Home | History | Annotate | Download | only in mips
      1 // Copyright 2010 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 
     29 #ifndef V8_MIPS_VIRTUAL_FRAME_MIPS_H_
     30 #define V8_MIPS_VIRTUAL_FRAME_MIPS_H_
     31 
     32 #include "register-allocator.h"
     33 #include "scopes.h"
     34 
     35 namespace v8 {
     36 namespace internal {
     37 
     38 
     39 // -------------------------------------------------------------------------
     40 // Virtual frames
     41 //
     42 // The virtual frame is an abstraction of the physical stack frame.  It
     43 // encapsulates the parameters, frame-allocated locals, and the expression
     44 // stack.  It supports push/pop operations on the expression stack, as well
     45 // as random access to the expression stack elements, locals, and
     46 // parameters.
     47 
     48 class VirtualFrame : public ZoneObject {
     49  public:
     50   // A utility class to introduce a scope where the virtual frame is
     51   // expected to remain spilled.  The constructor spills the code
     52   // generator's current frame, but no attempt is made to require it
     53   // to stay spilled.  It is intended as documentation while the code
     54   // generator is being transformed.
     55   class SpilledScope BASE_EMBEDDED {
     56    public:
     57     SpilledScope() {}
     58   };
     59 
     60   // An illegal index into the virtual frame.
     61   static const int kIllegalIndex = -1;
     62 
     63   // Construct an initial virtual frame on entry to a JS function.
     64   VirtualFrame();
     65 
     66   // Construct a virtual frame as a clone of an existing one.
     67   explicit VirtualFrame(VirtualFrame* original);
     68 
     69   CodeGenerator* cgen() { return CodeGeneratorScope::Current(); }
     70   MacroAssembler* masm() { return cgen()->masm(); }
     71 
     72   // Create a duplicate of an existing valid frame element.
     73   FrameElement CopyElementAt(int index);
     74 
     75   // The number of elements on the virtual frame.
     76   int element_count() { return elements_.length(); }
     77 
     78   // The height of the virtual expression stack.
     79   int height() {
     80     return element_count() - expression_base_index();
     81   }
     82 
     83   int register_location(int num) {
     84     ASSERT(num >= 0 && num < RegisterAllocator::kNumRegisters);
     85     return register_locations_[num];
     86   }
     87 
     88   int register_location(Register reg) {
     89     return register_locations_[RegisterAllocator::ToNumber(reg)];
     90   }
     91 
     92   void set_register_location(Register reg, int index) {
     93     register_locations_[RegisterAllocator::ToNumber(reg)] = index;
     94   }
     95 
     96   bool is_used(int num) {
     97     ASSERT(num >= 0 && num < RegisterAllocator::kNumRegisters);
     98     return register_locations_[num] != kIllegalIndex;
     99   }
    100 
    101   bool is_used(Register reg) {
    102     return register_locations_[RegisterAllocator::ToNumber(reg)]
    103         != kIllegalIndex;
    104   }
    105 
    106   // Add extra in-memory elements to the top of the frame to match an actual
    107   // frame (eg, the frame after an exception handler is pushed).  No code is
    108   // emitted.
    109   void Adjust(int count);
    110 
    111   // Forget elements from the top of the frame to match an actual frame (eg,
    112   // the frame after a runtime call).  No code is emitted.
    113   void Forget(int count) {
    114     ASSERT(count >= 0);
    115     ASSERT(stack_pointer_ == element_count() - 1);
    116     stack_pointer_ -= count;
    117     // On mips, all elements are in memory, so there is no extra bookkeeping
    118     // (registers, copies, etc.) beyond dropping the elements.
    119     elements_.Rewind(stack_pointer_ + 1);
    120   }
    121 
    122   // Forget count elements from the top of the frame and adjust the stack
    123   // pointer downward.  This is used, for example, before merging frames at
    124   // break, continue, and return targets.
    125   void ForgetElements(int count);
    126 
    127   // Spill all values from the frame to memory.
    128   void SpillAll();
    129 
    130   // Spill all occurrences of a specific register from the frame.
    131   void Spill(Register reg) {
    132     if (is_used(reg)) SpillElementAt(register_location(reg));
    133   }
    134 
    135   // Spill all occurrences of an arbitrary register if possible.  Return the
    136   // register spilled or no_reg if it was not possible to free any register
    137   // (ie, they all have frame-external references).
    138   Register SpillAnyRegister();
    139 
    140   // Prepare this virtual frame for merging to an expected frame by
    141   // performing some state changes that do not require generating
    142   // code.  It is guaranteed that no code will be generated.
    143   void PrepareMergeTo(VirtualFrame* expected);
    144 
    145   // Make this virtual frame have a state identical to an expected virtual
    146   // frame.  As a side effect, code may be emitted to make this frame match
    147   // the expected one.
    148   void MergeTo(VirtualFrame* expected);
    149 
    150   // Detach a frame from its code generator, perhaps temporarily.  This
    151   // tells the register allocator that it is free to use frame-internal
    152   // registers.  Used when the code generator's frame is switched from this
    153   // one to NULL by an unconditional jump.
    154   void DetachFromCodeGenerator() {
    155     RegisterAllocator* cgen_allocator = cgen()->allocator();
    156     for (int i = 0; i < RegisterAllocator::kNumRegisters; i++) {
    157       if (is_used(i)) cgen_allocator->Unuse(i);
    158     }
    159   }
    160 
    161   // (Re)attach a frame to its code generator.  This informs the register
    162   // allocator that the frame-internal register references are active again.
    163   // Used when a code generator's frame is switched from NULL to this one by
    164   // binding a label.
    165   void AttachToCodeGenerator() {
    166     RegisterAllocator* cgen_allocator = cgen()->allocator();
    167     for (int i = 0; i < RegisterAllocator::kNumRegisters; i++) {
    168       if (is_used(i)) cgen_allocator->Unuse(i);
    169     }
    170   }
    171 
    172   // Emit code for the physical JS entry and exit frame sequences.  After
    173   // calling Enter, the virtual frame is ready for use; and after calling
    174   // Exit it should not be used.  Note that Enter does not allocate space in
    175   // the physical frame for storing frame-allocated locals.
    176   void Enter();
    177   void Exit();
    178 
    179   // Prepare for returning from the frame by spilling locals and
    180   // dropping all non-locals elements in the virtual frame.  This
    181   // avoids generating unnecessary merge code when jumping to the
    182   // shared return site.  Emits code for spills.
    183   void PrepareForReturn();
    184 
    185   // Allocate and initialize the frame-allocated locals.
    186   void AllocateStackSlots();
    187 
    188   // The current top of the expression stack as an assembly operand.
    189   MemOperand Top() { return MemOperand(sp, 0); }
    190 
    191   // An element of the expression stack as an assembly operand.
    192   MemOperand ElementAt(int index) {
    193     return MemOperand(sp, index * kPointerSize);
    194   }
    195 
    196   // Random-access store to a frame-top relative frame element.  The result
    197   // becomes owned by the frame and is invalidated.
    198   void SetElementAt(int index, Result* value);
    199 
    200   // Set a frame element to a constant.  The index is frame-top relative.
    201   void SetElementAt(int index, Handle<Object> value) {
    202     Result temp(value);
    203     SetElementAt(index, &temp);
    204   }
    205 
    206   void PushElementAt(int index) {
    207     PushFrameSlotAt(element_count() - index - 1);
    208   }
    209 
    210   // A frame-allocated local as an assembly operand.
    211   MemOperand LocalAt(int index) {
    212     ASSERT(0 <= index);
    213     ASSERT(index < local_count());
    214     return MemOperand(s8_fp, kLocal0Offset - index * kPointerSize);
    215   }
    216 
    217   // Push a copy of the value of a local frame slot on top of the frame.
    218   void PushLocalAt(int index) {
    219     PushFrameSlotAt(local0_index() + index);
    220   }
    221 
    222   // Push the value of a local frame slot on top of the frame and invalidate
    223   // the local slot.  The slot should be written to before trying to read
    224   // from it again.
    225   void TakeLocalAt(int index) {
    226     TakeFrameSlotAt(local0_index() + index);
    227   }
    228 
    229   // Store the top value on the virtual frame into a local frame slot.  The
    230   // value is left in place on top of the frame.
    231   void StoreToLocalAt(int index) {
    232     StoreToFrameSlotAt(local0_index() + index);
    233   }
    234 
    235   // Push the address of the receiver slot on the frame.
    236   void PushReceiverSlotAddress();
    237 
    238   // The function frame slot.
    239   MemOperand Function() { return MemOperand(s8_fp, kFunctionOffset); }
    240 
    241   // Push the function on top of the frame.
    242   void PushFunction() { PushFrameSlotAt(function_index()); }
    243 
    244   // The context frame slot.
    245   MemOperand Context() { return MemOperand(s8_fp, kContextOffset); }
    246 
    247   // Save the value of the cp register to the context frame slot.
    248   void SaveContextRegister();
    249 
    250   // Restore the cp register from the value of the context frame
    251   // slot.
    252   void RestoreContextRegister();
    253 
    254   // A parameter as an assembly operand.
    255   MemOperand ParameterAt(int index) {
    256     // Index -1 corresponds to the receiver.
    257     ASSERT(-1 <= index);  // -1 is the receiver.
    258     ASSERT(index <= parameter_count());
    259     uint16_t a = 0;   // Number of argument slots.
    260     return MemOperand(s8_fp, (1 + parameter_count() + a - index) *kPointerSize);
    261   }
    262 
    263   // Push a copy of the value of a parameter frame slot on top of the frame.
    264   void PushParameterAt(int index) {
    265     PushFrameSlotAt(param0_index() + index);
    266   }
    267 
    268   // Push the value of a paramter frame slot on top of the frame and
    269   // invalidate the parameter slot.  The slot should be written to before
    270   // trying to read from it again.
    271   void TakeParameterAt(int index) {
    272     TakeFrameSlotAt(param0_index() + index);
    273   }
    274 
    275   // Store the top value on the virtual frame into a parameter frame slot.
    276   // The value is left in place on top of the frame.
    277   void StoreToParameterAt(int index) {
    278     StoreToFrameSlotAt(param0_index() + index);
    279   }
    280 
    281   // The receiver frame slot.
    282   MemOperand Receiver() { return ParameterAt(-1); }
    283 
    284   // Push a try-catch or try-finally handler on top of the virtual frame.
    285   void PushTryHandler(HandlerType type);
    286 
    287   // Call stub given the number of arguments it expects on (and
    288   // removes from) the stack.
    289   void CallStub(CodeStub* stub, int arg_count) {
    290     PrepareForCall(arg_count, arg_count);
    291     RawCallStub(stub);
    292   }
    293 
    294   // Call stub that expects its argument in r0.  The argument is given
    295   // as a result which must be the register r0.
    296   void CallStub(CodeStub* stub, Result* arg);
    297 
    298   // Call stub that expects its arguments in r1 and r0.  The arguments
    299   // are given as results which must be the appropriate registers.
    300   void CallStub(CodeStub* stub, Result* arg0, Result* arg1);
    301 
    302   // Call runtime given the number of arguments expected on (and
    303   // removed from) the stack.
    304   void CallRuntime(Runtime::Function* f, int arg_count);
    305   void CallRuntime(Runtime::FunctionId id, int arg_count);
    306 
    307   // Call runtime with sp aligned to 8 bytes.
    308   void CallAlignedRuntime(Runtime::Function* f, int arg_count);
    309   void CallAlignedRuntime(Runtime::FunctionId id, int arg_count);
    310 
    311   // Invoke builtin given the number of arguments it expects on (and
    312   // removes from) the stack.
    313   void InvokeBuiltin(Builtins::JavaScript id,
    314                      InvokeJSFlags flag,
    315                      Result* arg_count_register,
    316                      int arg_count);
    317 
    318   // Call into an IC stub given the number of arguments it removes
    319   // from the stack.  Register arguments are passed as results and
    320   // consumed by the call.
    321   void CallCodeObject(Handle<Code> ic,
    322                       RelocInfo::Mode rmode,
    323                       int dropped_args);
    324   void CallCodeObject(Handle<Code> ic,
    325                       RelocInfo::Mode rmode,
    326                       Result* arg,
    327                       int dropped_args);
    328   void CallCodeObject(Handle<Code> ic,
    329                       RelocInfo::Mode rmode,
    330                       Result* arg0,
    331                       Result* arg1,
    332                       int dropped_args,
    333                       bool set_auto_args_slots = false);
    334 
    335   // Drop a number of elements from the top of the expression stack.  May
    336   // emit code to affect the physical frame.  Does not clobber any registers
    337   // excepting possibly the stack pointer.
    338   void Drop(int count);
    339   // Similar to VirtualFrame::Drop but we don't modify the actual stack.
    340   // This is because we need to manually restore sp to the correct position.
    341   void DropFromVFrameOnly(int count);
    342 
    343   // Drop one element.
    344   void Drop() { Drop(1); }
    345   void DropFromVFrameOnly() { DropFromVFrameOnly(1); }
    346 
    347   // Duplicate the top element of the frame.
    348   void Dup() { PushFrameSlotAt(element_count() - 1); }
    349 
    350   // Pop an element from the top of the expression stack.  Returns a
    351   // Result, which may be a constant or a register.
    352   Result Pop();
    353 
    354   // Pop and save an element from the top of the expression stack and
    355   // emit a corresponding pop instruction.
    356   void EmitPop(Register reg);
    357   // Same but for multiple registers
    358   void EmitMultiPop(RegList regs);  // higher indexed registers popped first
    359   void EmitMultiPopReversed(RegList regs);  // lower first
    360 
    361   // Push an element on top of the expression stack and emit a
    362   // corresponding push instruction.
    363   void EmitPush(Register reg);
    364   // Same but for multiple registers.
    365   void EmitMultiPush(RegList regs);  // lower indexed registers are pushed first
    366   void EmitMultiPushReversed(RegList regs);  // higher first
    367 
    368   // Push an element on the virtual frame.
    369   void Push(Register reg);
    370   void Push(Handle<Object> value);
    371   void Push(Smi* value) { Push(Handle<Object>(value)); }
    372 
    373   // Pushing a result invalidates it (its contents become owned by the frame).
    374   void Push(Result* result) {
    375     if (result->is_register()) {
    376       Push(result->reg());
    377     } else {
    378       ASSERT(result->is_constant());
    379       Push(result->handle());
    380     }
    381     result->Unuse();
    382   }
    383 
    384   // Nip removes zero or more elements from immediately below the top
    385   // of the frame, leaving the previous top-of-frame value on top of
    386   // the frame.  Nip(k) is equivalent to x = Pop(), Drop(k), Push(x).
    387   void Nip(int num_dropped);
    388 
    389   // This pushes 4 arguments slots on the stack and saves asked 'a' registers
    390   // 'a' registers are arguments register a0 to a3.
    391   void EmitArgumentSlots(RegList reglist);
    392 
    393  private:
    394   static const int kLocal0Offset = JavaScriptFrameConstants::kLocal0Offset;
    395   static const int kFunctionOffset = JavaScriptFrameConstants::kFunctionOffset;
    396   static const int kContextOffset = StandardFrameConstants::kContextOffset;
    397 
    398   static const int kHandlerSize = StackHandlerConstants::kSize / kPointerSize;
    399   static const int kPreallocatedElements = 5 + 8;  // 8 expression stack slots.
    400 
    401   ZoneList<FrameElement> elements_;
    402 
    403   // The index of the element that is at the processor's stack pointer
    404   // (the sp register).
    405   int stack_pointer_;
    406 
    407   // The index of the register frame element using each register, or
    408   // kIllegalIndex if a register is not on the frame.
    409   int register_locations_[RegisterAllocator::kNumRegisters];
    410 
    411   // The number of frame-allocated locals and parameters respectively.
    412   int parameter_count() { return cgen()->scope()->num_parameters(); }
    413   int local_count() { return cgen()->scope()->num_stack_slots(); }
    414 
    415   // The index of the element that is at the processor's frame pointer
    416   // (the fp register).  The parameters, receiver, function, and context
    417   // are below the frame pointer.
    418   int frame_pointer() { return parameter_count() + 3; }
    419 
    420   // The index of the first parameter.  The receiver lies below the first
    421   // parameter.
    422   int param0_index() { return 1; }
    423 
    424   // The index of the context slot in the frame.  It is immediately
    425   // below the frame pointer.
    426   int context_index() { return frame_pointer() - 1; }
    427 
    428   // The index of the function slot in the frame.  It is below the frame
    429   // pointer and context slot.
    430   int function_index() { return frame_pointer() - 2; }
    431 
    432   // The index of the first local.  Between the frame pointer and the
    433   // locals lies the return address.
    434   int local0_index() { return frame_pointer() + 2; }
    435 
    436   // The index of the base of the expression stack.
    437   int expression_base_index() { return local0_index() + local_count(); }
    438 
    439   // Convert a frame index into a frame pointer relative offset into the
    440   // actual stack.
    441   int fp_relative(int index) {
    442     ASSERT(index < element_count());
    443     ASSERT(frame_pointer() < element_count());  // FP is on the frame.
    444     return (frame_pointer() - index) * kPointerSize;
    445   }
    446 
    447   // Record an occurrence of a register in the virtual frame.  This has the
    448   // effect of incrementing the register's external reference count and
    449   // of updating the index of the register's location in the frame.
    450   void Use(Register reg, int index) {
    451     ASSERT(!is_used(reg));
    452     set_register_location(reg, index);
    453     cgen()->allocator()->Use(reg);
    454   }
    455 
    456   // Record that a register reference has been dropped from the frame.  This
    457   // decrements the register's external reference count and invalidates the
    458   // index of the register's location in the frame.
    459   void Unuse(Register reg) {
    460     ASSERT(is_used(reg));
    461     set_register_location(reg, kIllegalIndex);
    462     cgen()->allocator()->Unuse(reg);
    463   }
    464 
    465   // Spill the element at a particular index---write it to memory if
    466   // necessary, free any associated register, and forget its value if
    467   // constant.
    468   void SpillElementAt(int index);
    469 
    470   // Sync the element at a particular index.  If it is a register or
    471   // constant that disagrees with the value on the stack, write it to memory.
    472   // Keep the element type as register or constant, and clear the dirty bit.
    473   void SyncElementAt(int index);
    474 
    475   // Sync the range of elements in [begin, end] with memory.
    476   void SyncRange(int begin, int end);
    477 
    478   // Sync a single unsynced element that lies beneath or at the stack pointer.
    479   void SyncElementBelowStackPointer(int index);
    480 
    481   // Sync a single unsynced element that lies just above the stack pointer.
    482   void SyncElementByPushing(int index);
    483 
    484   // Push a copy of a frame slot (typically a local or parameter) on top of
    485   // the frame.
    486   void PushFrameSlotAt(int index);
    487 
    488   // Push a the value of a frame slot (typically a local or parameter) on
    489   // top of the frame and invalidate the slot.
    490   void TakeFrameSlotAt(int index);
    491 
    492   // Store the value on top of the frame to a frame slot (typically a local
    493   // or parameter).
    494   void StoreToFrameSlotAt(int index);
    495 
    496   // Spill all elements in registers. Spill the top spilled_args elements
    497   // on the frame.  Sync all other frame elements.
    498   // Then drop dropped_args elements from the virtual frame, to match
    499   // the effect of an upcoming call that will drop them from the stack.
    500   void PrepareForCall(int spilled_args, int dropped_args);
    501 
    502   // Move frame elements currently in registers or constants, that
    503   // should be in memory in the expected frame, to memory.
    504   void MergeMoveRegistersToMemory(VirtualFrame* expected);
    505 
    506   // Make the register-to-register moves necessary to
    507   // merge this frame with the expected frame.
    508   // Register to memory moves must already have been made,
    509   // and memory to register moves must follow this call.
    510   // This is because some new memory-to-register moves are
    511   // created in order to break cycles of register moves.
    512   // Used in the implementation of MergeTo().
    513   void MergeMoveRegistersToRegisters(VirtualFrame* expected);
    514 
    515   // Make the memory-to-register and constant-to-register moves
    516   // needed to make this frame equal the expected frame.
    517   // Called after all register-to-memory and register-to-register
    518   // moves have been made.  After this function returns, the frames
    519   // should be equal.
    520   void MergeMoveMemoryToRegisters(VirtualFrame* expected);
    521 
    522   // Invalidates a frame slot (puts an invalid frame element in it).
    523   // Copies on the frame are correctly handled, and if this slot was
    524   // the backing store of copies, the index of the new backing store
    525   // is returned.  Otherwise, returns kIllegalIndex.
    526   // Register counts are correctly updated.
    527   int InvalidateFrameSlotAt(int index);
    528 
    529   // Call a code stub that has already been prepared for calling (via
    530   // PrepareForCall).
    531   void RawCallStub(CodeStub* stub);
    532 
    533   // Calls a code object which has already been prepared for calling
    534   // (via PrepareForCall).
    535   void RawCallCodeObject(Handle<Code> code, RelocInfo::Mode rmode);
    536 
    537   bool Equals(VirtualFrame* other);
    538 
    539   // Classes that need raw access to the elements_ array.
    540   friend class DeferredCode;
    541   friend class JumpTarget;
    542 };
    543 
    544 
    545 } }  // namespace v8::internal
    546 
    547 #endif  // V8_MIPS_VIRTUAL_FRAME_MIPS_H_
    548 
    549