Home | History | Annotate | Download | only in x64
      1 // Copyright 2009 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 #ifndef V8_X64_VIRTUAL_FRAME_X64_H_
     29 #define V8_X64_VIRTUAL_FRAME_X64_H_
     30 
     31 #include "number-info.h"
     32 #include "register-allocator.h"
     33 #include "scopes.h"
     34 
     35 namespace v8 {
     36 namespace internal {
     37 
     38 // -------------------------------------------------------------------------
     39 // Virtual frames
     40 //
     41 // The virtual frame is an abstraction of the physical stack frame.  It
     42 // encapsulates the parameters, frame-allocated locals, and the expression
     43 // stack.  It supports push/pop operations on the expression stack, as well
     44 // as random access to the expression stack elements, locals, and
     45 // parameters.
     46 
     47 class VirtualFrame : public ZoneObject {
     48  public:
     49   // A utility class to introduce a scope where the virtual frame is
     50   // expected to remain spilled.  The constructor spills the code
     51   // generator's current frame, but no attempt is made to require it
     52   // to stay spilled.  It is intended as documentation while the code
     53   // generator is being transformed.
     54   class SpilledScope BASE_EMBEDDED {
     55    public:
     56     SpilledScope() : previous_state_(cgen()->in_spilled_code()) {
     57       ASSERT(cgen()->has_valid_frame());
     58       cgen()->frame()->SpillAll();
     59       cgen()->set_in_spilled_code(true);
     60     }
     61 
     62     ~SpilledScope() {
     63       cgen()->set_in_spilled_code(previous_state_);
     64     }
     65 
     66    private:
     67     bool previous_state_;
     68 
     69     CodeGenerator* cgen() { return CodeGeneratorScope::Current(); }
     70   };
     71 
     72   // An illegal index into the virtual frame.
     73   static const int kIllegalIndex = -1;
     74 
     75   // Construct an initial virtual frame on entry to a JS function.
     76   VirtualFrame();
     77 
     78   // Construct a virtual frame as a clone of an existing one.
     79   explicit VirtualFrame(VirtualFrame* original);
     80 
     81   CodeGenerator* cgen() { return CodeGeneratorScope::Current(); }
     82   MacroAssembler* masm() { return cgen()->masm(); }
     83 
     84   // Create a duplicate of an existing valid frame element.
     85   FrameElement CopyElementAt(int index,
     86     NumberInfo::Type info = NumberInfo::kUninitialized);
     87 
     88   // The number of elements on the virtual frame.
     89   int element_count() { return elements_.length(); }
     90 
     91   // The height of the virtual expression stack.
     92   int height() {
     93     return element_count() - expression_base_index();
     94   }
     95 
     96   int register_location(int num) {
     97     ASSERT(num >= 0 && num < RegisterAllocator::kNumRegisters);
     98     return register_locations_[num];
     99   }
    100 
    101   int register_location(Register reg) {
    102     return register_locations_[RegisterAllocator::ToNumber(reg)];
    103   }
    104 
    105   void set_register_location(Register reg, int index) {
    106     register_locations_[RegisterAllocator::ToNumber(reg)] = index;
    107   }
    108 
    109   bool is_used(int num) {
    110     ASSERT(num >= 0 && num < RegisterAllocator::kNumRegisters);
    111     return register_locations_[num] != kIllegalIndex;
    112   }
    113 
    114   bool is_used(Register reg) {
    115     return register_locations_[RegisterAllocator::ToNumber(reg)]
    116         != kIllegalIndex;
    117   }
    118 
    119   // Add extra in-memory elements to the top of the frame to match an actual
    120   // frame (eg, the frame after an exception handler is pushed).  No code is
    121   // emitted.
    122   void Adjust(int count);
    123 
    124   // Forget count elements from the top of the frame all in-memory
    125   // (including synced) and adjust the stack pointer downward, to
    126   // match an external frame effect (examples include a call removing
    127   // its arguments, and exiting a try/catch removing an exception
    128   // handler).  No code will be emitted.
    129   void Forget(int count) {
    130     ASSERT(count >= 0);
    131     ASSERT(stack_pointer_ == element_count() - 1);
    132     stack_pointer_ -= count;
    133     ForgetElements(count);
    134   }
    135 
    136   // Forget count elements from the top of the frame without adjusting
    137   // the stack pointer downward.  This is used, for example, before
    138   // merging frames at break, continue, and return targets.
    139   void ForgetElements(int count);
    140 
    141   // Spill all values from the frame to memory.
    142   void SpillAll();
    143 
    144   // Spill all occurrences of a specific register from the frame.
    145   void Spill(Register reg) {
    146     if (is_used(reg)) SpillElementAt(register_location(reg));
    147   }
    148 
    149   // Spill all occurrences of an arbitrary register if possible.  Return the
    150   // register spilled or no_reg if it was not possible to free any register
    151   // (ie, they all have frame-external references).
    152   Register SpillAnyRegister();
    153 
    154   // Sync the range of elements in [begin, end] with memory.
    155   void SyncRange(int begin, int end);
    156 
    157   // Make this frame so that an arbitrary frame of the same height can
    158   // be merged to it.  Copies and constants are removed from the frame.
    159   void MakeMergable();
    160 
    161   // Prepare this virtual frame for merging to an expected frame by
    162   // performing some state changes that do not require generating
    163   // code.  It is guaranteed that no code will be generated.
    164   void PrepareMergeTo(VirtualFrame* expected);
    165 
    166   // Make this virtual frame have a state identical to an expected virtual
    167   // frame.  As a side effect, code may be emitted to make this frame match
    168   // the expected one.
    169   void MergeTo(VirtualFrame* expected);
    170 
    171   // Detach a frame from its code generator, perhaps temporarily.  This
    172   // tells the register allocator that it is free to use frame-internal
    173   // registers.  Used when the code generator's frame is switched from this
    174   // one to NULL by an unconditional jump.
    175   void DetachFromCodeGenerator() {
    176     RegisterAllocator* cgen_allocator = cgen()->allocator();
    177     for (int i = 0; i < RegisterAllocator::kNumRegisters; i++) {
    178       if (is_used(i)) cgen_allocator->Unuse(i);
    179     }
    180   }
    181 
    182   // (Re)attach a frame to its code generator.  This informs the register
    183   // allocator that the frame-internal register references are active again.
    184   // Used when a code generator's frame is switched from NULL to this one by
    185   // binding a label.
    186   void AttachToCodeGenerator() {
    187     RegisterAllocator* cgen_allocator = cgen()->allocator();
    188     for (int i = 0; i < RegisterAllocator::kNumRegisters; i++) {
    189       if (is_used(i)) cgen_allocator->Use(i);
    190     }
    191   }
    192 
    193   // Emit code for the physical JS entry and exit frame sequences.  After
    194   // calling Enter, the virtual frame is ready for use; and after calling
    195   // Exit it should not be used.  Note that Enter does not allocate space in
    196   // the physical frame for storing frame-allocated locals.
    197   void Enter();
    198   void Exit();
    199 
    200   // Prepare for returning from the frame by spilling locals.  This
    201   // avoids generating unnecessary merge code when jumping to the
    202   // shared return site.  Emits code for spills.
    203   void PrepareForReturn();
    204 
    205   // Number of local variables after when we use a loop for allocating.
    206   static const int kLocalVarBound = 7;
    207 
    208   // Allocate and initialize the frame-allocated locals.
    209   void AllocateStackSlots();
    210 
    211   // An element of the expression stack as an assembly operand.
    212   Operand ElementAt(int index) const {
    213     return Operand(rsp, index * kPointerSize);
    214   }
    215 
    216   // Random-access store to a frame-top relative frame element.  The result
    217   // becomes owned by the frame and is invalidated.
    218   void SetElementAt(int index, Result* value);
    219 
    220   // Set a frame element to a constant.  The index is frame-top relative.
    221   void SetElementAt(int index, Handle<Object> value) {
    222     Result temp(value);
    223     SetElementAt(index, &temp);
    224   }
    225 
    226   void PushElementAt(int index) {
    227     PushFrameSlotAt(element_count() - index - 1);
    228   }
    229 
    230   void StoreToElementAt(int index) {
    231     StoreToFrameSlotAt(element_count() - index - 1);
    232   }
    233 
    234   // A frame-allocated local as an assembly operand.
    235   Operand LocalAt(int index) {
    236     ASSERT(0 <= index);
    237     ASSERT(index < local_count());
    238     return Operand(rbp, kLocal0Offset - index * kPointerSize);
    239   }
    240 
    241   // Push a copy of the value of a local frame slot on top of the frame.
    242   void PushLocalAt(int index) {
    243     PushFrameSlotAt(local0_index() + index);
    244   }
    245 
    246   // Push the value of a local frame slot on top of the frame and invalidate
    247   // the local slot.  The slot should be written to before trying to read
    248   // from it again.
    249   void TakeLocalAt(int index) {
    250     TakeFrameSlotAt(local0_index() + index);
    251   }
    252 
    253   // Store the top value on the virtual frame into a local frame slot.  The
    254   // value is left in place on top of the frame.
    255   void StoreToLocalAt(int index) {
    256     StoreToFrameSlotAt(local0_index() + index);
    257   }
    258 
    259   // Push the address of the receiver slot on the frame.
    260   void PushReceiverSlotAddress();
    261 
    262   // Push the function on top of the frame.
    263   void PushFunction() { PushFrameSlotAt(function_index()); }
    264 
    265   // Save the value of the esi register to the context frame slot.
    266   void SaveContextRegister();
    267 
    268   // Restore the esi register from the value of the context frame
    269   // slot.
    270   void RestoreContextRegister();
    271 
    272   // A parameter as an assembly operand.
    273   Operand ParameterAt(int index) {
    274     ASSERT(-1 <= index);  // -1 is the receiver.
    275     ASSERT(index < parameter_count());
    276     return Operand(rbp, (1 + parameter_count() - index) * kPointerSize);
    277   }
    278 
    279   // Push a copy of the value of a parameter frame slot on top of the frame.
    280   void PushParameterAt(int index) {
    281     PushFrameSlotAt(param0_index() + index);
    282   }
    283 
    284   // Push the value of a paramter frame slot on top of the frame and
    285   // invalidate the parameter slot.  The slot should be written to before
    286   // trying to read from it again.
    287   void TakeParameterAt(int index) {
    288     TakeFrameSlotAt(param0_index() + index);
    289   }
    290 
    291   // Store the top value on the virtual frame into a parameter frame slot.
    292   // The value is left in place on top of the frame.
    293   void StoreToParameterAt(int index) {
    294     StoreToFrameSlotAt(param0_index() + index);
    295   }
    296 
    297   // The receiver frame slot.
    298   Operand Receiver() { return ParameterAt(-1); }
    299 
    300   // Push a try-catch or try-finally handler on top of the virtual frame.
    301   void PushTryHandler(HandlerType type);
    302 
    303   // Call stub given the number of arguments it expects on (and
    304   // removes from) the stack.
    305   Result CallStub(CodeStub* stub, int arg_count) {
    306     PrepareForCall(arg_count, arg_count);
    307     return RawCallStub(stub);
    308   }
    309 
    310   // Call stub that takes a single argument passed in eax.  The
    311   // argument is given as a result which does not have to be eax or
    312   // even a register.  The argument is consumed by the call.
    313   Result CallStub(CodeStub* stub, Result* arg);
    314 
    315   // Call stub that takes a pair of arguments passed in edx (arg0, rdx) and
    316   // eax (arg1, rax).  The arguments are given as results which do not have
    317   // to be in the proper registers or even in registers.  The
    318   // arguments are consumed by the call.
    319   Result CallStub(CodeStub* stub, Result* arg0, Result* arg1);
    320 
    321   // Call runtime given the number of arguments expected on (and
    322   // removed from) the stack.
    323   Result CallRuntime(Runtime::Function* f, int arg_count);
    324   Result CallRuntime(Runtime::FunctionId id, int arg_count);
    325 
    326 #ifdef ENABLE_DEBUGGER_SUPPORT
    327   void DebugBreak();
    328 #endif
    329 
    330   // Invoke builtin given the number of arguments it expects on (and
    331   // removes from) the stack.
    332   Result InvokeBuiltin(Builtins::JavaScript id,
    333                        InvokeFlag flag,
    334                        int arg_count);
    335 
    336   // Call load IC.  Name and receiver are found on top of the frame.
    337   // Receiver is not dropped.
    338   Result CallLoadIC(RelocInfo::Mode mode);
    339 
    340   // Call keyed load IC.  Key and receiver are found on top of the
    341   // frame.  They are not dropped.
    342   Result CallKeyedLoadIC(RelocInfo::Mode mode);
    343 
    344   // Call store IC.  Name, value, and receiver are found on top of the
    345   // frame.  Receiver is not dropped.
    346   Result CallStoreIC();
    347 
    348   // Call keyed store IC.  Value, key, and receiver are found on top
    349   // of the frame.  Key and receiver are not dropped.
    350   Result CallKeyedStoreIC();
    351 
    352   // Call call IC.  Function name, arguments, and receiver are found on top
    353   // of the frame and dropped by the call.
    354   // The argument count does not include the receiver.
    355   Result CallCallIC(RelocInfo::Mode mode, int arg_count, int loop_nesting);
    356 
    357   // Allocate and call JS function as constructor.  Arguments,
    358   // receiver (global object), and function are found on top of the
    359   // frame.  Function is not dropped.  The argument count does not
    360   // include the receiver.
    361   Result CallConstructor(int arg_count);
    362 
    363   // Drop a number of elements from the top of the expression stack.  May
    364   // emit code to affect the physical frame.  Does not clobber any registers
    365   // excepting possibly the stack pointer.
    366   void Drop(int count);
    367 
    368   // Drop one element.
    369   void Drop() { Drop(1); }
    370 
    371   // Duplicate the top element of the frame.
    372   void Dup() { PushFrameSlotAt(element_count() - 1); }
    373 
    374   // Pop an element from the top of the expression stack.  Returns a
    375   // Result, which may be a constant or a register.
    376   Result Pop();
    377 
    378   // Pop and save an element from the top of the expression stack and
    379   // emit a corresponding pop instruction.
    380   void EmitPop(Register reg);
    381   void EmitPop(const Operand& operand);
    382 
    383   // Push an element on top of the expression stack and emit a
    384   // corresponding push instruction.
    385   void EmitPush(Register reg,
    386                 NumberInfo::Type info = NumberInfo::kUnknown);
    387   void EmitPush(const Operand& operand,
    388                 NumberInfo::Type info = NumberInfo::kUnknown);
    389   void EmitPush(Heap::RootListIndex index,
    390                 NumberInfo::Type info = NumberInfo::kUnknown);
    391   void EmitPush(Immediate immediate,
    392                 NumberInfo::Type info = NumberInfo::kUnknown);
    393   void EmitPush(Smi* value);
    394   // Uses kScratchRegister, emits appropriate relocation info.
    395   void EmitPush(Handle<Object> value);
    396 
    397   // Push an element on the virtual frame.
    398   void Push(Register reg, NumberInfo::Type info = NumberInfo::kUnknown);
    399   void Push(Handle<Object> value);
    400   void Push(Smi* value) { Push(Handle<Object>(value)); }
    401 
    402   // Pushing a result invalidates it (its contents become owned by the
    403   // frame).
    404   void Push(Result* result) {
    405     if (result->is_register()) {
    406       Push(result->reg(), result->number_info());
    407     } else {
    408       ASSERT(result->is_constant());
    409       Push(result->handle());
    410     }
    411     result->Unuse();
    412   }
    413 
    414   // Nip removes zero or more elements from immediately below the top
    415   // of the frame, leaving the previous top-of-frame value on top of
    416   // the frame.  Nip(k) is equivalent to x = Pop(), Drop(k), Push(x).
    417   void Nip(int num_dropped);
    418 
    419  private:
    420   static const int kLocal0Offset = JavaScriptFrameConstants::kLocal0Offset;
    421   static const int kFunctionOffset = JavaScriptFrameConstants::kFunctionOffset;
    422   static const int kContextOffset = StandardFrameConstants::kContextOffset;
    423 
    424   static const int kHandlerSize = StackHandlerConstants::kSize / kPointerSize;
    425   static const int kPreallocatedElements = 5 + 8;  // 8 expression stack slots.
    426 
    427   ZoneList<FrameElement> elements_;
    428 
    429   // The index of the element that is at the processor's stack pointer
    430   // (the esp register).
    431   int stack_pointer_;
    432 
    433   // The index of the register frame element using each register, or
    434   // kIllegalIndex if a register is not on the frame.
    435   int register_locations_[RegisterAllocator::kNumRegisters];
    436 
    437   // The number of frame-allocated locals and parameters respectively.
    438   int parameter_count() { return cgen()->scope()->num_parameters(); }
    439   int local_count() { return cgen()->scope()->num_stack_slots(); }
    440 
    441   // The index of the element that is at the processor's frame pointer
    442   // (the ebp register).  The parameters, receiver, and return address
    443   // are below the frame pointer.
    444   int frame_pointer() { return parameter_count() + 2; }
    445 
    446   // The index of the first parameter.  The receiver lies below the first
    447   // parameter.
    448   int param0_index() { return 1; }
    449 
    450   // The index of the context slot in the frame.  It is immediately
    451   // above the frame pointer.
    452   int context_index() { return frame_pointer() + 1; }
    453 
    454   // The index of the function slot in the frame.  It is above the frame
    455   // pointer and the context slot.
    456   int function_index() { return frame_pointer() + 2; }
    457 
    458   // The index of the first local.  Between the frame pointer and the
    459   // locals lie the context and the function.
    460   int local0_index() { return frame_pointer() + 3; }
    461 
    462   // The index of the base of the expression stack.
    463   int expression_base_index() { return local0_index() + local_count(); }
    464 
    465   // Convert a frame index into a frame pointer relative offset into the
    466   // actual stack.
    467   int fp_relative(int index) {
    468     ASSERT(index < element_count());
    469     ASSERT(frame_pointer() < element_count());  // FP is on the frame.
    470     return (frame_pointer() - index) * kPointerSize;
    471   }
    472 
    473   // Record an occurrence of a register in the virtual frame.  This has the
    474   // effect of incrementing the register's external reference count and
    475   // of updating the index of the register's location in the frame.
    476   void Use(Register reg, int index) {
    477     ASSERT(!is_used(reg));
    478     set_register_location(reg, index);
    479     cgen()->allocator()->Use(reg);
    480   }
    481 
    482   // Record that a register reference has been dropped from the frame.  This
    483   // decrements the register's external reference count and invalidates the
    484   // index of the register's location in the frame.
    485   void Unuse(Register reg) {
    486     ASSERT(is_used(reg));
    487     set_register_location(reg, kIllegalIndex);
    488     cgen()->allocator()->Unuse(reg);
    489   }
    490 
    491   // Spill the element at a particular index---write it to memory if
    492   // necessary, free any associated register, and forget its value if
    493   // constant.
    494   void SpillElementAt(int index);
    495 
    496   // Sync the element at a particular index.  If it is a register or
    497   // constant that disagrees with the value on the stack, write it to memory.
    498   // Keep the element type as register or constant, and clear the dirty bit.
    499   void SyncElementAt(int index);
    500 
    501   // Sync a single unsynced element that lies beneath or at the stack pointer.
    502   void SyncElementBelowStackPointer(int index);
    503 
    504   // Sync a single unsynced element that lies just above the stack pointer.
    505   void SyncElementByPushing(int index);
    506 
    507   // Push a copy of a frame slot (typically a local or parameter) on top of
    508   // the frame.
    509   void PushFrameSlotAt(int index);
    510 
    511   // Push a the value of a frame slot (typically a local or parameter) on
    512   // top of the frame and invalidate the slot.
    513   void TakeFrameSlotAt(int index);
    514 
    515   // Store the value on top of the frame to a frame slot (typically a local
    516   // or parameter).
    517   void StoreToFrameSlotAt(int index);
    518 
    519   // Spill all elements in registers. Spill the top spilled_args elements
    520   // on the frame.  Sync all other frame elements.
    521   // Then drop dropped_args elements from the virtual frame, to match
    522   // the effect of an upcoming call that will drop them from the stack.
    523   void PrepareForCall(int spilled_args, int dropped_args);
    524 
    525   // Move frame elements currently in registers or constants, that
    526   // should be in memory in the expected frame, to memory.
    527   void MergeMoveRegistersToMemory(VirtualFrame* expected);
    528 
    529   // Make the register-to-register moves necessary to
    530   // merge this frame with the expected frame.
    531   // Register to memory moves must already have been made,
    532   // and memory to register moves must follow this call.
    533   // This is because some new memory-to-register moves are
    534   // created in order to break cycles of register moves.
    535   // Used in the implementation of MergeTo().
    536   void MergeMoveRegistersToRegisters(VirtualFrame* expected);
    537 
    538   // Make the memory-to-register and constant-to-register moves
    539   // needed to make this frame equal the expected frame.
    540   // Called after all register-to-memory and register-to-register
    541   // moves have been made.  After this function returns, the frames
    542   // should be equal.
    543   void MergeMoveMemoryToRegisters(VirtualFrame* expected);
    544 
    545   // Invalidates a frame slot (puts an invalid frame element in it).
    546   // Copies on the frame are correctly handled, and if this slot was
    547   // the backing store of copies, the index of the new backing store
    548   // is returned.  Otherwise, returns kIllegalIndex.
    549   // Register counts are correctly updated.
    550   int InvalidateFrameSlotAt(int index);
    551 
    552   // Call a code stub that has already been prepared for calling (via
    553   // PrepareForCall).
    554   Result RawCallStub(CodeStub* stub);
    555 
    556   // Calls a code object which has already been prepared for calling
    557   // (via PrepareForCall).
    558   Result RawCallCodeObject(Handle<Code> code, RelocInfo::Mode rmode);
    559 
    560   bool Equals(VirtualFrame* other);
    561 
    562   // Classes that need raw access to the elements_ array.
    563   friend class DeferredCode;
    564   friend class JumpTarget;
    565 };
    566 
    567 
    568 } }  // namespace v8::internal
    569 
    570 #endif  // V8_X64_VIRTUAL_FRAME_X64_H_
    571