1 // Copyright 2006-2008 the V8 project authors. All rights reserved. 2 // Redistribution and use in source and binary forms, with or without 3 // modification, are permitted provided that the following conditions are 4 // met: 5 // 6 // * Redistributions of source code must retain the above copyright 7 // notice, this list of conditions and the following disclaimer. 8 // * Redistributions in binary form must reproduce the above 9 // copyright notice, this list of conditions and the following 10 // disclaimer in the documentation and/or other materials provided 11 // with the distribution. 12 // * Neither the name of Google Inc. nor the names of its 13 // contributors may be used to endorse or promote products derived 14 // from this software without specific prior written permission. 15 // 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 28 #include "v8.h" 29 30 #include "api.h" 31 #include "bootstrapper.h" 32 #include "debug.h" 33 #include "execution.h" 34 #include "platform.h" 35 #include "simulator.h" 36 #include "string-stream.h" 37 38 namespace v8 { 39 namespace internal { 40 41 ThreadLocalTop Top::thread_local_; 42 Mutex* Top::break_access_ = OS::CreateMutex(); 43 44 NoAllocationStringAllocator* preallocated_message_space = NULL; 45 46 Address top_addresses[] = { 47 #define C(name) reinterpret_cast<Address>(Top::name()), 48 TOP_ADDRESS_LIST(C) 49 TOP_ADDRESS_LIST_PROF(C) 50 #undef C 51 NULL 52 }; 53 54 55 v8::TryCatch* ThreadLocalTop::TryCatchHandler() { 56 return TRY_CATCH_FROM_ADDRESS(try_catch_handler_address()); 57 } 58 59 60 void ThreadLocalTop::Initialize() { 61 c_entry_fp_ = 0; 62 handler_ = 0; 63 #ifdef ENABLE_LOGGING_AND_PROFILING 64 js_entry_sp_ = 0; 65 #endif 66 stack_is_cooked_ = false; 67 try_catch_handler_address_ = NULL; 68 context_ = NULL; 69 int id = ThreadManager::CurrentId(); 70 thread_id_ = (id == 0) ? ThreadManager::kInvalidId : id; 71 external_caught_exception_ = false; 72 failed_access_check_callback_ = NULL; 73 save_context_ = NULL; 74 catcher_ = NULL; 75 } 76 77 78 Address Top::get_address_from_id(Top::AddressId id) { 79 return top_addresses[id]; 80 } 81 82 83 char* Top::Iterate(ObjectVisitor* v, char* thread_storage) { 84 ThreadLocalTop* thread = reinterpret_cast<ThreadLocalTop*>(thread_storage); 85 Iterate(v, thread); 86 return thread_storage + sizeof(ThreadLocalTop); 87 } 88 89 90 void Top::Iterate(ObjectVisitor* v, ThreadLocalTop* thread) { 91 v->VisitPointer(&(thread->pending_exception_)); 92 v->VisitPointer(&(thread->pending_message_obj_)); 93 v->VisitPointer( 94 bit_cast<Object**, Script**>(&(thread->pending_message_script_))); 95 v->VisitPointer(bit_cast<Object**, Context**>(&(thread->context_))); 96 v->VisitPointer(&(thread->scheduled_exception_)); 97 98 for (v8::TryCatch* block = thread->TryCatchHandler(); 99 block != NULL; 100 block = TRY_CATCH_FROM_ADDRESS(block->next_)) { 101 v->VisitPointer(bit_cast<Object**, void**>(&(block->exception_))); 102 v->VisitPointer(bit_cast<Object**, void**>(&(block->message_))); 103 } 104 105 // Iterate over pointers on native execution stack. 106 for (StackFrameIterator it(thread); !it.done(); it.Advance()) { 107 it.frame()->Iterate(v); 108 } 109 } 110 111 112 void Top::Iterate(ObjectVisitor* v) { 113 ThreadLocalTop* current_t = &thread_local_; 114 Iterate(v, current_t); 115 } 116 117 118 void Top::InitializeThreadLocal() { 119 thread_local_.Initialize(); 120 clear_pending_exception(); 121 clear_pending_message(); 122 clear_scheduled_exception(); 123 } 124 125 126 // Create a dummy thread that will wait forever on a semaphore. The only 127 // purpose for this thread is to have some stack area to save essential data 128 // into for use by a stacks only core dump (aka minidump). 129 class PreallocatedMemoryThread: public Thread { 130 public: 131 PreallocatedMemoryThread() : keep_running_(true) { 132 wait_for_ever_semaphore_ = OS::CreateSemaphore(0); 133 data_ready_semaphore_ = OS::CreateSemaphore(0); 134 } 135 136 // When the thread starts running it will allocate a fixed number of bytes 137 // on the stack and publish the location of this memory for others to use. 138 void Run() { 139 EmbeddedVector<char, 15 * 1024> local_buffer; 140 141 // Initialize the buffer with a known good value. 142 OS::StrNCpy(local_buffer, "Trace data was not generated.\n", 143 local_buffer.length()); 144 145 // Publish the local buffer and signal its availability. 146 data_ = local_buffer.start(); 147 length_ = local_buffer.length(); 148 data_ready_semaphore_->Signal(); 149 150 while (keep_running_) { 151 // This thread will wait here until the end of time. 152 wait_for_ever_semaphore_->Wait(); 153 } 154 155 // Make sure we access the buffer after the wait to remove all possibility 156 // of it being optimized away. 157 OS::StrNCpy(local_buffer, "PreallocatedMemoryThread shutting down.\n", 158 local_buffer.length()); 159 } 160 161 static char* data() { 162 if (data_ready_semaphore_ != NULL) { 163 // Initial access is guarded until the data has been published. 164 data_ready_semaphore_->Wait(); 165 delete data_ready_semaphore_; 166 data_ready_semaphore_ = NULL; 167 } 168 return data_; 169 } 170 171 static unsigned length() { 172 if (data_ready_semaphore_ != NULL) { 173 // Initial access is guarded until the data has been published. 174 data_ready_semaphore_->Wait(); 175 delete data_ready_semaphore_; 176 data_ready_semaphore_ = NULL; 177 } 178 return length_; 179 } 180 181 static void StartThread() { 182 if (the_thread_ != NULL) return; 183 184 the_thread_ = new PreallocatedMemoryThread(); 185 the_thread_->Start(); 186 } 187 188 // Stop the PreallocatedMemoryThread and release its resources. 189 static void StopThread() { 190 if (the_thread_ == NULL) return; 191 192 the_thread_->keep_running_ = false; 193 wait_for_ever_semaphore_->Signal(); 194 195 // Wait for the thread to terminate. 196 the_thread_->Join(); 197 198 if (data_ready_semaphore_ != NULL) { 199 delete data_ready_semaphore_; 200 data_ready_semaphore_ = NULL; 201 } 202 203 delete wait_for_ever_semaphore_; 204 wait_for_ever_semaphore_ = NULL; 205 206 // Done with the thread entirely. 207 delete the_thread_; 208 the_thread_ = NULL; 209 } 210 211 private: 212 // Used to make sure that the thread keeps looping even for spurious wakeups. 213 bool keep_running_; 214 215 // The preallocated memory thread singleton. 216 static PreallocatedMemoryThread* the_thread_; 217 // This semaphore is used by the PreallocatedMemoryThread to wait for ever. 218 static Semaphore* wait_for_ever_semaphore_; 219 // Semaphore to signal that the data has been initialized. 220 static Semaphore* data_ready_semaphore_; 221 222 // Location and size of the preallocated memory block. 223 static char* data_; 224 static unsigned length_; 225 226 DISALLOW_COPY_AND_ASSIGN(PreallocatedMemoryThread); 227 }; 228 229 PreallocatedMemoryThread* PreallocatedMemoryThread::the_thread_ = NULL; 230 Semaphore* PreallocatedMemoryThread::wait_for_ever_semaphore_ = NULL; 231 Semaphore* PreallocatedMemoryThread::data_ready_semaphore_ = NULL; 232 char* PreallocatedMemoryThread::data_ = NULL; 233 unsigned PreallocatedMemoryThread::length_ = 0; 234 235 static bool initialized = false; 236 237 void Top::Initialize() { 238 CHECK(!initialized); 239 240 InitializeThreadLocal(); 241 242 // Only preallocate on the first initialization. 243 if (FLAG_preallocate_message_memory && (preallocated_message_space == NULL)) { 244 // Start the thread which will set aside some memory. 245 PreallocatedMemoryThread::StartThread(); 246 preallocated_message_space = 247 new NoAllocationStringAllocator(PreallocatedMemoryThread::data(), 248 PreallocatedMemoryThread::length()); 249 PreallocatedStorage::Init(PreallocatedMemoryThread::length() / 4); 250 } 251 initialized = true; 252 } 253 254 255 void Top::TearDown() { 256 if (initialized) { 257 // Remove the external reference to the preallocated stack memory. 258 if (preallocated_message_space != NULL) { 259 delete preallocated_message_space; 260 preallocated_message_space = NULL; 261 } 262 263 PreallocatedMemoryThread::StopThread(); 264 initialized = false; 265 } 266 } 267 268 269 void Top::RegisterTryCatchHandler(v8::TryCatch* that) { 270 // The ARM simulator has a separate JS stack. We therefore register 271 // the C++ try catch handler with the simulator and get back an 272 // address that can be used for comparisons with addresses into the 273 // JS stack. When running without the simulator, the address 274 // returned will be the address of the C++ try catch handler itself. 275 Address address = reinterpret_cast<Address>( 276 SimulatorStack::RegisterCTryCatch(reinterpret_cast<uintptr_t>(that))); 277 thread_local_.set_try_catch_handler_address(address); 278 } 279 280 281 void Top::UnregisterTryCatchHandler(v8::TryCatch* that) { 282 ASSERT(thread_local_.TryCatchHandler() == that); 283 thread_local_.set_try_catch_handler_address( 284 reinterpret_cast<Address>(that->next_)); 285 thread_local_.catcher_ = NULL; 286 SimulatorStack::UnregisterCTryCatch(); 287 } 288 289 290 void Top::MarkCompactPrologue(bool is_compacting) { 291 MarkCompactPrologue(is_compacting, &thread_local_); 292 } 293 294 295 void Top::MarkCompactPrologue(bool is_compacting, char* data) { 296 MarkCompactPrologue(is_compacting, reinterpret_cast<ThreadLocalTop*>(data)); 297 } 298 299 300 void Top::MarkCompactPrologue(bool is_compacting, ThreadLocalTop* thread) { 301 if (is_compacting) { 302 StackFrame::CookFramesForThread(thread); 303 } 304 } 305 306 307 void Top::MarkCompactEpilogue(bool is_compacting, char* data) { 308 MarkCompactEpilogue(is_compacting, reinterpret_cast<ThreadLocalTop*>(data)); 309 } 310 311 312 void Top::MarkCompactEpilogue(bool is_compacting) { 313 MarkCompactEpilogue(is_compacting, &thread_local_); 314 } 315 316 317 void Top::MarkCompactEpilogue(bool is_compacting, ThreadLocalTop* thread) { 318 if (is_compacting) { 319 StackFrame::UncookFramesForThread(thread); 320 } 321 } 322 323 324 static int stack_trace_nesting_level = 0; 325 static StringStream* incomplete_message = NULL; 326 327 328 Handle<String> Top::StackTrace() { 329 if (stack_trace_nesting_level == 0) { 330 stack_trace_nesting_level++; 331 HeapStringAllocator allocator; 332 StringStream::ClearMentionedObjectCache(); 333 StringStream accumulator(&allocator); 334 incomplete_message = &accumulator; 335 PrintStack(&accumulator); 336 Handle<String> stack_trace = accumulator.ToString(); 337 incomplete_message = NULL; 338 stack_trace_nesting_level = 0; 339 return stack_trace; 340 } else if (stack_trace_nesting_level == 1) { 341 stack_trace_nesting_level++; 342 OS::PrintError( 343 "\n\nAttempt to print stack while printing stack (double fault)\n"); 344 OS::PrintError( 345 "If you are lucky you may find a partial stack dump on stdout.\n\n"); 346 incomplete_message->OutputToStdOut(); 347 return Factory::empty_symbol(); 348 } else { 349 OS::Abort(); 350 // Unreachable 351 return Factory::empty_symbol(); 352 } 353 } 354 355 356 void Top::PrintStack() { 357 if (stack_trace_nesting_level == 0) { 358 stack_trace_nesting_level++; 359 360 StringAllocator* allocator; 361 if (preallocated_message_space == NULL) { 362 allocator = new HeapStringAllocator(); 363 } else { 364 allocator = preallocated_message_space; 365 } 366 367 NativeAllocationChecker allocation_checker( 368 !FLAG_preallocate_message_memory ? 369 NativeAllocationChecker::ALLOW : 370 NativeAllocationChecker::DISALLOW); 371 372 StringStream::ClearMentionedObjectCache(); 373 StringStream accumulator(allocator); 374 incomplete_message = &accumulator; 375 PrintStack(&accumulator); 376 accumulator.OutputToStdOut(); 377 accumulator.Log(); 378 incomplete_message = NULL; 379 stack_trace_nesting_level = 0; 380 if (preallocated_message_space == NULL) { 381 // Remove the HeapStringAllocator created above. 382 delete allocator; 383 } 384 } else if (stack_trace_nesting_level == 1) { 385 stack_trace_nesting_level++; 386 OS::PrintError( 387 "\n\nAttempt to print stack while printing stack (double fault)\n"); 388 OS::PrintError( 389 "If you are lucky you may find a partial stack dump on stdout.\n\n"); 390 incomplete_message->OutputToStdOut(); 391 } 392 } 393 394 395 static void PrintFrames(StringStream* accumulator, 396 StackFrame::PrintMode mode) { 397 StackFrameIterator it; 398 for (int i = 0; !it.done(); it.Advance()) { 399 it.frame()->Print(accumulator, mode, i++); 400 } 401 } 402 403 404 void Top::PrintStack(StringStream* accumulator) { 405 // The MentionedObjectCache is not GC-proof at the moment. 406 AssertNoAllocation nogc; 407 ASSERT(StringStream::IsMentionedObjectCacheClear()); 408 409 // Avoid printing anything if there are no frames. 410 if (c_entry_fp(GetCurrentThread()) == 0) return; 411 412 accumulator->Add( 413 "\n==== Stack trace ============================================\n\n"); 414 PrintFrames(accumulator, StackFrame::OVERVIEW); 415 416 accumulator->Add( 417 "\n==== Details ================================================\n\n"); 418 PrintFrames(accumulator, StackFrame::DETAILS); 419 420 accumulator->PrintMentionedObjectCache(); 421 accumulator->Add("=====================\n\n"); 422 } 423 424 425 void Top::SetFailedAccessCheckCallback(v8::FailedAccessCheckCallback callback) { 426 ASSERT(thread_local_.failed_access_check_callback_ == NULL); 427 thread_local_.failed_access_check_callback_ = callback; 428 } 429 430 431 void Top::ReportFailedAccessCheck(JSObject* receiver, v8::AccessType type) { 432 if (!thread_local_.failed_access_check_callback_) return; 433 434 ASSERT(receiver->IsAccessCheckNeeded()); 435 ASSERT(Top::context()); 436 // The callers of this method are not expecting a GC. 437 AssertNoAllocation no_gc; 438 439 // Get the data object from access check info. 440 JSFunction* constructor = JSFunction::cast(receiver->map()->constructor()); 441 Object* info = constructor->shared()->function_data(); 442 if (info == Heap::undefined_value()) return; 443 444 Object* data_obj = FunctionTemplateInfo::cast(info)->access_check_info(); 445 if (data_obj == Heap::undefined_value()) return; 446 447 HandleScope scope; 448 Handle<JSObject> receiver_handle(receiver); 449 Handle<Object> data(AccessCheckInfo::cast(data_obj)->data()); 450 thread_local_.failed_access_check_callback_( 451 v8::Utils::ToLocal(receiver_handle), 452 type, 453 v8::Utils::ToLocal(data)); 454 } 455 456 457 enum MayAccessDecision { 458 YES, NO, UNKNOWN 459 }; 460 461 462 static MayAccessDecision MayAccessPreCheck(JSObject* receiver, 463 v8::AccessType type) { 464 // During bootstrapping, callback functions are not enabled yet. 465 if (Bootstrapper::IsActive()) return YES; 466 467 if (receiver->IsJSGlobalProxy()) { 468 Object* receiver_context = JSGlobalProxy::cast(receiver)->context(); 469 if (!receiver_context->IsContext()) return NO; 470 471 // Get the global context of current top context. 472 // avoid using Top::global_context() because it uses Handle. 473 Context* global_context = Top::context()->global()->global_context(); 474 if (receiver_context == global_context) return YES; 475 476 if (Context::cast(receiver_context)->security_token() == 477 global_context->security_token()) 478 return YES; 479 } 480 481 return UNKNOWN; 482 } 483 484 485 bool Top::MayNamedAccess(JSObject* receiver, Object* key, v8::AccessType type) { 486 ASSERT(receiver->IsAccessCheckNeeded()); 487 488 // The callers of this method are not expecting a GC. 489 AssertNoAllocation no_gc; 490 491 // Skip checks for hidden properties access. Note, we do not 492 // require existence of a context in this case. 493 if (key == Heap::hidden_symbol()) return true; 494 495 // Check for compatibility between the security tokens in the 496 // current lexical context and the accessed object. 497 ASSERT(Top::context()); 498 499 MayAccessDecision decision = MayAccessPreCheck(receiver, type); 500 if (decision != UNKNOWN) return decision == YES; 501 502 // Get named access check callback 503 JSFunction* constructor = JSFunction::cast(receiver->map()->constructor()); 504 Object* info = constructor->shared()->function_data(); 505 if (info == Heap::undefined_value()) return false; 506 507 Object* data_obj = FunctionTemplateInfo::cast(info)->access_check_info(); 508 if (data_obj == Heap::undefined_value()) return false; 509 510 Object* fun_obj = AccessCheckInfo::cast(data_obj)->named_callback(); 511 v8::NamedSecurityCallback callback = 512 v8::ToCData<v8::NamedSecurityCallback>(fun_obj); 513 514 if (!callback) return false; 515 516 HandleScope scope; 517 Handle<JSObject> receiver_handle(receiver); 518 Handle<Object> key_handle(key); 519 Handle<Object> data(AccessCheckInfo::cast(data_obj)->data()); 520 LOG(ApiNamedSecurityCheck(key)); 521 bool result = false; 522 { 523 // Leaving JavaScript. 524 VMState state(EXTERNAL); 525 result = callback(v8::Utils::ToLocal(receiver_handle), 526 v8::Utils::ToLocal(key_handle), 527 type, 528 v8::Utils::ToLocal(data)); 529 } 530 return result; 531 } 532 533 534 bool Top::MayIndexedAccess(JSObject* receiver, 535 uint32_t index, 536 v8::AccessType type) { 537 ASSERT(receiver->IsAccessCheckNeeded()); 538 // Check for compatibility between the security tokens in the 539 // current lexical context and the accessed object. 540 ASSERT(Top::context()); 541 // The callers of this method are not expecting a GC. 542 AssertNoAllocation no_gc; 543 544 MayAccessDecision decision = MayAccessPreCheck(receiver, type); 545 if (decision != UNKNOWN) return decision == YES; 546 547 // Get indexed access check callback 548 JSFunction* constructor = JSFunction::cast(receiver->map()->constructor()); 549 Object* info = constructor->shared()->function_data(); 550 if (info == Heap::undefined_value()) return false; 551 552 Object* data_obj = FunctionTemplateInfo::cast(info)->access_check_info(); 553 if (data_obj == Heap::undefined_value()) return false; 554 555 Object* fun_obj = AccessCheckInfo::cast(data_obj)->indexed_callback(); 556 v8::IndexedSecurityCallback callback = 557 v8::ToCData<v8::IndexedSecurityCallback>(fun_obj); 558 559 if (!callback) return false; 560 561 HandleScope scope; 562 Handle<JSObject> receiver_handle(receiver); 563 Handle<Object> data(AccessCheckInfo::cast(data_obj)->data()); 564 LOG(ApiIndexedSecurityCheck(index)); 565 bool result = false; 566 { 567 // Leaving JavaScript. 568 VMState state(EXTERNAL); 569 result = callback(v8::Utils::ToLocal(receiver_handle), 570 index, 571 type, 572 v8::Utils::ToLocal(data)); 573 } 574 return result; 575 } 576 577 578 const char* Top::kStackOverflowMessage = 579 "Uncaught RangeError: Maximum call stack size exceeded"; 580 581 582 Failure* Top::StackOverflow() { 583 HandleScope scope; 584 Handle<String> key = Factory::stack_overflow_symbol(); 585 Handle<JSObject> boilerplate = 586 Handle<JSObject>::cast(GetProperty(Top::builtins(), key)); 587 Handle<Object> exception = Copy(boilerplate); 588 // TODO(1240995): To avoid having to call JavaScript code to compute 589 // the message for stack overflow exceptions which is very likely to 590 // double fault with another stack overflow exception, we use a 591 // precomputed message. This is somewhat problematic in that it 592 // doesn't use ReportUncaughtException to determine the location 593 // from where the exception occurred. It should probably be 594 // reworked. 595 DoThrow(*exception, NULL, kStackOverflowMessage); 596 return Failure::Exception(); 597 } 598 599 600 Failure* Top::TerminateExecution() { 601 DoThrow(Heap::termination_exception(), NULL, NULL); 602 return Failure::Exception(); 603 } 604 605 606 Failure* Top::Throw(Object* exception, MessageLocation* location) { 607 DoThrow(exception, location, NULL); 608 return Failure::Exception(); 609 } 610 611 612 Failure* Top::ReThrow(Object* exception, MessageLocation* location) { 613 // Set the exception being re-thrown. 614 set_pending_exception(exception); 615 return Failure::Exception(); 616 } 617 618 619 Failure* Top::ThrowIllegalOperation() { 620 return Throw(Heap::illegal_access_symbol()); 621 } 622 623 624 void Top::ScheduleThrow(Object* exception) { 625 // When scheduling a throw we first throw the exception to get the 626 // error reporting if it is uncaught before rescheduling it. 627 Throw(exception); 628 thread_local_.scheduled_exception_ = pending_exception(); 629 thread_local_.external_caught_exception_ = false; 630 clear_pending_exception(); 631 } 632 633 634 Object* Top::PromoteScheduledException() { 635 Object* thrown = scheduled_exception(); 636 clear_scheduled_exception(); 637 // Re-throw the exception to avoid getting repeated error reporting. 638 return ReThrow(thrown); 639 } 640 641 642 void Top::PrintCurrentStackTrace(FILE* out) { 643 StackTraceFrameIterator it; 644 while (!it.done()) { 645 HandleScope scope; 646 // Find code position if recorded in relocation info. 647 JavaScriptFrame* frame = it.frame(); 648 int pos = frame->code()->SourcePosition(frame->pc()); 649 Handle<Object> pos_obj(Smi::FromInt(pos)); 650 // Fetch function and receiver. 651 Handle<JSFunction> fun(JSFunction::cast(frame->function())); 652 Handle<Object> recv(frame->receiver()); 653 // Advance to the next JavaScript frame and determine if the 654 // current frame is the top-level frame. 655 it.Advance(); 656 Handle<Object> is_top_level = it.done() 657 ? Factory::true_value() 658 : Factory::false_value(); 659 // Generate and print stack trace line. 660 Handle<String> line = 661 Execution::GetStackTraceLine(recv, fun, pos_obj, is_top_level); 662 if (line->length() > 0) { 663 line->PrintOn(out); 664 fprintf(out, "\n"); 665 } 666 } 667 } 668 669 670 void Top::ComputeLocation(MessageLocation* target) { 671 *target = MessageLocation(Handle<Script>(Heap::empty_script()), -1, -1); 672 StackTraceFrameIterator it; 673 if (!it.done()) { 674 JavaScriptFrame* frame = it.frame(); 675 JSFunction* fun = JSFunction::cast(frame->function()); 676 Object* script = fun->shared()->script(); 677 if (script->IsScript() && 678 !(Script::cast(script)->source()->IsUndefined())) { 679 int pos = frame->code()->SourcePosition(frame->pc()); 680 // Compute the location from the function and the reloc info. 681 Handle<Script> casted_script(Script::cast(script)); 682 *target = MessageLocation(casted_script, pos, pos + 1); 683 } 684 } 685 } 686 687 688 void Top::ReportUncaughtException(Handle<Object> exception, 689 MessageLocation* location, 690 Handle<String> stack_trace) { 691 Handle<Object> message; 692 if (!Bootstrapper::IsActive()) { 693 // It's not safe to try to make message objects while the bootstrapper 694 // is active since the infrastructure may not have been properly 695 // initialized. 696 message = 697 MessageHandler::MakeMessageObject("uncaught_exception", 698 location, 699 HandleVector<Object>(&exception, 1), 700 stack_trace); 701 } 702 // Report the uncaught exception. 703 MessageHandler::ReportMessage(location, message); 704 } 705 706 707 bool Top::ShouldReturnException(bool* is_caught_externally, 708 bool catchable_by_javascript) { 709 // Find the top-most try-catch handler. 710 StackHandler* handler = 711 StackHandler::FromAddress(Top::handler(Top::GetCurrentThread())); 712 while (handler != NULL && !handler->is_try_catch()) { 713 handler = handler->next(); 714 } 715 716 // Get the address of the external handler so we can compare the address to 717 // determine which one is closer to the top of the stack. 718 Address external_handler_address = thread_local_.try_catch_handler_address(); 719 720 // The exception has been externally caught if and only if there is 721 // an external handler which is on top of the top-most try-catch 722 // handler. 723 *is_caught_externally = external_handler_address != NULL && 724 (handler == NULL || handler->address() > external_handler_address || 725 !catchable_by_javascript); 726 727 if (*is_caught_externally) { 728 // Only report the exception if the external handler is verbose. 729 return thread_local_.TryCatchHandler()->is_verbose_; 730 } else { 731 // Report the exception if it isn't caught by JavaScript code. 732 return handler == NULL; 733 } 734 } 735 736 737 void Top::DoThrow(Object* exception, 738 MessageLocation* location, 739 const char* message) { 740 ASSERT(!has_pending_exception()); 741 742 HandleScope scope; 743 Handle<Object> exception_handle(exception); 744 745 // Determine reporting and whether the exception is caught externally. 746 bool is_caught_externally = false; 747 bool is_out_of_memory = exception == Failure::OutOfMemoryException(); 748 bool is_termination_exception = exception == Heap::termination_exception(); 749 bool catchable_by_javascript = !is_termination_exception && !is_out_of_memory; 750 bool should_return_exception = 751 ShouldReturnException(&is_caught_externally, catchable_by_javascript); 752 bool report_exception = catchable_by_javascript && should_return_exception; 753 754 #ifdef ENABLE_DEBUGGER_SUPPORT 755 // Notify debugger of exception. 756 if (catchable_by_javascript) { 757 Debugger::OnException(exception_handle, report_exception); 758 } 759 #endif 760 761 // Generate the message. 762 Handle<Object> message_obj; 763 MessageLocation potential_computed_location; 764 bool try_catch_needs_message = 765 is_caught_externally && 766 thread_local_.TryCatchHandler()->capture_message_; 767 if (report_exception || try_catch_needs_message) { 768 if (location == NULL) { 769 // If no location was specified we use a computed one instead 770 ComputeLocation(&potential_computed_location); 771 location = &potential_computed_location; 772 } 773 if (!Bootstrapper::IsActive()) { 774 // It's not safe to try to make message objects or collect stack 775 // traces while the bootstrapper is active since the infrastructure 776 // may not have been properly initialized. 777 Handle<String> stack_trace; 778 if (FLAG_trace_exception) stack_trace = StackTrace(); 779 message_obj = MessageHandler::MakeMessageObject("uncaught_exception", 780 location, HandleVector<Object>(&exception_handle, 1), stack_trace); 781 } 782 } 783 784 // Save the message for reporting if the the exception remains uncaught. 785 thread_local_.has_pending_message_ = report_exception; 786 thread_local_.pending_message_ = message; 787 if (!message_obj.is_null()) { 788 thread_local_.pending_message_obj_ = *message_obj; 789 if (location != NULL) { 790 thread_local_.pending_message_script_ = *location->script(); 791 thread_local_.pending_message_start_pos_ = location->start_pos(); 792 thread_local_.pending_message_end_pos_ = location->end_pos(); 793 } 794 } 795 796 if (is_caught_externally) { 797 thread_local_.catcher_ = thread_local_.TryCatchHandler(); 798 } 799 800 // NOTE: Notifying the debugger or generating the message 801 // may have caused new exceptions. For now, we just ignore 802 // that and set the pending exception to the original one. 803 set_pending_exception(*exception_handle); 804 } 805 806 807 void Top::ReportPendingMessages() { 808 ASSERT(has_pending_exception()); 809 setup_external_caught(); 810 // If the pending exception is OutOfMemoryException set out_of_memory in 811 // the global context. Note: We have to mark the global context here 812 // since the GenerateThrowOutOfMemory stub cannot make a RuntimeCall to 813 // set it. 814 bool external_caught = thread_local_.external_caught_exception_; 815 HandleScope scope; 816 if (thread_local_.pending_exception_ == Failure::OutOfMemoryException()) { 817 context()->mark_out_of_memory(); 818 } else if (thread_local_.pending_exception_ == 819 Heap::termination_exception()) { 820 if (external_caught) { 821 thread_local_.TryCatchHandler()->can_continue_ = false; 822 thread_local_.TryCatchHandler()->exception_ = Heap::null_value(); 823 } 824 } else { 825 Handle<Object> exception(pending_exception()); 826 thread_local_.external_caught_exception_ = false; 827 if (external_caught) { 828 thread_local_.TryCatchHandler()->can_continue_ = true; 829 thread_local_.TryCatchHandler()->exception_ = 830 thread_local_.pending_exception_; 831 if (!thread_local_.pending_message_obj_->IsTheHole()) { 832 try_catch_handler()->message_ = thread_local_.pending_message_obj_; 833 } 834 } 835 if (thread_local_.has_pending_message_) { 836 thread_local_.has_pending_message_ = false; 837 if (thread_local_.pending_message_ != NULL) { 838 MessageHandler::ReportMessage(thread_local_.pending_message_); 839 } else if (!thread_local_.pending_message_obj_->IsTheHole()) { 840 Handle<Object> message_obj(thread_local_.pending_message_obj_); 841 if (thread_local_.pending_message_script_ != NULL) { 842 Handle<Script> script(thread_local_.pending_message_script_); 843 int start_pos = thread_local_.pending_message_start_pos_; 844 int end_pos = thread_local_.pending_message_end_pos_; 845 MessageLocation location(script, start_pos, end_pos); 846 MessageHandler::ReportMessage(&location, message_obj); 847 } else { 848 MessageHandler::ReportMessage(NULL, message_obj); 849 } 850 } 851 } 852 thread_local_.external_caught_exception_ = external_caught; 853 set_pending_exception(*exception); 854 } 855 clear_pending_message(); 856 } 857 858 859 void Top::TraceException(bool flag) { 860 FLAG_trace_exception = flag; 861 } 862 863 864 bool Top::OptionalRescheduleException(bool is_bottom_call) { 865 // Allways reschedule out of memory exceptions. 866 if (!is_out_of_memory()) { 867 bool is_termination_exception = 868 pending_exception() == Heap::termination_exception(); 869 870 // Do not reschedule the exception if this is the bottom call. 871 bool clear_exception = is_bottom_call; 872 873 if (is_termination_exception) { 874 if (is_bottom_call) { 875 thread_local_.external_caught_exception_ = false; 876 clear_pending_exception(); 877 return false; 878 } 879 } else if (thread_local_.external_caught_exception_) { 880 // If the exception is externally caught, clear it if there are no 881 // JavaScript frames on the way to the C++ frame that has the 882 // external handler. 883 ASSERT(thread_local_.try_catch_handler_address() != NULL); 884 Address external_handler_address = 885 thread_local_.try_catch_handler_address(); 886 JavaScriptFrameIterator it; 887 if (it.done() || (it.frame()->sp() > external_handler_address)) { 888 clear_exception = true; 889 } 890 } 891 892 // Clear the exception if needed. 893 if (clear_exception) { 894 thread_local_.external_caught_exception_ = false; 895 clear_pending_exception(); 896 return false; 897 } 898 } 899 900 // Reschedule the exception. 901 thread_local_.scheduled_exception_ = pending_exception(); 902 clear_pending_exception(); 903 return true; 904 } 905 906 907 bool Top::is_out_of_memory() { 908 if (has_pending_exception()) { 909 Object* e = pending_exception(); 910 if (e->IsFailure() && Failure::cast(e)->IsOutOfMemoryException()) { 911 return true; 912 } 913 } 914 if (has_scheduled_exception()) { 915 Object* e = scheduled_exception(); 916 if (e->IsFailure() && Failure::cast(e)->IsOutOfMemoryException()) { 917 return true; 918 } 919 } 920 return false; 921 } 922 923 924 Handle<Context> Top::global_context() { 925 GlobalObject* global = thread_local_.context_->global(); 926 return Handle<Context>(global->global_context()); 927 } 928 929 930 Handle<Context> Top::GetCallingGlobalContext() { 931 JavaScriptFrameIterator it; 932 #ifdef ENABLE_DEBUGGER_SUPPORT 933 if (Debug::InDebugger()) { 934 while (!it.done()) { 935 JavaScriptFrame* frame = it.frame(); 936 Context* context = Context::cast(frame->context()); 937 if (context->global_context() == *Debug::debug_context()) { 938 it.Advance(); 939 } else { 940 break; 941 } 942 } 943 } 944 #endif // ENABLE_DEBUGGER_SUPPORT 945 if (it.done()) return Handle<Context>::null(); 946 JavaScriptFrame* frame = it.frame(); 947 Context* context = Context::cast(frame->context()); 948 return Handle<Context>(context->global_context()); 949 } 950 951 952 bool Top::CanHaveSpecialFunctions(JSObject* object) { 953 return object->IsJSArray(); 954 } 955 956 957 Object* Top::LookupSpecialFunction(JSObject* receiver, 958 JSObject* prototype, 959 JSFunction* function) { 960 if (CanHaveSpecialFunctions(receiver)) { 961 FixedArray* table = context()->global_context()->special_function_table(); 962 for (int index = 0; index < table->length(); index +=3) { 963 if ((prototype == table->get(index)) && 964 (function == table->get(index+1))) { 965 return table->get(index+2); 966 } 967 } 968 } 969 return Heap::undefined_value(); 970 } 971 972 973 char* Top::ArchiveThread(char* to) { 974 memcpy(to, reinterpret_cast<char*>(&thread_local_), sizeof(thread_local_)); 975 InitializeThreadLocal(); 976 return to + sizeof(thread_local_); 977 } 978 979 980 char* Top::RestoreThread(char* from) { 981 memcpy(reinterpret_cast<char*>(&thread_local_), from, sizeof(thread_local_)); 982 return from + sizeof(thread_local_); 983 } 984 985 986 ExecutionAccess::ExecutionAccess() { 987 Top::break_access_->Lock(); 988 } 989 990 991 ExecutionAccess::~ExecutionAccess() { 992 Top::break_access_->Unlock(); 993 } 994 995 996 } } // namespace v8::internal 997