(VirtualFrame* other);
    504 
    505   // Classes that need raw access to the elements_ array.
    506   friend class DeferredCode;
    507   friend class JumpTarget;
    508 };
    509 
    510 
    511 } }  // namespace v8::internal
    512 
    513 #endif  // V8_ARM_VIRTUAL_FRAME_ARM_H_
    514