1 /* 2 * Copyright (C) 2009 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #include "Dalvik.h" 18 #include "libdex/OpCode.h" 19 #include "libdex/OpCodeNames.h" 20 21 #include "../../CompilerInternals.h" 22 #include "ArmLIR.h" 23 #include "Codegen.h" 24 #include <unistd.h> /* for cacheflush */ 25 #include <sys/mman.h> /* for protection change */ 26 27 #define MAX_ASSEMBLER_RETRIES 10 28 29 /* 30 * opcode: ArmOpCode enum 31 * skeleton: pre-designated bit-pattern for this opcode 32 * k0: key to applying ds/de 33 * ds: dest start bit position 34 * de: dest end bit position 35 * k1: key to applying s1s/s1e 36 * s1s: src1 start bit position 37 * s1e: src1 end bit position 38 * k2: key to applying s2s/s2e 39 * s2s: src2 start bit position 40 * s2e: src2 end bit position 41 * operands: number of operands (for sanity check purposes) 42 * name: mnemonic name 43 * fmt: for pretty-printing 44 */ 45 #define ENCODING_MAP(opcode, skeleton, k0, ds, de, k1, s1s, s1e, k2, s2s, s2e, \ 46 k3, k3s, k3e, flags, name, fmt, size) \ 47 {skeleton, {{k0, ds, de}, {k1, s1s, s1e}, {k2, s2s, s2e}, \ 48 {k3, k3s, k3e}}, opcode, flags, name, fmt, size} 49 50 /* Instruction dump string format keys: !pf, where "!" is the start 51 * of the key, "p" is which numeric operand to use and "f" is the 52 * print format. 53 * 54 * [p]ositions: 55 * 0 -> operands[0] (dest) 56 * 1 -> operands[1] (src1) 57 * 2 -> operands[2] (src2) 58 * 3 -> operands[3] (extra) 59 * 60 * [f]ormats: 61 * h -> 4-digit hex 62 * d -> decimal 63 * E -> decimal*4 64 * F -> decimal*2 65 * c -> branch condition (beq, bne, etc.) 66 * t -> pc-relative target 67 * u -> 1st half of bl[x] target 68 * v -> 2nd half ob bl[x] target 69 * R -> register list 70 * s -> single precision floating point register 71 * S -> double precision floating point register 72 * m -> Thumb2 modified immediate 73 * n -> complimented Thumb2 modified immediate 74 * M -> Thumb2 16-bit zero-extended immediate 75 * b -> 4-digit binary 76 * B -> dmb option string (sy, st, ish, ishst, nsh, hshst) 77 * H -> operand shift 78 * 79 * [!] escape. To insert "!", use "!!" 80 */ 81 /* NOTE: must be kept in sync with enum ArmOpcode from ArmLIR.h */ 82 ArmEncodingMap EncodingMap[kArmLast] = { 83 ENCODING_MAP(kArm16BitData, 0x0000, 84 kFmtBitBlt, 15, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1, 85 kFmtUnused, -1, -1, IS_UNARY_OP, "data", "0x!0h(!0d)", 1), 86 ENCODING_MAP(kThumbAdcRR, 0x4140, 87 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1, 88 kFmtUnused, -1, -1, 89 IS_BINARY_OP | REG_DEF0_USE01 | SETS_CCODES | USES_CCODES, 90 "adcs", "r!0d, r!1d", 1), 91 ENCODING_MAP(kThumbAddRRI3, 0x1c00, 92 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6, 93 kFmtUnused, -1, -1, 94 IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, 95 "adds", "r!0d, r!1d, #!2d", 1), 96 ENCODING_MAP(kThumbAddRI8, 0x3000, 97 kFmtBitBlt, 10, 8, kFmtBitBlt, 7, 0, kFmtUnused, -1, -1, 98 kFmtUnused, -1, -1, 99 IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES, 100 "adds", "r!0d, r!0d, #!1d", 1), 101 ENCODING_MAP(kThumbAddRRR, 0x1800, 102 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6, 103 kFmtUnused, -1, -1, 104 IS_TERTIARY_OP | REG_DEF0_USE12 | SETS_CCODES, 105 "adds", "r!0d, r!1d, r!2d", 1), 106 ENCODING_MAP(kThumbAddRRLH, 0x4440, 107 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1, 108 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE01, 109 "add", "r!0d, r!1d", 1), 110 ENCODING_MAP(kThumbAddRRHL, 0x4480, 111 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1, 112 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE01, 113 "add", "r!0d, r!1d", 1), 114 ENCODING_MAP(kThumbAddRRHH, 0x44c0, 115 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1, 116 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE01, 117 "add", "r!0d, r!1d", 1), 118 ENCODING_MAP(kThumbAddPcRel, 0xa000, 119 kFmtBitBlt, 10, 8, kFmtBitBlt, 7, 0, kFmtUnused, -1, -1, 120 kFmtUnused, -1, -1, IS_TERTIARY_OP | IS_BRANCH, 121 "add", "r!0d, pc, #!1E", 1), 122 ENCODING_MAP(kThumbAddSpRel, 0xa800, 123 kFmtBitBlt, 10, 8, kFmtUnused, -1, -1, kFmtBitBlt, 7, 0, 124 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF_SP | REG_USE_SP, 125 "add", "r!0d, sp, #!2E", 1), 126 ENCODING_MAP(kThumbAddSpI7, 0xb000, 127 kFmtBitBlt, 6, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1, 128 kFmtUnused, -1, -1, IS_UNARY_OP | REG_DEF_SP | REG_USE_SP, 129 "add", "sp, #!0d*4", 1), 130 ENCODING_MAP(kThumbAndRR, 0x4000, 131 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1, 132 kFmtUnused, -1, -1, 133 IS_BINARY_OP | REG_DEF0_USE01 | SETS_CCODES, 134 "ands", "r!0d, r!1d", 1), 135 ENCODING_MAP(kThumbAsrRRI5, 0x1000, 136 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 10, 6, 137 kFmtUnused, -1, -1, 138 IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, 139 "asrs", "r!0d, r!1d, #!2d", 1), 140 ENCODING_MAP(kThumbAsrRR, 0x4100, 141 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1, 142 kFmtUnused, -1, -1, 143 IS_BINARY_OP | REG_DEF0_USE01 | SETS_CCODES, 144 "asrs", "r!0d, r!1d", 1), 145 ENCODING_MAP(kThumbBCond, 0xd000, 146 kFmtBitBlt, 7, 0, kFmtBitBlt, 11, 8, kFmtUnused, -1, -1, 147 kFmtUnused, -1, -1, IS_BINARY_OP | IS_BRANCH | USES_CCODES, 148 "b!1c", "!0t", 1), 149 ENCODING_MAP(kThumbBUncond, 0xe000, 150 kFmtBitBlt, 10, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1, 151 kFmtUnused, -1, -1, NO_OPERAND | IS_BRANCH, 152 "b", "!0t", 1), 153 ENCODING_MAP(kThumbBicRR, 0x4380, 154 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1, 155 kFmtUnused, -1, -1, 156 IS_BINARY_OP | REG_DEF0_USE01 | SETS_CCODES, 157 "bics", "r!0d, r!1d", 1), 158 ENCODING_MAP(kThumbBkpt, 0xbe00, 159 kFmtBitBlt, 7, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1, 160 kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH, 161 "bkpt", "!0d", 1), 162 ENCODING_MAP(kThumbBlx1, 0xf000, 163 kFmtBitBlt, 10, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1, 164 kFmtUnused, -1, -1, IS_BINARY_OP | IS_BRANCH | REG_DEF_LR, 165 "blx_1", "!0u", 1), 166 ENCODING_MAP(kThumbBlx2, 0xe800, 167 kFmtBitBlt, 10, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1, 168 kFmtUnused, -1, -1, IS_BINARY_OP | IS_BRANCH | REG_DEF_LR, 169 "blx_2", "!0v", 1), 170 ENCODING_MAP(kThumbBl1, 0xf000, 171 kFmtBitBlt, 10, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1, 172 kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH | REG_DEF_LR, 173 "bl_1", "!0u", 1), 174 ENCODING_MAP(kThumbBl2, 0xf800, 175 kFmtBitBlt, 10, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1, 176 kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH | REG_DEF_LR, 177 "bl_2", "!0v", 1), 178 ENCODING_MAP(kThumbBlxR, 0x4780, 179 kFmtBitBlt, 6, 3, kFmtUnused, -1, -1, kFmtUnused, -1, -1, 180 kFmtUnused, -1, -1, 181 IS_UNARY_OP | REG_USE0 | IS_BRANCH | REG_DEF_LR, 182 "blx", "r!0d", 1), 183 ENCODING_MAP(kThumbBx, 0x4700, 184 kFmtBitBlt, 6, 3, kFmtUnused, -1, -1, kFmtUnused, -1, -1, 185 kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH, 186 "bx", "r!0d", 1), 187 ENCODING_MAP(kThumbCmnRR, 0x42c0, 188 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1, 189 kFmtUnused, -1, -1, IS_BINARY_OP | REG_USE01 | SETS_CCODES, 190 "cmn", "r!0d, r!1d", 1), 191 ENCODING_MAP(kThumbCmpRI8, 0x2800, 192 kFmtBitBlt, 10, 8, kFmtBitBlt, 7, 0, kFmtUnused, -1, -1, 193 kFmtUnused, -1, -1, IS_BINARY_OP | REG_USE0 | SETS_CCODES, 194 "cmp", "r!0d, #!1d", 1), 195 ENCODING_MAP(kThumbCmpRR, 0x4280, 196 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1, 197 kFmtUnused, -1, -1, IS_BINARY_OP | REG_USE01 | SETS_CCODES, 198 "cmp", "r!0d, r!1d", 1), 199 ENCODING_MAP(kThumbCmpLH, 0x4540, 200 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1, 201 kFmtUnused, -1, -1, IS_BINARY_OP | REG_USE01 | SETS_CCODES, 202 "cmp", "r!0d, r!1d", 1), 203 ENCODING_MAP(kThumbCmpHL, 0x4580, 204 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1, 205 kFmtUnused, -1, -1, IS_BINARY_OP | REG_USE01 | SETS_CCODES, 206 "cmp", "r!0d, r!1d", 1), 207 ENCODING_MAP(kThumbCmpHH, 0x45c0, 208 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1, 209 kFmtUnused, -1, -1, IS_BINARY_OP | REG_USE01 | SETS_CCODES, 210 "cmp", "r!0d, r!1d", 1), 211 ENCODING_MAP(kThumbEorRR, 0x4040, 212 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1, 213 kFmtUnused, -1, -1, 214 IS_BINARY_OP | REG_DEF0_USE01 | SETS_CCODES, 215 "eors", "r!0d, r!1d", 1), 216 ENCODING_MAP(kThumbLdmia, 0xc800, 217 kFmtBitBlt, 10, 8, kFmtBitBlt, 7, 0, kFmtUnused, -1, -1, 218 kFmtUnused, -1, -1, 219 IS_BINARY_OP | REG_DEF0_USE0 | REG_DEF_LIST1 | IS_LOAD, 220 "ldmia", "r!0d!!, <!1R>", 1), 221 ENCODING_MAP(kThumbLdrRRI5, 0x6800, 222 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 10, 6, 223 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD, 224 "ldr", "r!0d, [r!1d, #!2E]", 1), 225 ENCODING_MAP(kThumbLdrRRR, 0x5800, 226 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6, 227 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12 | IS_LOAD, 228 "ldr", "r!0d, [r!1d, r!2d]", 1), 229 ENCODING_MAP(kThumbLdrPcRel, 0x4800, 230 kFmtBitBlt, 10, 8, kFmtBitBlt, 7, 0, kFmtUnused, -1, -1, 231 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0 | REG_USE_PC 232 | IS_LOAD, "ldr", "r!0d, [pc, #!1E]", 1), 233 ENCODING_MAP(kThumbLdrSpRel, 0x9800, 234 kFmtBitBlt, 10, 8, kFmtUnused, -1, -1, kFmtBitBlt, 7, 0, 235 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0 | REG_USE_SP 236 | IS_LOAD, "ldr", "r!0d, [sp, #!2E]", 1), 237 ENCODING_MAP(kThumbLdrbRRI5, 0x7800, 238 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 10, 6, 239 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD, 240 "ldrb", "r!0d, [r!1d, #2d]", 1), 241 ENCODING_MAP(kThumbLdrbRRR, 0x5c00, 242 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6, 243 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12 | IS_LOAD, 244 "ldrb", "r!0d, [r!1d, r!2d]", 1), 245 ENCODING_MAP(kThumbLdrhRRI5, 0x8800, 246 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 10, 6, 247 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD, 248 "ldrh", "r!0d, [r!1d, #!2F]", 1), 249 ENCODING_MAP(kThumbLdrhRRR, 0x5a00, 250 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6, 251 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12 | IS_LOAD, 252 "ldrh", "r!0d, [r!1d, r!2d]", 1), 253 ENCODING_MAP(kThumbLdrsbRRR, 0x5600, 254 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6, 255 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12 | IS_LOAD, 256 "ldrsb", "r!0d, [r!1d, r!2d]", 1), 257 ENCODING_MAP(kThumbLdrshRRR, 0x5e00, 258 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6, 259 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12 | IS_LOAD, 260 "ldrsh", "r!0d, [r!1d, r!2d]", 1), 261 ENCODING_MAP(kThumbLslRRI5, 0x0000, 262 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 10, 6, 263 kFmtUnused, -1, -1, 264 IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, 265 "lsls", "r!0d, r!1d, #!2d", 1), 266 ENCODING_MAP(kThumbLslRR, 0x4080, 267 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1, 268 kFmtUnused, -1, -1, 269 IS_BINARY_OP | REG_DEF0_USE01 | SETS_CCODES, 270 "lsls", "r!0d, r!1d", 1), 271 ENCODING_MAP(kThumbLsrRRI5, 0x0800, 272 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 10, 6, 273 kFmtUnused, -1, -1, 274 IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, 275 "lsrs", "r!0d, r!1d, #!2d", 1), 276 ENCODING_MAP(kThumbLsrRR, 0x40c0, 277 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1, 278 kFmtUnused, -1, -1, 279 IS_BINARY_OP | REG_DEF0_USE01 | SETS_CCODES, 280 "lsrs", "r!0d, r!1d", 1), 281 ENCODING_MAP(kThumbMovImm, 0x2000, 282 kFmtBitBlt, 10, 8, kFmtBitBlt, 7, 0, kFmtUnused, -1, -1, 283 kFmtUnused, -1, -1, 284 IS_BINARY_OP | REG_DEF0 | SETS_CCODES, 285 "movs", "r!0d, #!1d", 1), 286 ENCODING_MAP(kThumbMovRR, 0x1c00, 287 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1, 288 kFmtUnused, -1, -1, 289 IS_BINARY_OP | REG_DEF0_USE1 | SETS_CCODES, 290 "movs", "r!0d, r!1d", 1), 291 ENCODING_MAP(kThumbMovRR_H2H, 0x46c0, 292 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1, 293 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, 294 "mov", "r!0d, r!1d", 1), 295 ENCODING_MAP(kThumbMovRR_H2L, 0x4640, 296 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1, 297 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, 298 "mov", "r!0d, r!1d", 1), 299 ENCODING_MAP(kThumbMovRR_L2H, 0x4680, 300 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1, 301 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, 302 "mov", "r!0d, r!1d", 1), 303 ENCODING_MAP(kThumbMul, 0x4340, 304 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1, 305 kFmtUnused, -1, -1, 306 IS_BINARY_OP | REG_DEF0_USE01 | SETS_CCODES, 307 "muls", "r!0d, r!1d", 1), 308 ENCODING_MAP(kThumbMvn, 0x43c0, 309 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1, 310 kFmtUnused, -1, -1, 311 IS_BINARY_OP | REG_DEF0_USE1 | SETS_CCODES, 312 "mvns", "r!0d, r!1d", 1), 313 ENCODING_MAP(kThumbNeg, 0x4240, 314 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1, 315 kFmtUnused, -1, -1, 316 IS_BINARY_OP | REG_DEF0_USE1 | SETS_CCODES, 317 "negs", "r!0d, r!1d", 1), 318 ENCODING_MAP(kThumbOrr, 0x4300, 319 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1, 320 kFmtUnused, -1, -1, 321 IS_BINARY_OP | REG_DEF0_USE01 | SETS_CCODES, 322 "orrs", "r!0d, r!1d", 1), 323 ENCODING_MAP(kThumbPop, 0xbc00, 324 kFmtBitBlt, 8, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1, 325 kFmtUnused, -1, -1, 326 IS_UNARY_OP | REG_DEF_SP | REG_USE_SP | REG_DEF_LIST0 327 | IS_LOAD, "pop", "<!0R>", 1), 328 ENCODING_MAP(kThumbPush, 0xb400, 329 kFmtBitBlt, 8, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1, 330 kFmtUnused, -1, -1, 331 IS_UNARY_OP | REG_DEF_SP | REG_USE_SP | REG_USE_LIST0 332 | IS_STORE, "push", "<!0R>", 1), 333 ENCODING_MAP(kThumbRorRR, 0x41c0, 334 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1, 335 kFmtUnused, -1, -1, 336 IS_BINARY_OP | REG_DEF0_USE01 | SETS_CCODES, 337 "rors", "r!0d, r!1d", 1), 338 ENCODING_MAP(kThumbSbc, 0x4180, 339 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1, 340 kFmtUnused, -1, -1, 341 IS_BINARY_OP | REG_DEF0_USE01 | USES_CCODES | SETS_CCODES, 342 "sbcs", "r!0d, r!1d", 1), 343 ENCODING_MAP(kThumbStmia, 0xc000, 344 kFmtBitBlt, 10, 8, kFmtBitBlt, 7, 0, kFmtUnused, -1, -1, 345 kFmtUnused, -1, -1, 346 IS_BINARY_OP | REG_DEF0 | REG_USE0 | REG_USE_LIST1 | IS_STORE, 347 "stmia", "r!0d!!, <!1R>", 1), 348 ENCODING_MAP(kThumbStrRRI5, 0x6000, 349 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 10, 6, 350 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE01 | IS_STORE, 351 "str", "r!0d, [r!1d, #!2E]", 1), 352 ENCODING_MAP(kThumbStrRRR, 0x5000, 353 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6, 354 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE012 | IS_STORE, 355 "str", "r!0d, [r!1d, r!2d]", 1), 356 ENCODING_MAP(kThumbStrSpRel, 0x9000, 357 kFmtBitBlt, 10, 8, kFmtUnused, -1, -1, kFmtBitBlt, 7, 0, 358 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE0 | REG_USE_SP 359 | IS_STORE, "str", "r!0d, [sp, #!2E]", 1), 360 ENCODING_MAP(kThumbStrbRRI5, 0x7000, 361 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 10, 6, 362 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE01 | IS_STORE, 363 "strb", "r!0d, [r!1d, #!2d]", 1), 364 ENCODING_MAP(kThumbStrbRRR, 0x5400, 365 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6, 366 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE012 | IS_STORE, 367 "strb", "r!0d, [r!1d, r!2d]", 1), 368 ENCODING_MAP(kThumbStrhRRI5, 0x8000, 369 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 10, 6, 370 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE01 | IS_STORE, 371 "strh", "r!0d, [r!1d, #!2F]", 1), 372 ENCODING_MAP(kThumbStrhRRR, 0x5200, 373 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6, 374 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE012 | IS_STORE, 375 "strh", "r!0d, [r!1d, r!2d]", 1), 376 ENCODING_MAP(kThumbSubRRI3, 0x1e00, 377 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6, 378 kFmtUnused, -1, -1, 379 IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, 380 "subs", "r!0d, r!1d, #!2d]", 1), 381 ENCODING_MAP(kThumbSubRI8, 0x3800, 382 kFmtBitBlt, 10, 8, kFmtBitBlt, 7, 0, kFmtUnused, -1, -1, 383 kFmtUnused, -1, -1, 384 IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES, 385 "subs", "r!0d, #!1d", 1), 386 ENCODING_MAP(kThumbSubRRR, 0x1a00, 387 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6, 388 kFmtUnused, -1, -1, 389 IS_TERTIARY_OP | REG_DEF0_USE12 | SETS_CCODES, 390 "subs", "r!0d, r!1d, r!2d", 1), 391 ENCODING_MAP(kThumbSubSpI7, 0xb080, 392 kFmtBitBlt, 6, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1, 393 kFmtUnused, -1, -1, 394 IS_UNARY_OP | REG_DEF_SP | REG_USE_SP, 395 "sub", "sp, #!0d", 1), 396 ENCODING_MAP(kThumbSwi, 0xdf00, 397 kFmtBitBlt, 7, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1, kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH, 398 "swi", "!0d", 1), 399 ENCODING_MAP(kThumbTst, 0x4200, 400 kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1, 401 kFmtUnused, -1, -1, IS_UNARY_OP | REG_USE01 | SETS_CCODES, 402 "tst", "r!0d, r!1d", 1), 403 ENCODING_MAP(kThumb2Vldrs, 0xed900a00, 404 kFmtSfp, 22, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 7, 0, 405 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD, 406 "vldr", "!0s, [r!1d, #!2E]", 2), 407 ENCODING_MAP(kThumb2Vldrd, 0xed900b00, 408 kFmtDfp, 22, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 7, 0, 409 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD, 410 "vldr", "!0S, [r!1d, #!2E]", 2), 411 ENCODING_MAP(kThumb2Vmuls, 0xee200a00, 412 kFmtSfp, 22, 12, kFmtSfp, 7, 16, kFmtSfp, 5, 0, 413 kFmtUnused, -1, -1, 414 IS_TERTIARY_OP | REG_DEF0_USE12, 415 "vmuls", "!0s, !1s, !2s", 2), 416 ENCODING_MAP(kThumb2Vmuld, 0xee200b00, 417 kFmtDfp, 22, 12, kFmtDfp, 7, 16, kFmtDfp, 5, 0, 418 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12, 419 "vmuld", "!0S, !1S, !2S", 2), 420 ENCODING_MAP(kThumb2Vstrs, 0xed800a00, 421 kFmtSfp, 22, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 7, 0, 422 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE01 | IS_STORE, 423 "vstr", "!0s, [r!1d, #!2E]", 2), 424 ENCODING_MAP(kThumb2Vstrd, 0xed800b00, 425 kFmtDfp, 22, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 7, 0, 426 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE01 | IS_STORE, 427 "vstr", "!0S, [r!1d, #!2E]", 2), 428 ENCODING_MAP(kThumb2Vsubs, 0xee300a40, 429 kFmtSfp, 22, 12, kFmtSfp, 7, 16, kFmtSfp, 5, 0, 430 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12, 431 "vsub", "!0s, !1s, !2s", 2), 432 ENCODING_MAP(kThumb2Vsubd, 0xee300b40, 433 kFmtDfp, 22, 12, kFmtDfp, 7, 16, kFmtDfp, 5, 0, 434 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12, 435 "vsub", "!0S, !1S, !2S", 2), 436 ENCODING_MAP(kThumb2Vadds, 0xee300a00, 437 kFmtSfp, 22, 12, kFmtSfp, 7, 16, kFmtSfp, 5, 0, 438 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12, 439 "vadd", "!0s, !1s, !2s", 2), 440 ENCODING_MAP(kThumb2Vaddd, 0xee300b00, 441 kFmtDfp, 22, 12, kFmtDfp, 7, 16, kFmtDfp, 5, 0, 442 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12, 443 "vadd", "!0S, !1S, !2S", 2), 444 ENCODING_MAP(kThumb2Vdivs, 0xee800a00, 445 kFmtSfp, 22, 12, kFmtSfp, 7, 16, kFmtSfp, 5, 0, 446 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12, 447 "vdivs", "!0s, !1s, !2s", 2), 448 ENCODING_MAP(kThumb2Vdivd, 0xee800b00, 449 kFmtDfp, 22, 12, kFmtDfp, 7, 16, kFmtDfp, 5, 0, 450 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12, 451 "vdivd", "!0S, !1S, !2S", 2), 452 ENCODING_MAP(kThumb2VcvtIF, 0xeeb80ac0, 453 kFmtSfp, 22, 12, kFmtSfp, 5, 0, kFmtUnused, -1, -1, 454 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, 455 "vcvt.f32", "!0s, !1s", 2), 456 ENCODING_MAP(kThumb2VcvtID, 0xeeb80bc0, 457 kFmtDfp, 22, 12, kFmtSfp, 5, 0, kFmtUnused, -1, -1, 458 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, 459 "vcvt.f64", "!0S, !1s", 2), 460 ENCODING_MAP(kThumb2VcvtFI, 0xeebd0ac0, 461 kFmtSfp, 22, 12, kFmtSfp, 5, 0, kFmtUnused, -1, -1, 462 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, 463 "vcvt.s32.f32 ", "!0s, !1s", 2), 464 ENCODING_MAP(kThumb2VcvtDI, 0xeebd0bc0, 465 kFmtSfp, 22, 12, kFmtDfp, 5, 0, kFmtUnused, -1, -1, 466 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, 467 "vcvt.s32.f64 ", "!0s, !1S", 2), 468 ENCODING_MAP(kThumb2VcvtFd, 0xeeb70ac0, 469 kFmtDfp, 22, 12, kFmtSfp, 5, 0, kFmtUnused, -1, -1, 470 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, 471 "vcvt.f64.f32 ", "!0S, !1s", 2), 472 ENCODING_MAP(kThumb2VcvtDF, 0xeeb70bc0, 473 kFmtSfp, 22, 12, kFmtDfp, 5, 0, kFmtUnused, -1, -1, 474 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, 475 "vcvt.f32.f64 ", "!0s, !1S", 2), 476 ENCODING_MAP(kThumb2Vsqrts, 0xeeb10ac0, 477 kFmtSfp, 22, 12, kFmtSfp, 5, 0, kFmtUnused, -1, -1, 478 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, 479 "vsqrt.f32 ", "!0s, !1s", 2), 480 ENCODING_MAP(kThumb2Vsqrtd, 0xeeb10bc0, 481 kFmtDfp, 22, 12, kFmtDfp, 5, 0, kFmtUnused, -1, -1, 482 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, 483 "vsqrt.f64 ", "!0S, !1S", 2), 484 ENCODING_MAP(kThumb2MovImmShift, 0xf04f0000, /* no setflags encoding */ 485 kFmtBitBlt, 11, 8, kFmtModImm, -1, -1, kFmtUnused, -1, -1, 486 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0, 487 "mov", "r!0d, #!1m", 2), 488 ENCODING_MAP(kThumb2MovImm16, 0xf2400000, 489 kFmtBitBlt, 11, 8, kFmtImm16, -1, -1, kFmtUnused, -1, -1, 490 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0, 491 "mov", "r!0d, #!1M", 2), 492 ENCODING_MAP(kThumb2StrRRI12, 0xf8c00000, 493 kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 11, 0, 494 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE01 | IS_STORE, 495 "str", "r!0d, [r!1d, #!2d]", 2), 496 ENCODING_MAP(kThumb2LdrRRI12, 0xf8d00000, 497 kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 11, 0, 498 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD, 499 "ldr", "r!0d, [r!1d, #!2d]", 2), 500 ENCODING_MAP(kThumb2StrRRI8Predec, 0xf8400c00, 501 kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 8, 0, 502 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE01 | IS_STORE, 503 "str", "r!0d, [r!1d, #-!2d]", 2), 504 ENCODING_MAP(kThumb2LdrRRI8Predec, 0xf8500c00, 505 kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 8, 0, 506 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD, 507 "ldr", "r!0d, [r!1d, #-!2d]", 2), 508 ENCODING_MAP(kThumb2Cbnz, 0xb900, /* Note: does not affect flags */ 509 kFmtBitBlt, 2, 0, kFmtImm6, -1, -1, kFmtUnused, -1, -1, 510 kFmtUnused, -1, -1, IS_BINARY_OP | REG_USE0 | IS_BRANCH, 511 "cbnz", "r!0d,!1t", 1), 512 ENCODING_MAP(kThumb2Cbz, 0xb100, /* Note: does not affect flags */ 513 kFmtBitBlt, 2, 0, kFmtImm6, -1, -1, kFmtUnused, -1, -1, 514 kFmtUnused, -1, -1, IS_BINARY_OP | REG_USE0 | IS_BRANCH, 515 "cbz", "r!0d,!1t", 1), 516 ENCODING_MAP(kThumb2AddRRI12, 0xf2000000, 517 kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtImm12, -1, -1, 518 kFmtUnused, -1, -1, 519 IS_TERTIARY_OP | REG_DEF0_USE1,/* Note: doesn't affect flags */ 520 "add", "r!0d,r!1d,#!2d", 2), 521 ENCODING_MAP(kThumb2MovRR, 0xea4f0000, /* no setflags encoding */ 522 kFmtBitBlt, 11, 8, kFmtBitBlt, 3, 0, kFmtUnused, -1, -1, 523 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, 524 "mov", "r!0d, r!1d", 2), 525 ENCODING_MAP(kThumb2Vmovs, 0xeeb00a40, 526 kFmtSfp, 22, 12, kFmtSfp, 5, 0, kFmtUnused, -1, -1, 527 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, 528 "vmov.f32 ", " !0s, !1s", 2), 529 ENCODING_MAP(kThumb2Vmovd, 0xeeb00b40, 530 kFmtDfp, 22, 12, kFmtDfp, 5, 0, kFmtUnused, -1, -1, 531 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, 532 "vmov.f64 ", " !0S, !1S", 2), 533 ENCODING_MAP(kThumb2Ldmia, 0xe8900000, 534 kFmtBitBlt, 19, 16, kFmtBitBlt, 15, 0, kFmtUnused, -1, -1, 535 kFmtUnused, -1, -1, 536 IS_BINARY_OP | REG_DEF0_USE0 | REG_DEF_LIST1 | IS_LOAD, 537 "ldmia", "r!0d!!, <!1R>", 2), 538 ENCODING_MAP(kThumb2Stmia, 0xe8800000, 539 kFmtBitBlt, 19, 16, kFmtBitBlt, 15, 0, kFmtUnused, -1, -1, 540 kFmtUnused, -1, -1, 541 IS_BINARY_OP | REG_DEF0_USE0 | REG_USE_LIST1 | IS_STORE, 542 "stmia", "r!0d!!, <!1R>", 2), 543 ENCODING_MAP(kThumb2AddRRR, 0xeb100000, /* setflags encoding */ 544 kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0, 545 kFmtShift, -1, -1, 546 IS_QUAD_OP | REG_DEF0_USE12 | SETS_CCODES, 547 "adds", "r!0d, r!1d, r!2d!3H", 2), 548 ENCODING_MAP(kThumb2SubRRR, 0xebb00000, /* setflags enconding */ 549 kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0, 550 kFmtShift, -1, -1, 551 IS_QUAD_OP | REG_DEF0_USE12 | SETS_CCODES, 552 "subs", "r!0d, r!1d, r!2d!3H", 2), 553 ENCODING_MAP(kThumb2SbcRRR, 0xeb700000, /* setflags encoding */ 554 kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0, 555 kFmtShift, -1, -1, 556 IS_QUAD_OP | REG_DEF0_USE12 | USES_CCODES | SETS_CCODES, 557 "sbcs", "r!0d, r!1d, r!2d!3H", 2), 558 ENCODING_MAP(kThumb2CmpRR, 0xebb00f00, 559 kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0, kFmtShift, -1, -1, 560 kFmtUnused, -1, -1, 561 IS_TERTIARY_OP | REG_USE01 | SETS_CCODES, 562 "cmp", "r!0d, r!1d", 2), 563 ENCODING_MAP(kThumb2SubRRI12, 0xf2a00000, 564 kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtImm12, -1, -1, 565 kFmtUnused, -1, -1, 566 IS_TERTIARY_OP | REG_DEF0_USE1,/* Note: doesn't affect flags */ 567 "sub", "r!0d,r!1d,#!2d", 2), 568 ENCODING_MAP(kThumb2MvnImmShift, 0xf06f0000, /* no setflags encoding */ 569 kFmtBitBlt, 11, 8, kFmtModImm, -1, -1, kFmtUnused, -1, -1, 570 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0, 571 "mvn", "r!0d, #!1n", 2), 572 ENCODING_MAP(kThumb2Sel, 0xfaa0f080, 573 kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0, 574 kFmtUnused, -1, -1, 575 IS_TERTIARY_OP | REG_DEF0_USE12 | USES_CCODES, 576 "sel", "r!0d, r!1d, r!2d", 2), 577 ENCODING_MAP(kThumb2Ubfx, 0xf3c00000, 578 kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtLsb, -1, -1, 579 kFmtBWidth, 4, 0, IS_QUAD_OP | REG_DEF0_USE1, 580 "ubfx", "r!0d, r!1d, #!2d, #!3d", 2), 581 ENCODING_MAP(kThumb2Sbfx, 0xf3400000, 582 kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtLsb, -1, -1, 583 kFmtBWidth, 4, 0, IS_QUAD_OP | REG_DEF0_USE1, 584 "sbfx", "r!0d, r!1d, #!2d, #!3d", 2), 585 ENCODING_MAP(kThumb2LdrRRR, 0xf8500000, 586 kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0, 587 kFmtBitBlt, 5, 4, IS_QUAD_OP | REG_DEF0_USE12 | IS_LOAD, 588 "ldr", "r!0d, [r!1d, r!2d, LSL #!3d]", 2), 589 ENCODING_MAP(kThumb2LdrhRRR, 0xf8300000, 590 kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0, 591 kFmtBitBlt, 5, 4, IS_QUAD_OP | REG_DEF0_USE12 | IS_LOAD, 592 "ldrh", "r!0d, [r!1d, r!2d, LSL #!3d]", 2), 593 ENCODING_MAP(kThumb2LdrshRRR, 0xf9300000, 594 kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0, 595 kFmtBitBlt, 5, 4, IS_QUAD_OP | REG_DEF0_USE12 | IS_LOAD, 596 "ldrsh", "r!0d, [r!1d, r!2d, LSL #!3d]", 2), 597 ENCODING_MAP(kThumb2LdrbRRR, 0xf8100000, 598 kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0, 599 kFmtBitBlt, 5, 4, IS_QUAD_OP | REG_DEF0_USE12 | IS_LOAD, 600 "ldrb", "r!0d, [r!1d, r!2d, LSL #!3d]", 2), 601 ENCODING_MAP(kThumb2LdrsbRRR, 0xf9100000, 602 kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0, 603 kFmtBitBlt, 5, 4, IS_QUAD_OP | REG_DEF0_USE12 | IS_LOAD, 604 "ldrsb", "r!0d, [r!1d, r!2d, LSL #!3d]", 2), 605 ENCODING_MAP(kThumb2StrRRR, 0xf8400000, 606 kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0, 607 kFmtBitBlt, 5, 4, IS_QUAD_OP | REG_USE012 | IS_STORE, 608 "str", "r!0d, [r!1d, r!2d, LSL #!3d]", 2), 609 ENCODING_MAP(kThumb2StrhRRR, 0xf8200000, 610 kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0, 611 kFmtBitBlt, 5, 4, IS_QUAD_OP | REG_USE012 | IS_STORE, 612 "strh", "r!0d, [r!1d, r!2d, LSL #!3d]", 2), 613 ENCODING_MAP(kThumb2StrbRRR, 0xf8000000, 614 kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0, 615 kFmtBitBlt, 5, 4, IS_QUAD_OP | REG_USE012 | IS_STORE, 616 "strb", "r!0d, [r!1d, r!2d, LSL #!3d]", 2), 617 ENCODING_MAP(kThumb2LdrhRRI12, 0xf8b00000, 618 kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 11, 0, 619 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD, 620 "ldrh", "r!0d, [r!1d, #!2d]", 2), 621 ENCODING_MAP(kThumb2LdrshRRI12, 0xf9b00000, 622 kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 11, 0, 623 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD, 624 "ldrsh", "r!0d, [r!1d, #!2d]", 2), 625 ENCODING_MAP(kThumb2LdrbRRI12, 0xf8900000, 626 kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 11, 0, 627 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD, 628 "ldrb", "r!0d, [r!1d, #!2d]", 2), 629 ENCODING_MAP(kThumb2LdrsbRRI12, 0xf9900000, 630 kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 11, 0, 631 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD, 632 "ldrsb", "r!0d, [r!1d, #!2d]", 2), 633 ENCODING_MAP(kThumb2StrhRRI12, 0xf8a00000, 634 kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 11, 0, 635 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE01 | IS_STORE, 636 "strh", "r!0d, [r!1d, #!2d]", 2), 637 ENCODING_MAP(kThumb2StrbRRI12, 0xf8800000, 638 kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 11, 0, 639 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE01 | IS_STORE, 640 "strb", "r!0d, [r!1d, #!2d]", 2), 641 ENCODING_MAP(kThumb2Pop, 0xe8bd0000, 642 kFmtBitBlt, 15, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1, 643 kFmtUnused, -1, -1, 644 IS_UNARY_OP | REG_DEF_SP | REG_USE_SP | REG_DEF_LIST0 645 | IS_LOAD, "pop", "<!0R>", 2), 646 ENCODING_MAP(kThumb2Push, 0xe8ad0000, 647 kFmtBitBlt, 15, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1, 648 kFmtUnused, -1, -1, 649 IS_UNARY_OP | REG_DEF_SP | REG_USE_SP | REG_USE_LIST0 650 | IS_STORE, "push", "<!0R>", 2), 651 ENCODING_MAP(kThumb2CmpRI8, 0xf1b00f00, 652 kFmtBitBlt, 19, 16, kFmtModImm, -1, -1, kFmtUnused, -1, -1, 653 kFmtUnused, -1, -1, 654 IS_BINARY_OP | REG_USE0 | SETS_CCODES, 655 "cmp", "r!0d, #!1m", 2), 656 ENCODING_MAP(kThumb2AdcRRR, 0xeb500000, /* setflags encoding */ 657 kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0, 658 kFmtShift, -1, -1, 659 IS_QUAD_OP | REG_DEF0_USE12 | SETS_CCODES, 660 "adcs", "r!0d, r!1d, r!2d!3H", 2), 661 ENCODING_MAP(kThumb2AndRRR, 0xea000000, 662 kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0, 663 kFmtShift, -1, -1, IS_QUAD_OP | REG_DEF0_USE12, 664 "and", "r!0d, r!1d, r!2d!3H", 2), 665 ENCODING_MAP(kThumb2BicRRR, 0xea200000, 666 kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0, 667 kFmtShift, -1, -1, IS_QUAD_OP | REG_DEF0_USE12, 668 "bic", "r!0d, r!1d, r!2d!3H", 2), 669 ENCODING_MAP(kThumb2CmnRR, 0xeb000000, 670 kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0, kFmtShift, -1, -1, 671 kFmtUnused, -1, -1, 672 IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, 673 "cmn", "r!0d, r!1d, shift !2d", 2), 674 ENCODING_MAP(kThumb2EorRRR, 0xea800000, 675 kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0, 676 kFmtShift, -1, -1, IS_QUAD_OP | REG_DEF0_USE12, 677 "eor", "r!0d, r!1d, r!2d!3H", 2), 678 ENCODING_MAP(kThumb2MulRRR, 0xfb00f000, 679 kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0, 680 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12, 681 "mul", "r!0d, r!1d, r!2d", 2), 682 ENCODING_MAP(kThumb2MnvRR, 0xea6f0000, 683 kFmtBitBlt, 11, 8, kFmtBitBlt, 3, 0, kFmtShift, -1, -1, 684 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1, 685 "mvn", "r!0d, r!1d, shift !2d", 2), 686 ENCODING_MAP(kThumb2RsubRRI8, 0xf1d00000, 687 kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtModImm, -1, -1, 688 kFmtUnused, -1, -1, 689 IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, 690 "rsb", "r!0d,r!1d,#!2m", 2), 691 ENCODING_MAP(kThumb2NegRR, 0xf1d00000, /* instance of rsub */ 692 kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtUnused, -1, -1, 693 kFmtUnused, -1, -1, 694 IS_BINARY_OP | REG_DEF0_USE1 | SETS_CCODES, 695 "neg", "r!0d,r!1d", 2), 696 ENCODING_MAP(kThumb2OrrRRR, 0xea400000, 697 kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0, 698 kFmtShift, -1, -1, IS_QUAD_OP | REG_DEF0_USE12, 699 "orr", "r!0d, r!1d, r!2d!3H", 2), 700 ENCODING_MAP(kThumb2TstRR, 0xea100f00, 701 kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0, kFmtShift, -1, -1, 702 kFmtUnused, -1, -1, 703 IS_TERTIARY_OP | REG_USE01 | SETS_CCODES, 704 "tst", "r!0d, r!1d, shift !2d", 2), 705 ENCODING_MAP(kThumb2LslRRR, 0xfa00f000, 706 kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0, 707 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12, 708 "lsl", "r!0d, r!1d, r!2d", 2), 709 ENCODING_MAP(kThumb2LsrRRR, 0xfa20f000, 710 kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0, 711 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12, 712 "lsr", "r!0d, r!1d, r!2d", 2), 713 ENCODING_MAP(kThumb2AsrRRR, 0xfa40f000, 714 kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0, 715 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12, 716 "asr", "r!0d, r!1d, r!2d", 2), 717 ENCODING_MAP(kThumb2RorRRR, 0xfa60f000, 718 kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0, 719 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12, 720 "ror", "r!0d, r!1d, r!2d", 2), 721 ENCODING_MAP(kThumb2LslRRI5, 0xea4f0000, 722 kFmtBitBlt, 11, 8, kFmtBitBlt, 3, 0, kFmtShift5, -1, -1, 723 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1, 724 "lsl", "r!0d, r!1d, #!2d", 2), 725 ENCODING_MAP(kThumb2LsrRRI5, 0xea4f0010, 726 kFmtBitBlt, 11, 8, kFmtBitBlt, 3, 0, kFmtShift5, -1, -1, 727 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1, 728 "lsr", "r!0d, r!1d, #!2d", 2), 729 ENCODING_MAP(kThumb2AsrRRI5, 0xea4f0020, 730 kFmtBitBlt, 11, 8, kFmtBitBlt, 3, 0, kFmtShift5, -1, -1, 731 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1, 732 "asr", "r!0d, r!1d, #!2d", 2), 733 ENCODING_MAP(kThumb2RorRRI5, 0xea4f0030, 734 kFmtBitBlt, 11, 8, kFmtBitBlt, 3, 0, kFmtShift5, -1, -1, 735 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1, 736 "ror", "r!0d, r!1d, #!2d", 2), 737 ENCODING_MAP(kThumb2BicRRI8, 0xf0200000, 738 kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtModImm, -1, -1, 739 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1, 740 "bic", "r!0d, r!1d, #!2m", 2), 741 ENCODING_MAP(kThumb2AndRRI8, 0xf0000000, 742 kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtModImm, -1, -1, 743 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1, 744 "and", "r!0d, r!1d, #!2m", 2), 745 ENCODING_MAP(kThumb2OrrRRI8, 0xf0400000, 746 kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtModImm, -1, -1, 747 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1, 748 "orr", "r!0d, r!1d, #!2m", 2), 749 ENCODING_MAP(kThumb2EorRRI8, 0xf0800000, 750 kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtModImm, -1, -1, 751 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1, 752 "eor", "r!0d, r!1d, #!2m", 2), 753 ENCODING_MAP(kThumb2AddRRI8, 0xf1100000, 754 kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtModImm, -1, -1, 755 kFmtUnused, -1, -1, 756 IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, 757 "adds", "r!0d, r!1d, #!2m", 2), 758 ENCODING_MAP(kThumb2AdcRRI8, 0xf1500000, 759 kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtModImm, -1, -1, 760 kFmtUnused, -1, -1, 761 IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES | USES_CCODES, 762 "adcs", "r!0d, r!1d, #!2m", 2), 763 ENCODING_MAP(kThumb2SubRRI8, 0xf1b00000, 764 kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtModImm, -1, -1, 765 kFmtUnused, -1, -1, 766 IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, 767 "subs", "r!0d, r!1d, #!2m", 2), 768 ENCODING_MAP(kThumb2SbcRRI8, 0xf1700000, 769 kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtModImm, -1, -1, 770 kFmtUnused, -1, -1, 771 IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES | USES_CCODES, 772 "sbcs", "r!0d, r!1d, #!2m", 2), 773 ENCODING_MAP(kThumb2It, 0xbf00, 774 kFmtBitBlt, 7, 4, kFmtBitBlt, 3, 0, kFmtModImm, -1, -1, 775 kFmtUnused, -1, -1, IS_BINARY_OP | IS_IT | USES_CCODES, 776 "it:!1b", "!0c", 1), 777 ENCODING_MAP(kThumb2Fmstat, 0xeef1fa10, 778 kFmtUnused, -1, -1, kFmtUnused, -1, -1, kFmtUnused, -1, -1, 779 kFmtUnused, -1, -1, NO_OPERAND | SETS_CCODES, 780 "fmstat", "", 2), 781 ENCODING_MAP(kThumb2Vcmpd, 0xeeb40b40, 782 kFmtDfp, 22, 12, kFmtDfp, 5, 0, kFmtUnused, -1, -1, 783 kFmtUnused, -1, -1, IS_BINARY_OP | REG_USE01, 784 "vcmp.f64", "!0S, !1S", 2), 785 ENCODING_MAP(kThumb2Vcmps, 0xeeb40a40, 786 kFmtSfp, 22, 12, kFmtSfp, 5, 0, kFmtUnused, -1, -1, 787 kFmtUnused, -1, -1, IS_BINARY_OP | REG_USE01, 788 "vcmp.f32", "!0s, !1s", 2), 789 ENCODING_MAP(kThumb2LdrPcRel12, 0xf8df0000, 790 kFmtBitBlt, 15, 12, kFmtBitBlt, 11, 0, kFmtUnused, -1, -1, 791 kFmtUnused, -1, -1, 792 IS_TERTIARY_OP | REG_DEF0 | REG_USE_PC | IS_LOAD, 793 "ldr", "r!0d, [rpc, #!1d]", 2), 794 ENCODING_MAP(kThumb2BCond, 0xf0008000, 795 kFmtBrOffset, -1, -1, kFmtBitBlt, 25, 22, kFmtUnused, -1, -1, 796 kFmtUnused, -1, -1, 797 IS_BINARY_OP | IS_BRANCH | USES_CCODES, 798 "b!1c", "!0t", 2), 799 ENCODING_MAP(kThumb2Vmovd_RR, 0xeeb00b40, 800 kFmtDfp, 22, 12, kFmtDfp, 5, 0, kFmtUnused, -1, -1, 801 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, 802 "vmov.f64", "!0S, !1S", 2), 803 ENCODING_MAP(kThumb2Vmovs_RR, 0xeeb00a40, 804 kFmtSfp, 22, 12, kFmtSfp, 5, 0, kFmtUnused, -1, -1, 805 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, 806 "vmov.f32", "!0s, !1s", 2), 807 ENCODING_MAP(kThumb2Fmrs, 0xee100a10, 808 kFmtBitBlt, 15, 12, kFmtSfp, 7, 16, kFmtUnused, -1, -1, 809 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, 810 "fmrs", "r!0d, !1s", 2), 811 ENCODING_MAP(kThumb2Fmsr, 0xee000a10, 812 kFmtSfp, 7, 16, kFmtBitBlt, 15, 12, kFmtUnused, -1, -1, 813 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, 814 "fmsr", "!0s, r!1d", 2), 815 ENCODING_MAP(kThumb2Fmrrd, 0xec500b10, 816 kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtDfp, 5, 0, 817 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF01_USE2, 818 "fmrrd", "r!0d, r!1d, !2S", 2), 819 ENCODING_MAP(kThumb2Fmdrr, 0xec400b10, 820 kFmtDfp, 5, 0, kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, 821 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12, 822 "fmdrr", "!0S, r!1d, r!2d", 2), 823 ENCODING_MAP(kThumb2Vabsd, 0xeeb00bc0, 824 kFmtDfp, 22, 12, kFmtDfp, 5, 0, kFmtUnused, -1, -1, 825 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, 826 "vabs.f64", "!0S, !1S", 2), 827 ENCODING_MAP(kThumb2Vabss, 0xeeb00ac0, 828 kFmtSfp, 22, 12, kFmtSfp, 5, 0, kFmtUnused, -1, -1, 829 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, 830 "vabs.f32", "!0s, !1s", 2), 831 ENCODING_MAP(kThumb2Vnegd, 0xeeb10b40, 832 kFmtDfp, 22, 12, kFmtDfp, 5, 0, kFmtUnused, -1, -1, 833 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, 834 "vneg.f64", "!0S, !1S", 2), 835 ENCODING_MAP(kThumb2Vnegs, 0xeeb10a40, 836 kFmtSfp, 22, 12, kFmtSfp, 5, 0, kFmtUnused, -1, -1, 837 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, 838 "vneg.f32", "!0s, !1s", 2), 839 ENCODING_MAP(kThumb2Vmovs_IMM8, 0xeeb00a00, 840 kFmtSfp, 22, 12, kFmtFPImm, 16, 0, kFmtUnused, -1, -1, 841 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0, 842 "vmov.f32", "!0s, #0x!1h", 2), 843 ENCODING_MAP(kThumb2Vmovd_IMM8, 0xeeb00b00, 844 kFmtDfp, 22, 12, kFmtFPImm, 16, 0, kFmtUnused, -1, -1, 845 kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0, 846 "vmov.f64", "!0S, #0x!1h", 2), 847 ENCODING_MAP(kThumb2Mla, 0xfb000000, 848 kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0, 849 kFmtBitBlt, 15, 12, 850 IS_QUAD_OP | REG_DEF0 | REG_USE1 | REG_USE2 | REG_USE3, 851 "mla", "r!0d, r!1d, r!2d, r!3d", 2), 852 ENCODING_MAP(kThumb2Umull, 0xfba00000, 853 kFmtBitBlt, 15, 12, kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, 854 kFmtBitBlt, 3, 0, 855 IS_QUAD_OP | REG_DEF0 | REG_DEF1 | REG_USE2 | REG_USE3, 856 "umull", "r!0d, r!1d, r!2d, r!3d", 2), 857 ENCODING_MAP(kThumb2Ldrex, 0xe8500f00, 858 kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 7, 0, 859 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD, 860 "ldrex", "r!0d, [r!1d, #!2E]", 2), 861 ENCODING_MAP(kThumb2Strex, 0xe8400000, 862 kFmtBitBlt, 11, 8, kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, 863 kFmtBitBlt, 7, 0, IS_QUAD_OP | REG_DEF0_USE12 | IS_STORE, 864 "strex", "r!0d,r!1d, [r!2d, #!2E]", 2), 865 ENCODING_MAP(kThumb2Clrex, 0xf3bf8f2f, 866 kFmtUnused, -1, -1, kFmtUnused, -1, -1, kFmtUnused, -1, -1, 867 kFmtUnused, -1, -1, NO_OPERAND, 868 "clrex", "", 2), 869 ENCODING_MAP(kThumb2Bfi, 0xf3600000, 870 kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtShift5, -1, -1, 871 kFmtBitBlt, 4, 0, IS_QUAD_OP | REG_DEF0_USE1, 872 "bfi", "r!0d,r!1d,#!2d,#!3d", 2), 873 ENCODING_MAP(kThumb2Bfc, 0xf36f0000, 874 kFmtBitBlt, 11, 8, kFmtShift5, -1, -1, kFmtBitBlt, 4, 0, 875 kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0, 876 "bfc", "r!0d,#!1d,#!2d", 2), 877 ENCODING_MAP(kThumb2Dmb, 0xf3bf8f50, 878 kFmtBitBlt, 3, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1, 879 kFmtUnused, -1, -1, IS_UNARY_OP, 880 "dmb","#!0B",2), 881 }; 882 883 /* 884 * The fake NOP of moving r0 to r0 actually will incur data stalls if r0 is 885 * not ready. Since r5 (rFP) is not updated often, it is less likely to 886 * generate unnecessary stall cycles. 887 */ 888 #define PADDING_MOV_R5_R5 0x1C2D 889 890 /* Track the number of times that the code cache is patched */ 891 #if defined(WITH_JIT_TUNING) 892 #define UPDATE_CODE_CACHE_PATCHES() (gDvmJit.codeCachePatches++) 893 #else 894 #define UPDATE_CODE_CACHE_PATCHES() 895 #endif 896 897 /* Write the numbers in the literal pool to the codegen stream */ 898 static void installDataContent(CompilationUnit *cUnit) 899 { 900 int *dataPtr = (int *) ((char *) cUnit->baseAddr + cUnit->dataOffset); 901 ArmLIR *dataLIR = (ArmLIR *) cUnit->wordList; 902 while (dataLIR) { 903 *dataPtr++ = dataLIR->operands[0]; 904 dataLIR = NEXT_LIR(dataLIR); 905 } 906 } 907 908 /* Returns the size of a Jit trace description */ 909 static int jitTraceDescriptionSize(const JitTraceDescription *desc) 910 { 911 int runCount; 912 /* Trace end is always of non-meta type (ie isCode == true) */ 913 for (runCount = 0; ; runCount++) { 914 if (desc->trace[runCount].frag.isCode && 915 desc->trace[runCount].frag.runEnd) 916 break; 917 } 918 return sizeof(JitTraceDescription) + ((runCount+1) * sizeof(JitTraceRun)); 919 } 920 921 /* 922 * Assemble the LIR into binary instruction format. Note that we may 923 * discover that pc-relative displacements may not fit the selected 924 * instruction. In those cases we will try to substitute a new code 925 * sequence or request that the trace be shortened and retried. 926 */ 927 static AssemblerStatus assembleInstructions(CompilationUnit *cUnit, 928 intptr_t startAddr) 929 { 930 short *bufferAddr = (short *) cUnit->codeBuffer; 931 ArmLIR *lir; 932 933 for (lir = (ArmLIR *) cUnit->firstLIRInsn; lir; lir = NEXT_LIR(lir)) { 934 if (lir->opCode < 0) { 935 if ((lir->opCode == kArmPseudoPseudoAlign4) && 936 /* 1 means padding is needed */ 937 (lir->operands[0] == 1)) { 938 *bufferAddr++ = PADDING_MOV_R5_R5; 939 } 940 continue; 941 } 942 943 if (lir->isNop) { 944 continue; 945 } 946 947 if (lir->opCode == kThumbLdrPcRel || 948 lir->opCode == kThumb2LdrPcRel12 || 949 lir->opCode == kThumbAddPcRel || 950 ((lir->opCode == kThumb2Vldrs) && (lir->operands[1] == rpc))) { 951 ArmLIR *lirTarget = (ArmLIR *) lir->generic.target; 952 intptr_t pc = (lir->generic.offset + 4) & ~3; 953 intptr_t target = lirTarget->generic.offset; 954 int delta = target - pc; 955 if (delta & 0x3) { 956 LOGE("PC-rel distance is not multiples of 4: %d\n", delta); 957 dvmCompilerAbort(cUnit); 958 } 959 if ((lir->opCode == kThumb2LdrPcRel12) && (delta > 4091)) { 960 return kRetryHalve; 961 } else if (delta > 1020) { 962 return kRetryHalve; 963 } 964 if (lir->opCode == kThumb2Vldrs) { 965 lir->operands[2] = delta >> 2; 966 } else { 967 lir->operands[1] = (lir->opCode == kThumb2LdrPcRel12) ? 968 delta : delta >> 2; 969 } 970 } else if (lir->opCode == kThumb2Cbnz || lir->opCode == kThumb2Cbz) { 971 ArmLIR *targetLIR = (ArmLIR *) lir->generic.target; 972 intptr_t pc = lir->generic.offset + 4; 973 intptr_t target = targetLIR->generic.offset; 974 int delta = target - pc; 975 if (delta > 126 || delta < 0) { 976 /* Convert to cmp rx,#0 / b[eq/ne] tgt pair */ 977 ArmLIR *newInst = dvmCompilerNew(sizeof(ArmLIR), true); 978 /* Make new branch instruction and insert after */ 979 newInst->opCode = kThumbBCond; 980 newInst->operands[0] = 0; 981 newInst->operands[1] = (lir->opCode == kThumb2Cbz) ? 982 kArmCondEq : kArmCondNe; 983 newInst->generic.target = lir->generic.target; 984 dvmCompilerSetupResourceMasks(newInst); 985 dvmCompilerInsertLIRAfter((LIR *)lir, (LIR *)newInst); 986 /* Convert the cb[n]z to a cmp rx, #0 ] */ 987 lir->opCode = kThumbCmpRI8; 988 /* operand[0] is src1 in both cb[n]z & CmpRI8 */ 989 lir->operands[1] = 0; 990 lir->generic.target = 0; 991 dvmCompilerSetupResourceMasks(lir); 992 return kRetryAll; 993 } else { 994 lir->operands[1] = delta >> 1; 995 } 996 } else if (lir->opCode == kThumbBCond || 997 lir->opCode == kThumb2BCond) { 998 ArmLIR *targetLIR = (ArmLIR *) lir->generic.target; 999 intptr_t pc = lir->generic.offset + 4; 1000 intptr_t target = targetLIR->generic.offset; 1001 int delta = target - pc; 1002 if ((lir->opCode == kThumbBCond) && (delta > 254 || delta < -256)) { 1003 return kRetryHalve; 1004 } 1005 lir->operands[0] = delta >> 1; 1006 } else if (lir->opCode == kThumbBUncond) { 1007 ArmLIR *targetLIR = (ArmLIR *) lir->generic.target; 1008 intptr_t pc = lir->generic.offset + 4; 1009 intptr_t target = targetLIR->generic.offset; 1010 int delta = target - pc; 1011 if (delta > 2046 || delta < -2048) { 1012 LOGE("Unconditional branch distance out of range: %d\n", delta); 1013 dvmCompilerAbort(cUnit); 1014 } 1015 lir->operands[0] = delta >> 1; 1016 } else if (lir->opCode == kThumbBlx1) { 1017 assert(NEXT_LIR(lir)->opCode == kThumbBlx2); 1018 /* curPC is Thumb */ 1019 intptr_t curPC = (startAddr + lir->generic.offset + 4) & ~3; 1020 intptr_t target = lir->operands[1]; 1021 1022 /* Match bit[1] in target with base */ 1023 if (curPC & 0x2) { 1024 target |= 0x2; 1025 } 1026 int delta = target - curPC; 1027 assert((delta >= -(1<<22)) && (delta <= ((1<<22)-2))); 1028 1029 lir->operands[0] = (delta >> 12) & 0x7ff; 1030 NEXT_LIR(lir)->operands[0] = (delta>> 1) & 0x7ff; 1031 } 1032 1033 ArmEncodingMap *encoder = &EncodingMap[lir->opCode]; 1034 u4 bits = encoder->skeleton; 1035 int i; 1036 for (i = 0; i < 4; i++) { 1037 u4 operand; 1038 u4 value; 1039 operand = lir->operands[i]; 1040 switch(encoder->fieldLoc[i].kind) { 1041 case kFmtUnused: 1042 break; 1043 case kFmtFPImm: 1044 value = ((operand & 0xF0) >> 4) << encoder->fieldLoc[i].end; 1045 value |= (operand & 0x0F) << encoder->fieldLoc[i].start; 1046 bits |= value; 1047 break; 1048 case kFmtBrOffset: 1049 value = ((operand & 0x80000) >> 19) << 26; 1050 value |= ((operand & 0x40000) >> 18) << 11; 1051 value |= ((operand & 0x20000) >> 17) << 13; 1052 value |= ((operand & 0x1f800) >> 11) << 16; 1053 value |= (operand & 0x007ff); 1054 bits |= value; 1055 break; 1056 case kFmtShift5: 1057 value = ((operand & 0x1c) >> 2) << 12; 1058 value |= (operand & 0x03) << 6; 1059 bits |= value; 1060 break; 1061 case kFmtShift: 1062 value = ((operand & 0x70) >> 4) << 12; 1063 value |= (operand & 0x0f) << 4; 1064 bits |= value; 1065 break; 1066 case kFmtBWidth: 1067 value = operand - 1; 1068 bits |= value; 1069 break; 1070 case kFmtLsb: 1071 value = ((operand & 0x1c) >> 2) << 12; 1072 value |= (operand & 0x03) << 6; 1073 bits |= value; 1074 break; 1075 case kFmtImm6: 1076 value = ((operand & 0x20) >> 5) << 9; 1077 value |= (operand & 0x1f) << 3; 1078 bits |= value; 1079 break; 1080 case kFmtBitBlt: 1081 value = (operand << encoder->fieldLoc[i].start) & 1082 ((1 << (encoder->fieldLoc[i].end + 1)) - 1); 1083 bits |= value; 1084 break; 1085 case kFmtDfp: { 1086 assert(DOUBLEREG(operand)); 1087 assert((operand & 0x1) == 0); 1088 int regName = (operand & FP_REG_MASK) >> 1; 1089 /* Snag the 1-bit slice and position it */ 1090 value = ((regName & 0x10) >> 4) << 1091 encoder->fieldLoc[i].end; 1092 /* Extract and position the 4-bit slice */ 1093 value |= (regName & 0x0f) << 1094 encoder->fieldLoc[i].start; 1095 bits |= value; 1096 break; 1097 } 1098 case kFmtSfp: 1099 assert(SINGLEREG(operand)); 1100 /* Snag the 1-bit slice and position it */ 1101 value = (operand & 0x1) << 1102 encoder->fieldLoc[i].end; 1103 /* Extract and position the 4-bit slice */ 1104 value |= ((operand & 0x1e) >> 1) << 1105 encoder->fieldLoc[i].start; 1106 bits |= value; 1107 break; 1108 case kFmtImm12: 1109 case kFmtModImm: 1110 value = ((operand & 0x800) >> 11) << 26; 1111 value |= ((operand & 0x700) >> 8) << 12; 1112 value |= operand & 0x0ff; 1113 bits |= value; 1114 break; 1115 case kFmtImm16: 1116 value = ((operand & 0x0800) >> 11) << 26; 1117 value |= ((operand & 0xf000) >> 12) << 16; 1118 value |= ((operand & 0x0700) >> 8) << 12; 1119 value |= operand & 0x0ff; 1120 bits |= value; 1121 break; 1122 default: 1123 assert(0); 1124 } 1125 } 1126 if (encoder->size == 2) { 1127 *bufferAddr++ = (bits >> 16) & 0xffff; 1128 } 1129 *bufferAddr++ = bits & 0xffff; 1130 } 1131 return kSuccess; 1132 } 1133 1134 #if defined(SIGNATURE_BREAKPOINT) 1135 /* Inspect the assembled instruction stream to find potential matches */ 1136 static void matchSignatureBreakpoint(const CompilationUnit *cUnit, 1137 unsigned int size) 1138 { 1139 unsigned int i, j; 1140 u4 *ptr = (u4 *) cUnit->codeBuffer; 1141 1142 for (i = 0; i < size - gDvmJit.signatureBreakpointSize + 1; i++) { 1143 if (ptr[i] == gDvmJit.signatureBreakpoint[0]) { 1144 for (j = 1; j < gDvmJit.signatureBreakpointSize; j++) { 1145 if (ptr[i+j] != gDvmJit.signatureBreakpoint[j]) { 1146 break; 1147 } 1148 } 1149 if (j == gDvmJit.signatureBreakpointSize) { 1150 LOGD("Signature match starting from offset %#x (%d words)", 1151 i*4, gDvmJit.signatureBreakpointSize); 1152 int descSize = jitTraceDescriptionSize(cUnit->traceDesc); 1153 JitTraceDescription *newCopy = 1154 (JitTraceDescription *) malloc(descSize); 1155 memcpy(newCopy, cUnit->traceDesc, descSize); 1156 dvmCompilerWorkEnqueue(NULL, kWorkOrderTraceDebug, newCopy); 1157 break; 1158 } 1159 } 1160 } 1161 } 1162 #endif 1163 1164 /* 1165 * Translation layout in the code cache. Note that the codeAddress pointer 1166 * in JitTable will point directly to the code body (field codeAddress). The 1167 * chain cell offset codeAddress - 2, and (if present) executionCount is at 1168 * codeAddress - 6. 1169 * 1170 * +----------------------------+ 1171 * | Execution count | -> [Optional] 4 bytes 1172 * +----------------------------+ 1173 * +--| Offset to chain cell counts| -> 2 bytes 1174 * | +----------------------------+ 1175 * | | Code body | -> Start address for translation 1176 * | | | variable in 2-byte chunks 1177 * | . . (JitTable's codeAddress points here) 1178 * | . . 1179 * | | | 1180 * | +----------------------------+ 1181 * | | Chaining Cells | -> 12/16 bytes each, must be 4 byte aligned 1182 * | . . 1183 * | . . 1184 * | | | 1185 * | +----------------------------+ 1186 * | | Gap for large switch stmt | -> # cases >= MAX_CHAINED_SWITCH_CASES 1187 * | +----------------------------+ 1188 * +->| Chaining cell counts | -> 8 bytes, chain cell counts by type 1189 * +----------------------------+ 1190 * | Trace description | -> variable sized 1191 * . . 1192 * | | 1193 * +----------------------------+ 1194 * | Literal pool | -> 4-byte aligned, variable size 1195 * . . 1196 * . . 1197 * | | 1198 * +----------------------------+ 1199 * 1200 * Go over each instruction in the list and calculate the offset from the top 1201 * before sending them off to the assembler. If out-of-range branch distance is 1202 * seen rearrange the instructions a bit to correct it. 1203 */ 1204 void dvmCompilerAssembleLIR(CompilationUnit *cUnit, JitTranslationInfo *info) 1205 { 1206 LIR *lir; 1207 ArmLIR *armLIR; 1208 int offset = 0; 1209 int i; 1210 ChainCellCounts chainCellCounts; 1211 int descSize = 1212 cUnit->wholeMethod ? 0 : jitTraceDescriptionSize(cUnit->traceDesc); 1213 int chainingCellGap; 1214 1215 info->instructionSet = cUnit->instructionSet; 1216 1217 /* Beginning offset needs to allow space for chain cell offset */ 1218 for (armLIR = (ArmLIR *) cUnit->firstLIRInsn; 1219 armLIR; 1220 armLIR = NEXT_LIR(armLIR)) { 1221 armLIR->generic.offset = offset; 1222 if (armLIR->opCode >= 0 && !armLIR->isNop) { 1223 armLIR->size = EncodingMap[armLIR->opCode].size * 2; 1224 offset += armLIR->size; 1225 } else if (armLIR->opCode == kArmPseudoPseudoAlign4) { 1226 if (offset & 0x2) { 1227 offset += 2; 1228 armLIR->operands[0] = 1; 1229 } else { 1230 armLIR->operands[0] = 0; 1231 } 1232 } 1233 /* Pseudo opcodes don't consume space */ 1234 } 1235 1236 /* Const values have to be word aligned */ 1237 offset = (offset + 3) & ~3; 1238 1239 /* 1240 * Get the gap (# of u4) between the offset of chaining cell count and 1241 * the bottom of real chaining cells. If the translation has chaining 1242 * cells, the gap is guaranteed to be multiples of 4. 1243 */ 1244 chainingCellGap = (offset - cUnit->chainingCellBottom->offset) >> 2; 1245 1246 /* Add space for chain cell counts & trace description */ 1247 u4 chainCellOffset = offset; 1248 ArmLIR *chainCellOffsetLIR = (ArmLIR *) cUnit->chainCellOffsetLIR; 1249 assert(chainCellOffsetLIR); 1250 assert(chainCellOffset < 0x10000); 1251 assert(chainCellOffsetLIR->opCode == kArm16BitData && 1252 chainCellOffsetLIR->operands[0] == CHAIN_CELL_OFFSET_TAG); 1253 1254 /* 1255 * Replace the CHAIN_CELL_OFFSET_TAG with the real value. If trace 1256 * profiling is enabled, subtract 4 (occupied by the counter word) from 1257 * the absolute offset as the value stored in chainCellOffsetLIR is the 1258 * delta from &chainCellOffsetLIR to &ChainCellCounts. 1259 */ 1260 chainCellOffsetLIR->operands[0] = 1261 gDvmJit.profile ? (chainCellOffset - 4) : chainCellOffset; 1262 1263 offset += sizeof(chainCellCounts) + descSize; 1264 1265 assert((offset & 0x3) == 0); /* Should still be word aligned */ 1266 1267 /* Set up offsets for literals */ 1268 cUnit->dataOffset = offset; 1269 1270 for (lir = cUnit->wordList; lir; lir = lir->next) { 1271 lir->offset = offset; 1272 offset += 4; 1273 } 1274 1275 cUnit->totalSize = offset; 1276 1277 if (gDvmJit.codeCacheByteUsed + cUnit->totalSize > gDvmJit.codeCacheSize) { 1278 gDvmJit.codeCacheFull = true; 1279 cUnit->baseAddr = NULL; 1280 return; 1281 } 1282 1283 /* Allocate enough space for the code block */ 1284 cUnit->codeBuffer = dvmCompilerNew(chainCellOffset, true); 1285 if (cUnit->codeBuffer == NULL) { 1286 LOGE("Code buffer allocation failure\n"); 1287 cUnit->baseAddr = NULL; 1288 return; 1289 } 1290 1291 /* 1292 * Attempt to assemble the trace. Note that assembleInstructions 1293 * may rewrite the code sequence and request a retry. 1294 */ 1295 cUnit->assemblerStatus = assembleInstructions(cUnit, 1296 (intptr_t) gDvmJit.codeCache + gDvmJit.codeCacheByteUsed); 1297 1298 switch(cUnit->assemblerStatus) { 1299 case kSuccess: 1300 break; 1301 case kRetryAll: 1302 if (cUnit->assemblerRetries < MAX_ASSEMBLER_RETRIES) { 1303 /* Restore pristine chain cell marker on retry */ 1304 chainCellOffsetLIR->operands[0] = CHAIN_CELL_OFFSET_TAG; 1305 return; 1306 } 1307 /* Too many retries - reset and try cutting the trace in half */ 1308 cUnit->assemblerRetries = 0; 1309 cUnit->assemblerStatus = kRetryHalve; 1310 return; 1311 case kRetryHalve: 1312 return; 1313 default: 1314 LOGE("Unexpected assembler status: %d", cUnit->assemblerStatus); 1315 dvmAbort(); 1316 } 1317 1318 #if defined(SIGNATURE_BREAKPOINT) 1319 if (info->discardResult == false && gDvmJit.signatureBreakpoint != NULL && 1320 chainCellOffset/4 >= gDvmJit.signatureBreakpointSize) { 1321 matchSignatureBreakpoint(cUnit, chainCellOffset/4); 1322 } 1323 #endif 1324 1325 /* Don't go all the way if the goal is just to get the verbose output */ 1326 if (info->discardResult) return; 1327 1328 cUnit->baseAddr = (char *) gDvmJit.codeCache + gDvmJit.codeCacheByteUsed; 1329 gDvmJit.codeCacheByteUsed += offset; 1330 1331 UNPROTECT_CODE_CACHE(cUnit->baseAddr, offset); 1332 1333 /* Install the code block */ 1334 memcpy((char*)cUnit->baseAddr, cUnit->codeBuffer, chainCellOffset); 1335 gDvmJit.numCompilations++; 1336 1337 /* Install the chaining cell counts */ 1338 for (i=0; i< kChainingCellGap; i++) { 1339 chainCellCounts.u.count[i] = cUnit->numChainingCells[i]; 1340 } 1341 1342 /* Set the gap number in the chaining cell count structure */ 1343 chainCellCounts.u.count[kChainingCellGap] = chainingCellGap; 1344 1345 memcpy((char*)cUnit->baseAddr + chainCellOffset, &chainCellCounts, 1346 sizeof(chainCellCounts)); 1347 1348 /* Install the trace description */ 1349 memcpy((char*)cUnit->baseAddr + chainCellOffset + sizeof(chainCellCounts), 1350 cUnit->traceDesc, descSize); 1351 1352 /* Write the literals directly into the code cache */ 1353 installDataContent(cUnit); 1354 1355 /* Flush dcache and invalidate the icache to maintain coherence */ 1356 cacheflush((long)cUnit->baseAddr, 1357 (long)((char *) cUnit->baseAddr + offset), 0); 1358 UPDATE_CODE_CACHE_PATCHES(); 1359 1360 PROTECT_CODE_CACHE(cUnit->baseAddr, offset); 1361 1362 /* Record code entry point and instruction set */ 1363 info->codeAddress = (char*)cUnit->baseAddr + cUnit->headerSize; 1364 /* If applicable, mark low bit to denote thumb */ 1365 if (info->instructionSet != DALVIK_JIT_ARM) 1366 info->codeAddress = (char*)info->codeAddress + 1; 1367 } 1368 1369 /* 1370 * Returns the skeleton bit pattern associated with an opcode. All 1371 * variable fields are zeroed. 1372 */ 1373 static u4 getSkeleton(ArmOpCode op) 1374 { 1375 return EncodingMap[op].skeleton; 1376 } 1377 1378 static u4 assembleChainingBranch(int branchOffset, bool thumbTarget) 1379 { 1380 u4 thumb1, thumb2; 1381 1382 if (!thumbTarget) { 1383 thumb1 = (getSkeleton(kThumbBlx1) | ((branchOffset>>12) & 0x7ff)); 1384 thumb2 = (getSkeleton(kThumbBlx2) | ((branchOffset>> 1) & 0x7ff)); 1385 } else if ((branchOffset < -2048) | (branchOffset > 2046)) { 1386 thumb1 = (getSkeleton(kThumbBl1) | ((branchOffset>>12) & 0x7ff)); 1387 thumb2 = (getSkeleton(kThumbBl2) | ((branchOffset>> 1) & 0x7ff)); 1388 } else { 1389 thumb1 = (getSkeleton(kThumbBUncond) | ((branchOffset>> 1) & 0x7ff)); 1390 thumb2 = getSkeleton(kThumbOrr); /* nop -> or r0, r0 */ 1391 } 1392 1393 return thumb2<<16 | thumb1; 1394 } 1395 1396 /* 1397 * Perform translation chain operation. 1398 * For ARM, we'll use a pair of thumb instructions to generate 1399 * an unconditional chaining branch of up to 4MB in distance. 1400 * Use a BL, because the generic "interpret" translation needs 1401 * the link register to find the dalvik pc of teh target. 1402 * 111HHooooooooooo 1403 * Where HH is 10 for the 1st inst, and 11 for the second and 1404 * the "o" field is each instruction's 11-bit contribution to the 1405 * 22-bit branch offset. 1406 * If the target is nearby, use a single-instruction bl. 1407 * If one or more threads is suspended, don't chain. 1408 */ 1409 void* dvmJitChain(void* tgtAddr, u4* branchAddr) 1410 { 1411 int baseAddr = (u4) branchAddr + 4; 1412 int branchOffset = (int) tgtAddr - baseAddr; 1413 u4 newInst; 1414 bool thumbTarget; 1415 1416 /* 1417 * Only chain translations when there is no urge to ask all threads to 1418 * suspend themselves via the interpreter. 1419 */ 1420 if ((gDvmJit.pProfTable != NULL) && (gDvm.sumThreadSuspendCount == 0) && 1421 (gDvmJit.codeCacheFull == false)) { 1422 assert((branchOffset >= -(1<<22)) && (branchOffset <= ((1<<22)-2))); 1423 1424 gDvmJit.translationChains++; 1425 1426 COMPILER_TRACE_CHAINING( 1427 LOGD("Jit Runtime: chaining 0x%x to 0x%x\n", 1428 (int) branchAddr, (int) tgtAddr & -2)); 1429 1430 /* 1431 * NOTE: normally, all translations are Thumb[2] mode, with 1432 * a single exception: the default TEMPLATE_INTERPRET 1433 * pseudo-translation. If the need ever arises to 1434 * mix Arm & Thumb[2] translations, the following code should be 1435 * generalized. 1436 */ 1437 thumbTarget = (tgtAddr != dvmCompilerGetInterpretTemplate()); 1438 1439 newInst = assembleChainingBranch(branchOffset, thumbTarget); 1440 1441 /* 1442 * The second half-word instruction of the chaining cell must 1443 * either be a nop (which represents initial state), or is the 1444 * same exact branch halfword that we are trying to install. 1445 */ 1446 assert( ((*branchAddr >> 16) == getSkeleton(kThumbOrr)) || 1447 ((*branchAddr >> 16) == (newInst >> 16))); 1448 1449 UNPROTECT_CODE_CACHE(branchAddr, sizeof(*branchAddr)); 1450 1451 *branchAddr = newInst; 1452 cacheflush((long)branchAddr, (long)branchAddr + 4, 0); 1453 UPDATE_CODE_CACHE_PATCHES(); 1454 1455 PROTECT_CODE_CACHE(branchAddr, sizeof(*branchAddr)); 1456 1457 gDvmJit.hasNewChain = true; 1458 } 1459 1460 return tgtAddr; 1461 } 1462 1463 #if !defined(WITH_SELF_VERIFICATION) 1464 /* 1465 * Attempt to enqueue a work order to patch an inline cache for a predicted 1466 * chaining cell for virtual/interface calls. 1467 */ 1468 static void inlineCachePatchEnqueue(PredictedChainingCell *cellAddr, 1469 PredictedChainingCell *newContent) 1470 { 1471 /* 1472 * Make sure only one thread gets here since updating the cell (ie fast 1473 * path and queueing the request (ie the queued path) have to be done 1474 * in an atomic fashion. 1475 */ 1476 dvmLockMutex(&gDvmJit.compilerICPatchLock); 1477 1478 /* Fast path for uninitialized chaining cell */ 1479 if (cellAddr->clazz == NULL && 1480 cellAddr->branch == PREDICTED_CHAIN_BX_PAIR_INIT) { 1481 1482 UNPROTECT_CODE_CACHE(cellAddr, sizeof(*cellAddr)); 1483 1484 cellAddr->method = newContent->method; 1485 cellAddr->branch = newContent->branch; 1486 /* 1487 * The update order matters - make sure clazz is updated last since it 1488 * will bring the uninitialized chaining cell to life. 1489 */ 1490 android_atomic_release_store((int32_t)newContent->clazz, 1491 (void*) &cellAddr->clazz); 1492 cacheflush((intptr_t) cellAddr, (intptr_t) (cellAddr+1), 0); 1493 UPDATE_CODE_CACHE_PATCHES(); 1494 1495 PROTECT_CODE_CACHE(cellAddr, sizeof(*cellAddr)); 1496 1497 #if defined(WITH_JIT_TUNING) 1498 gDvmJit.icPatchInit++; 1499 #endif 1500 /* Check if this is a frequently missed clazz */ 1501 } else if (cellAddr->stagedClazz != newContent->clazz) { 1502 /* Not proven to be frequent yet - build up the filter cache */ 1503 UNPROTECT_CODE_CACHE(cellAddr, sizeof(*cellAddr)); 1504 1505 cellAddr->stagedClazz = newContent->clazz; 1506 1507 UPDATE_CODE_CACHE_PATCHES(); 1508 PROTECT_CODE_CACHE(cellAddr, sizeof(*cellAddr)); 1509 1510 #if defined(WITH_JIT_TUNING) 1511 gDvmJit.icPatchRejected++; 1512 #endif 1513 /* 1514 * Different classes but same method implementation - it is safe to just 1515 * patch the class value without the need to stop the world. 1516 */ 1517 } else if (cellAddr->method == newContent->method) { 1518 UNPROTECT_CODE_CACHE(cellAddr, sizeof(*cellAddr)); 1519 1520 cellAddr->clazz = newContent->clazz; 1521 /* No need to flush the cache here since the branch is not patched */ 1522 UPDATE_CODE_CACHE_PATCHES(); 1523 1524 PROTECT_CODE_CACHE(cellAddr, sizeof(*cellAddr)); 1525 1526 #if defined(WITH_JIT_TUNING) 1527 gDvmJit.icPatchLockFree++; 1528 #endif 1529 /* 1530 * Cannot patch the chaining cell inline - queue it until the next safe 1531 * point. 1532 */ 1533 } else if (gDvmJit.compilerICPatchIndex < COMPILER_IC_PATCH_QUEUE_SIZE) { 1534 int index = gDvmJit.compilerICPatchIndex++; 1535 gDvmJit.compilerICPatchQueue[index].cellAddr = cellAddr; 1536 gDvmJit.compilerICPatchQueue[index].cellContent = *newContent; 1537 #if defined(WITH_JIT_TUNING) 1538 gDvmJit.icPatchQueued++; 1539 #endif 1540 } else { 1541 /* Queue is full - just drop this patch request */ 1542 #if defined(WITH_JIT_TUNING) 1543 gDvmJit.icPatchDropped++; 1544 #endif 1545 } 1546 1547 dvmUnlockMutex(&gDvmJit.compilerICPatchLock); 1548 } 1549 #endif 1550 1551 /* 1552 * This method is called from the invoke templates for virtual and interface 1553 * methods to speculatively setup a chain to the callee. The templates are 1554 * written in assembly and have setup method, cell, and clazz at r0, r2, and 1555 * r3 respectively, so there is a unused argument in the list. Upon return one 1556 * of the following three results may happen: 1557 * 1) Chain is not setup because the callee is native. Reset the rechain 1558 * count to a big number so that it will take a long time before the next 1559 * rechain attempt to happen. 1560 * 2) Chain is not setup because the callee has not been created yet. Reset 1561 * the rechain count to a small number and retry in the near future. 1562 * 3) Ask all other threads to stop before patching this chaining cell. 1563 * This is required because another thread may have passed the class check 1564 * but hasn't reached the chaining cell yet to follow the chain. If we 1565 * patch the content before halting the other thread, there could be a 1566 * small window for race conditions to happen that it may follow the new 1567 * but wrong chain to invoke a different method. 1568 */ 1569 const Method *dvmJitToPatchPredictedChain(const Method *method, 1570 InterpState *interpState, 1571 PredictedChainingCell *cell, 1572 const ClassObject *clazz) 1573 { 1574 int newRechainCount = PREDICTED_CHAIN_COUNTER_RECHAIN; 1575 #if defined(WITH_SELF_VERIFICATION) 1576 newRechainCount = PREDICTED_CHAIN_COUNTER_AVOID; 1577 goto done; 1578 #else 1579 if (dvmIsNativeMethod(method)) { 1580 UNPROTECT_CODE_CACHE(cell, sizeof(*cell)); 1581 1582 /* 1583 * Put a non-zero/bogus value in the clazz field so that it won't 1584 * trigger immediate patching and will continue to fail to match with 1585 * a real clazz pointer. 1586 */ 1587 cell->clazz = (void *) PREDICTED_CHAIN_FAKE_CLAZZ; 1588 1589 UPDATE_CODE_CACHE_PATCHES(); 1590 PROTECT_CODE_CACHE(cell, sizeof(*cell)); 1591 goto done; 1592 } 1593 int tgtAddr = (int) dvmJitGetCodeAddr(method->insns); 1594 1595 /* 1596 * Compilation not made yet for the callee. Reset the counter to a small 1597 * value and come back to check soon. 1598 */ 1599 if ((tgtAddr == 0) || 1600 ((void*)tgtAddr == dvmCompilerGetInterpretTemplate())) { 1601 COMPILER_TRACE_CHAINING( 1602 LOGD("Jit Runtime: predicted chain %p to method %s%s delayed", 1603 cell, method->clazz->descriptor, method->name)); 1604 goto done; 1605 } 1606 1607 PredictedChainingCell newCell; 1608 1609 if (cell->clazz == NULL) { 1610 newRechainCount = interpState->icRechainCount; 1611 } 1612 1613 int baseAddr = (int) cell + 4; // PC is cur_addr + 4 1614 int branchOffset = tgtAddr - baseAddr; 1615 1616 newCell.branch = assembleChainingBranch(branchOffset, true); 1617 newCell.clazz = clazz; 1618 newCell.method = method; 1619 1620 /* 1621 * Enter the work order to the queue and the chaining cell will be patched 1622 * the next time a safe point is entered. 1623 * 1624 * If the enqueuing fails reset the rechain count to a normal value so that 1625 * it won't get indefinitely delayed. 1626 */ 1627 inlineCachePatchEnqueue(cell, &newCell); 1628 #endif 1629 done: 1630 interpState->icRechainCount = newRechainCount; 1631 return method; 1632 } 1633 1634 /* 1635 * Patch the inline cache content based on the content passed from the work 1636 * order. 1637 */ 1638 void dvmCompilerPatchInlineCache(void) 1639 { 1640 int i; 1641 PredictedChainingCell *minAddr, *maxAddr; 1642 1643 /* Nothing to be done */ 1644 if (gDvmJit.compilerICPatchIndex == 0) return; 1645 1646 /* 1647 * Since all threads are already stopped we don't really need to acquire 1648 * the lock. But race condition can be easily introduced in the future w/o 1649 * paying attention so we still acquire the lock here. 1650 */ 1651 dvmLockMutex(&gDvmJit.compilerICPatchLock); 1652 1653 UNPROTECT_CODE_CACHE(gDvmJit.codeCache, gDvmJit.codeCacheByteUsed); 1654 1655 //LOGD("Number of IC patch work orders: %d", gDvmJit.compilerICPatchIndex); 1656 1657 /* Initialize the min/max address range */ 1658 minAddr = (PredictedChainingCell *) 1659 ((char *) gDvmJit.codeCache + gDvmJit.codeCacheSize); 1660 maxAddr = (PredictedChainingCell *) gDvmJit.codeCache; 1661 1662 for (i = 0; i < gDvmJit.compilerICPatchIndex; i++) { 1663 PredictedChainingCell *cellAddr = 1664 gDvmJit.compilerICPatchQueue[i].cellAddr; 1665 PredictedChainingCell *cellContent = 1666 &gDvmJit.compilerICPatchQueue[i].cellContent; 1667 1668 COMPILER_TRACE_CHAINING( 1669 LOGD("Jit Runtime: predicted chain %p from %s to %s (%s) " 1670 "patched", 1671 cellAddr, 1672 cellAddr->clazz->descriptor, 1673 cellContent->clazz->descriptor, 1674 cellContent->method->name)); 1675 1676 /* Patch the chaining cell */ 1677 *cellAddr = *cellContent; 1678 minAddr = (cellAddr < minAddr) ? cellAddr : minAddr; 1679 maxAddr = (cellAddr > maxAddr) ? cellAddr : maxAddr; 1680 } 1681 1682 /* Then synchronize the I/D cache */ 1683 cacheflush((long) minAddr, (long) (maxAddr+1), 0); 1684 UPDATE_CODE_CACHE_PATCHES(); 1685 1686 PROTECT_CODE_CACHE(gDvmJit.codeCache, gDvmJit.codeCacheByteUsed); 1687 1688 gDvmJit.compilerICPatchIndex = 0; 1689 dvmUnlockMutex(&gDvmJit.compilerICPatchLock); 1690 } 1691 1692 /* 1693 * Unchain a trace given the starting address of the translation 1694 * in the code cache. Refer to the diagram in dvmCompilerAssembleLIR. 1695 * Returns the address following the last cell unchained. Note that 1696 * the incoming codeAddr is a thumb code address, and therefore has 1697 * the low bit set. 1698 */ 1699 u4* dvmJitUnchain(void* codeAddr) 1700 { 1701 u2* pChainCellOffset = (u2*)((char*)codeAddr - 3); 1702 u2 chainCellOffset = *pChainCellOffset; 1703 ChainCellCounts *pChainCellCounts = 1704 (ChainCellCounts*)((char*)codeAddr + chainCellOffset - 3); 1705 int cellSize; 1706 u4* pChainCells; 1707 u4* pStart; 1708 u4 newInst; 1709 int i,j; 1710 PredictedChainingCell *predChainCell; 1711 1712 /* Get total count of chain cells */ 1713 for (i = 0, cellSize = 0; i < kChainingCellGap; i++) { 1714 if (i != kChainingCellInvokePredicted) { 1715 cellSize += pChainCellCounts->u.count[i] * (CHAIN_CELL_NORMAL_SIZE >> 2); 1716 } else { 1717 cellSize += pChainCellCounts->u.count[i] * 1718 (CHAIN_CELL_PREDICTED_SIZE >> 2); 1719 } 1720 } 1721 1722 if (cellSize == 0) 1723 return (u4 *) pChainCellCounts; 1724 1725 /* Locate the beginning of the chain cell region */ 1726 pStart = pChainCells = ((u4 *) pChainCellCounts) - cellSize - 1727 pChainCellCounts->u.count[kChainingCellGap]; 1728 1729 /* The cells are sorted in order - walk through them and reset */ 1730 for (i = 0; i < kChainingCellGap; i++) { 1731 int elemSize = CHAIN_CELL_NORMAL_SIZE >> 2; /* In 32-bit words */ 1732 if (i == kChainingCellInvokePredicted) { 1733 elemSize = CHAIN_CELL_PREDICTED_SIZE >> 2; 1734 } 1735 1736 for (j = 0; j < pChainCellCounts->u.count[i]; j++) { 1737 switch(i) { 1738 case kChainingCellNormal: 1739 case kChainingCellHot: 1740 case kChainingCellInvokeSingleton: 1741 case kChainingCellBackwardBranch: 1742 /* 1743 * Replace the 1st half-word of the cell with an 1744 * unconditional branch, leaving the 2nd half-word 1745 * untouched. This avoids problems with a thread 1746 * that is suspended between the two halves when 1747 * this unchaining takes place. 1748 */ 1749 newInst = *pChainCells; 1750 newInst &= 0xFFFF0000; 1751 newInst |= getSkeleton(kThumbBUncond); /* b offset is 0 */ 1752 *pChainCells = newInst; 1753 break; 1754 case kChainingCellInvokePredicted: 1755 predChainCell = (PredictedChainingCell *) pChainCells; 1756 /* 1757 * There could be a race on another mutator thread to use 1758 * this particular predicted cell and the check has passed 1759 * the clazz comparison. So we cannot safely wipe the 1760 * method and branch but it is safe to clear the clazz, 1761 * which serves as the key. 1762 */ 1763 predChainCell->clazz = PREDICTED_CHAIN_CLAZZ_INIT; 1764 break; 1765 default: 1766 LOGE("Unexpected chaining type: %d", i); 1767 dvmAbort(); // dvmAbort OK here - can't safely recover 1768 } 1769 COMPILER_TRACE_CHAINING( 1770 LOGD("Jit Runtime: unchaining 0x%x", (int)pChainCells)); 1771 pChainCells += elemSize; /* Advance by a fixed number of words */ 1772 } 1773 } 1774 return pChainCells; 1775 } 1776 1777 /* Unchain all translation in the cache. */ 1778 void dvmJitUnchainAll() 1779 { 1780 u4* lowAddress = NULL; 1781 u4* highAddress = NULL; 1782 unsigned int i; 1783 if (gDvmJit.pJitEntryTable != NULL) { 1784 COMPILER_TRACE_CHAINING(LOGD("Jit Runtime: unchaining all")); 1785 dvmLockMutex(&gDvmJit.tableLock); 1786 1787 UNPROTECT_CODE_CACHE(gDvmJit.codeCache, gDvmJit.codeCacheByteUsed); 1788 1789 for (i = 0; i < gDvmJit.jitTableSize; i++) { 1790 if (gDvmJit.pJitEntryTable[i].dPC && 1791 gDvmJit.pJitEntryTable[i].codeAddress && 1792 (gDvmJit.pJitEntryTable[i].codeAddress != 1793 dvmCompilerGetInterpretTemplate())) { 1794 u4* lastAddress; 1795 lastAddress = 1796 dvmJitUnchain(gDvmJit.pJitEntryTable[i].codeAddress); 1797 if (lowAddress == NULL || 1798 (u4*)gDvmJit.pJitEntryTable[i].codeAddress < lowAddress) 1799 lowAddress = lastAddress; 1800 if (lastAddress > highAddress) 1801 highAddress = lastAddress; 1802 } 1803 } 1804 cacheflush((long)lowAddress, (long)highAddress, 0); 1805 UPDATE_CODE_CACHE_PATCHES(); 1806 1807 PROTECT_CODE_CACHE(gDvmJit.codeCache, gDvmJit.codeCacheByteUsed); 1808 1809 dvmUnlockMutex(&gDvmJit.tableLock); 1810 gDvmJit.translationChains = 0; 1811 } 1812 gDvmJit.hasNewChain = false; 1813 } 1814 1815 typedef struct jitProfileAddrToLine { 1816 u4 lineNum; 1817 u4 bytecodeOffset; 1818 } jitProfileAddrToLine; 1819 1820 1821 /* Callback function to track the bytecode offset/line number relationiship */ 1822 static int addrToLineCb (void *cnxt, u4 bytecodeOffset, u4 lineNum) 1823 { 1824 jitProfileAddrToLine *addrToLine = (jitProfileAddrToLine *) cnxt; 1825 1826 /* Best match so far for this offset */ 1827 if (addrToLine->bytecodeOffset >= bytecodeOffset) { 1828 addrToLine->lineNum = lineNum; 1829 } 1830 return 0; 1831 } 1832 1833 static char *getTraceBase(const JitEntry *p) 1834 { 1835 return (char*)p->codeAddress - 1836 (6 + (p->u.info.instructionSet == DALVIK_JIT_ARM ? 0 : 1)); 1837 } 1838 1839 /* Dumps profile info for a single trace */ 1840 static int dumpTraceProfile(JitEntry *p, bool silent, bool reset, 1841 unsigned long sum) 1842 { 1843 ChainCellCounts* pCellCounts; 1844 char* traceBase; 1845 u4* pExecutionCount; 1846 u4 executionCount; 1847 u2* pCellOffset; 1848 JitTraceDescription *desc; 1849 const Method* method; 1850 int idx; 1851 1852 traceBase = getTraceBase(p); 1853 1854 if (p->codeAddress == NULL) { 1855 if (!silent) 1856 LOGD("TRACEPROFILE 0x%08x 0 NULL 0 0", (int)traceBase); 1857 return 0; 1858 } 1859 if (p->codeAddress == dvmCompilerGetInterpretTemplate()) { 1860 if (!silent) 1861 LOGD("TRACEPROFILE 0x%08x 0 INTERPRET_ONLY 0 0", (int)traceBase); 1862 return 0; 1863 } 1864 1865 pExecutionCount = (u4*) (traceBase); 1866 executionCount = *pExecutionCount; 1867 if (reset) { 1868 *pExecutionCount =0; 1869 } 1870 if (silent) { 1871 return executionCount; 1872 } 1873 pCellOffset = (u2*) (traceBase + 4); 1874 pCellCounts = (ChainCellCounts*) ((char *)pCellOffset + *pCellOffset); 1875 desc = (JitTraceDescription*) ((char*)pCellCounts + sizeof(*pCellCounts)); 1876 method = desc->method; 1877 char *methodDesc = dexProtoCopyMethodDescriptor(&method->prototype); 1878 jitProfileAddrToLine addrToLine = {0, desc->trace[0].frag.startOffset}; 1879 1880 /* 1881 * We may end up decoding the debug information for the same method 1882 * multiple times, but the tradeoff is we don't need to allocate extra 1883 * space to store the addr/line mapping. Since this is a debugging feature 1884 * and done infrequently so the slower but simpler mechanism should work 1885 * just fine. 1886 */ 1887 dexDecodeDebugInfo(method->clazz->pDvmDex->pDexFile, 1888 dvmGetMethodCode(method), 1889 method->clazz->descriptor, 1890 method->prototype.protoIdx, 1891 method->accessFlags, 1892 addrToLineCb, NULL, &addrToLine); 1893 1894 LOGD("TRACEPROFILE 0x%08x % 10d %5.2f%% [%#x(+%d), %d] %s%s;%s", 1895 (int)traceBase, 1896 executionCount, 1897 ((float ) executionCount) / sum * 100.0, 1898 desc->trace[0].frag.startOffset, 1899 desc->trace[0].frag.numInsts, 1900 addrToLine.lineNum, 1901 method->clazz->descriptor, method->name, methodDesc); 1902 free(methodDesc); 1903 1904 /* Find the last fragment (ie runEnd is set) */ 1905 for (idx = 0; 1906 desc->trace[idx].frag.isCode && !desc->trace[idx].frag.runEnd; 1907 idx++) { 1908 } 1909 1910 /* 1911 * runEnd must comes with a JitCodeDesc frag. If isCode is false it must 1912 * be a meta info field (only used by callsite info for now). 1913 */ 1914 if (!desc->trace[idx].frag.isCode) { 1915 const Method *method = desc->trace[idx+1].meta; 1916 char *methodDesc = dexProtoCopyMethodDescriptor(&method->prototype); 1917 /* Print the callee info in the trace */ 1918 LOGD(" -> %s%s;%s", method->clazz->descriptor, method->name, 1919 methodDesc); 1920 } 1921 1922 return executionCount; 1923 } 1924 1925 /* Create a copy of the trace descriptor of an existing compilation */ 1926 JitTraceDescription *dvmCopyTraceDescriptor(const u2 *pc, 1927 const JitEntry *knownEntry) 1928 { 1929 const JitEntry *jitEntry = knownEntry ? knownEntry : dvmFindJitEntry(pc); 1930 if (jitEntry == NULL) return NULL; 1931 1932 /* Find out the startint point */ 1933 char *traceBase = getTraceBase(jitEntry); 1934 1935 /* Then find out the starting point of the chaining cell */ 1936 u2 *pCellOffset = (u2*) (traceBase + 4); 1937 ChainCellCounts *pCellCounts = 1938 (ChainCellCounts*) ((char *)pCellOffset + *pCellOffset); 1939 1940 /* From there we can find out the starting point of the trace descriptor */ 1941 JitTraceDescription *desc = 1942 (JitTraceDescription*) ((char*)pCellCounts + sizeof(*pCellCounts)); 1943 1944 /* Now make a copy and return */ 1945 int descSize = jitTraceDescriptionSize(desc); 1946 JitTraceDescription *newCopy = (JitTraceDescription *) malloc(descSize); 1947 memcpy(newCopy, desc, descSize); 1948 return newCopy; 1949 } 1950 1951 /* Handy function to retrieve the profile count */ 1952 static inline int getProfileCount(const JitEntry *entry) 1953 { 1954 if (entry->dPC == 0 || entry->codeAddress == 0 || 1955 entry->codeAddress == dvmCompilerGetInterpretTemplate()) 1956 return 0; 1957 1958 u4 *pExecutionCount = (u4 *) getTraceBase(entry); 1959 1960 return *pExecutionCount; 1961 } 1962 1963 1964 /* qsort callback function */ 1965 static int sortTraceProfileCount(const void *entry1, const void *entry2) 1966 { 1967 const JitEntry *jitEntry1 = entry1; 1968 const JitEntry *jitEntry2 = entry2; 1969 1970 int count1 = getProfileCount(jitEntry1); 1971 int count2 = getProfileCount(jitEntry2); 1972 return (count1 == count2) ? 0 : ((count1 > count2) ? -1 : 1); 1973 } 1974 1975 /* Sort the trace profile counts and dump them */ 1976 void dvmCompilerSortAndPrintTraceProfiles() 1977 { 1978 JitEntry *sortedEntries; 1979 int numTraces = 0; 1980 unsigned long sum = 0; 1981 unsigned int i; 1982 1983 /* Make sure that the table is not changing */ 1984 dvmLockMutex(&gDvmJit.tableLock); 1985 1986 /* Sort the entries by descending order */ 1987 sortedEntries = malloc(sizeof(JitEntry) * gDvmJit.jitTableSize); 1988 if (sortedEntries == NULL) 1989 goto done; 1990 memcpy(sortedEntries, gDvmJit.pJitEntryTable, 1991 sizeof(JitEntry) * gDvmJit.jitTableSize); 1992 qsort(sortedEntries, gDvmJit.jitTableSize, sizeof(JitEntry), 1993 sortTraceProfileCount); 1994 1995 /* Analyze the sorted entries */ 1996 for (i=0; i < gDvmJit.jitTableSize; i++) { 1997 if (sortedEntries[i].dPC != 0) { 1998 sum += dumpTraceProfile(&sortedEntries[i], 1999 true /* silent */, 2000 false /* reset */, 2001 0); 2002 numTraces++; 2003 } 2004 } 2005 if (numTraces == 0) 2006 numTraces = 1; 2007 if (sum == 0) { 2008 sum = 1; 2009 } 2010 2011 LOGD("JIT: Average execution count -> %d",(int)(sum / numTraces)); 2012 2013 /* Dump the sorted entries. The count of each trace will be reset to 0. */ 2014 for (i=0; i < gDvmJit.jitTableSize; i++) { 2015 if (sortedEntries[i].dPC != 0) { 2016 dumpTraceProfile(&sortedEntries[i], 2017 false /* silent */, 2018 true /* reset */, 2019 sum); 2020 } 2021 } 2022 2023 for (i=0; i < gDvmJit.jitTableSize && i < 10; i++) { 2024 /* Stip interpreter stubs */ 2025 if (sortedEntries[i].codeAddress == dvmCompilerGetInterpretTemplate()) { 2026 continue; 2027 } 2028 JitTraceDescription* desc = 2029 dvmCopyTraceDescriptor(NULL, &sortedEntries[i]); 2030 dvmCompilerWorkEnqueue(sortedEntries[i].dPC, 2031 kWorkOrderTraceDebug, desc); 2032 } 2033 2034 free(sortedEntries); 2035 done: 2036 dvmUnlockMutex(&gDvmJit.tableLock); 2037 return; 2038 } 2039 2040 #if defined(WITH_SELF_VERIFICATION) 2041 /* 2042 * The following are used to keep compiled loads and stores from modifying 2043 * memory during self verification mode. 2044 * 2045 * Stores do not modify memory. Instead, the address and value pair are stored 2046 * into heapSpace. Addresses within heapSpace are unique. For accesses smaller 2047 * than a word, the word containing the address is loaded first before being 2048 * updated. 2049 * 2050 * Loads check heapSpace first and return data from there if an entry exists. 2051 * Otherwise, data is loaded from memory as usual. 2052 */ 2053 2054 /* Used to specify sizes of memory operations */ 2055 enum { 2056 kSVByte, 2057 kSVSignedByte, 2058 kSVHalfword, 2059 kSVSignedHalfword, 2060 kSVWord, 2061 kSVDoubleword, 2062 kSVVariable, 2063 }; 2064 2065 /* Load the value of a decoded register from the stack */ 2066 static int selfVerificationMemRegLoad(int* sp, int reg) 2067 { 2068 return *(sp + reg); 2069 } 2070 2071 /* Load the value of a decoded doubleword register from the stack */ 2072 static s8 selfVerificationMemRegLoadDouble(int* sp, int reg) 2073 { 2074 return *((s8*)(sp + reg)); 2075 } 2076 2077 /* Store the value of a decoded register out to the stack */ 2078 static void selfVerificationMemRegStore(int* sp, int data, int reg) 2079 { 2080 *(sp + reg) = data; 2081 } 2082 2083 /* Store the value of a decoded doubleword register out to the stack */ 2084 static void selfVerificationMemRegStoreDouble(int* sp, s8 data, int reg) 2085 { 2086 *((s8*)(sp + reg)) = data; 2087 } 2088 2089 /* 2090 * Load the specified size of data from the specified address, checking 2091 * heapSpace first if Self Verification mode wrote to it previously, and 2092 * falling back to actual memory otherwise. 2093 */ 2094 static int selfVerificationLoad(int addr, int size) 2095 { 2096 Thread *self = dvmThreadSelf(); 2097 ShadowSpace *shadowSpace = self->shadowSpace; 2098 ShadowHeap *heapSpacePtr; 2099 2100 int data; 2101 int maskedAddr = addr & 0xFFFFFFFC; 2102 int alignment = addr & 0x3; 2103 2104 for (heapSpacePtr = shadowSpace->heapSpace; 2105 heapSpacePtr != shadowSpace->heapSpaceTail; heapSpacePtr++) { 2106 if (heapSpacePtr->addr == maskedAddr) { 2107 addr = ((unsigned int) &(heapSpacePtr->data)) | alignment; 2108 break; 2109 } 2110 } 2111 2112 switch (size) { 2113 case kSVByte: 2114 data = *((u1*) addr); 2115 break; 2116 case kSVSignedByte: 2117 data = *((s1*) addr); 2118 break; 2119 case kSVHalfword: 2120 data = *((u2*) addr); 2121 break; 2122 case kSVSignedHalfword: 2123 data = *((s2*) addr); 2124 break; 2125 case kSVWord: 2126 data = *((u4*) addr); 2127 break; 2128 default: 2129 LOGE("*** ERROR: BAD SIZE IN selfVerificationLoad: %d", size); 2130 data = 0; 2131 dvmAbort(); 2132 } 2133 2134 //LOGD("*** HEAP LOAD: Addr: 0x%x Data: 0x%x Size: %d", addr, data, size); 2135 return data; 2136 } 2137 2138 /* Like selfVerificationLoad, but specifically for doublewords */ 2139 static s8 selfVerificationLoadDoubleword(int addr) 2140 { 2141 Thread *self = dvmThreadSelf(); 2142 ShadowSpace* shadowSpace = self->shadowSpace; 2143 ShadowHeap* heapSpacePtr; 2144 2145 int addr2 = addr+4; 2146 unsigned int data = *((unsigned int*) addr); 2147 unsigned int data2 = *((unsigned int*) addr2); 2148 2149 for (heapSpacePtr = shadowSpace->heapSpace; 2150 heapSpacePtr != shadowSpace->heapSpaceTail; heapSpacePtr++) { 2151 if (heapSpacePtr->addr == addr) { 2152 data = heapSpacePtr->data; 2153 } else if (heapSpacePtr->addr == addr2) { 2154 data2 = heapSpacePtr->data; 2155 } 2156 } 2157 2158 //LOGD("*** HEAP LOAD DOUBLEWORD: Addr: 0x%x Data: 0x%x Data2: 0x%x", 2159 // addr, data, data2); 2160 return (((s8) data2) << 32) | data; 2161 } 2162 2163 /* 2164 * Handles a store of a specified size of data to a specified address. 2165 * This gets logged as an addr/data pair in heapSpace instead of modifying 2166 * memory. Addresses in heapSpace are unique, and accesses smaller than a 2167 * word pull the entire word from memory first before updating. 2168 */ 2169 static void selfVerificationStore(int addr, int data, int size) 2170 { 2171 Thread *self = dvmThreadSelf(); 2172 ShadowSpace *shadowSpace = self->shadowSpace; 2173 ShadowHeap *heapSpacePtr; 2174 2175 int maskedAddr = addr & 0xFFFFFFFC; 2176 int alignment = addr & 0x3; 2177 2178 //LOGD("*** HEAP STORE: Addr: 0x%x Data: 0x%x Size: %d", addr, data, size); 2179 2180 for (heapSpacePtr = shadowSpace->heapSpace; 2181 heapSpacePtr != shadowSpace->heapSpaceTail; heapSpacePtr++) { 2182 if (heapSpacePtr->addr == maskedAddr) break; 2183 } 2184 2185 if (heapSpacePtr == shadowSpace->heapSpaceTail) { 2186 heapSpacePtr->addr = maskedAddr; 2187 heapSpacePtr->data = *((unsigned int*) maskedAddr); 2188 shadowSpace->heapSpaceTail++; 2189 } 2190 2191 addr = ((unsigned int) &(heapSpacePtr->data)) | alignment; 2192 switch (size) { 2193 case kSVByte: 2194 *((u1*) addr) = data; 2195 break; 2196 case kSVSignedByte: 2197 *((s1*) addr) = data; 2198 break; 2199 case kSVHalfword: 2200 *((u2*) addr) = data; 2201 break; 2202 case kSVSignedHalfword: 2203 *((s2*) addr) = data; 2204 break; 2205 case kSVWord: 2206 *((u4*) addr) = data; 2207 break; 2208 default: 2209 LOGE("*** ERROR: BAD SIZE IN selfVerificationSave: %d", size); 2210 dvmAbort(); 2211 } 2212 } 2213 2214 /* Like selfVerificationStore, but specifically for doublewords */ 2215 static void selfVerificationStoreDoubleword(int addr, s8 double_data) 2216 { 2217 Thread *self = dvmThreadSelf(); 2218 ShadowSpace *shadowSpace = self->shadowSpace; 2219 ShadowHeap *heapSpacePtr; 2220 2221 int addr2 = addr+4; 2222 int data = double_data; 2223 int data2 = double_data >> 32; 2224 bool store1 = false, store2 = false; 2225 2226 //LOGD("*** HEAP STORE DOUBLEWORD: Addr: 0x%x Data: 0x%x, Data2: 0x%x", 2227 // addr, data, data2); 2228 2229 for (heapSpacePtr = shadowSpace->heapSpace; 2230 heapSpacePtr != shadowSpace->heapSpaceTail; heapSpacePtr++) { 2231 if (heapSpacePtr->addr == addr) { 2232 heapSpacePtr->data = data; 2233 store1 = true; 2234 } else if (heapSpacePtr->addr == addr2) { 2235 heapSpacePtr->data = data2; 2236 store2 = true; 2237 } 2238 } 2239 2240 if (!store1) { 2241 shadowSpace->heapSpaceTail->addr = addr; 2242 shadowSpace->heapSpaceTail->data = data; 2243 shadowSpace->heapSpaceTail++; 2244 } 2245 if (!store2) { 2246 shadowSpace->heapSpaceTail->addr = addr2; 2247 shadowSpace->heapSpaceTail->data = data2; 2248 shadowSpace->heapSpaceTail++; 2249 } 2250 } 2251 2252 /* 2253 * Decodes the memory instruction at the address specified in the link 2254 * register. All registers (r0-r12,lr) and fp registers (d0-d15) are stored 2255 * consecutively on the stack beginning at the specified stack pointer. 2256 * Calls the proper Self Verification handler for the memory instruction and 2257 * updates the link register to point past the decoded memory instruction. 2258 */ 2259 void dvmSelfVerificationMemOpDecode(int lr, int* sp) 2260 { 2261 enum { 2262 kMemOpLdrPcRel = 0x09, // ldr(3) [01001] rd[10..8] imm_8[7..0] 2263 kMemOpRRR = 0x0A, // Full opcode is 7 bits 2264 kMemOp2Single = 0x0A, // Used for Vstrs and Vldrs 2265 kMemOpRRR2 = 0x0B, // Full opcode is 7 bits 2266 kMemOp2Double = 0x0B, // Used for Vstrd and Vldrd 2267 kMemOpStrRRI5 = 0x0C, // str(1) [01100] imm_5[10..6] rn[5..3] rd[2..0] 2268 kMemOpLdrRRI5 = 0x0D, // ldr(1) [01101] imm_5[10..6] rn[5..3] rd[2..0] 2269 kMemOpStrbRRI5 = 0x0E, // strb(1) [01110] imm_5[10..6] rn[5..3] rd[2..0] 2270 kMemOpLdrbRRI5 = 0x0F, // ldrb(1) [01111] imm_5[10..6] rn[5..3] rd[2..0] 2271 kMemOpStrhRRI5 = 0x10, // strh(1) [10000] imm_5[10..6] rn[5..3] rd[2..0] 2272 kMemOpLdrhRRI5 = 0x11, // ldrh(1) [10001] imm_5[10..6] rn[5..3] rd[2..0] 2273 kMemOpLdrSpRel = 0x13, // ldr(4) [10011] rd[10..8] imm_8[7..0] 2274 kMemOpStmia = 0x18, // stmia [11000] rn[10..8] reglist [7..0] 2275 kMemOpLdmia = 0x19, // ldmia [11001] rn[10..8] reglist [7..0] 2276 kMemOpStrRRR = 0x28, // str(2) [0101000] rm[8..6] rn[5..3] rd[2..0] 2277 kMemOpStrhRRR = 0x29, // strh(2) [0101001] rm[8..6] rn[5..3] rd[2..0] 2278 kMemOpStrbRRR = 0x2A, // strb(2) [0101010] rm[8..6] rn[5..3] rd[2..0] 2279 kMemOpLdrsbRRR = 0x2B, // ldrsb [0101011] rm[8..6] rn[5..3] rd[2..0] 2280 kMemOpLdrRRR = 0x2C, // ldr(2) [0101100] rm[8..6] rn[5..3] rd[2..0] 2281 kMemOpLdrhRRR = 0x2D, // ldrh(2) [0101101] rm[8..6] rn[5..3] rd[2..0] 2282 kMemOpLdrbRRR = 0x2E, // ldrb(2) [0101110] rm[8..6] rn[5..3] rd[2..0] 2283 kMemOpLdrshRRR = 0x2F, // ldrsh [0101111] rm[8..6] rn[5..3] rd[2..0] 2284 kMemOp2Stmia = 0xE88, // stmia [111010001000[ rn[19..16] mask[15..0] 2285 kMemOp2Ldmia = 0xE89, // ldmia [111010001001[ rn[19..16] mask[15..0] 2286 kMemOp2Stmia2 = 0xE8A, // stmia [111010001010[ rn[19..16] mask[15..0] 2287 kMemOp2Ldmia2 = 0xE8B, // ldmia [111010001011[ rn[19..16] mask[15..0] 2288 kMemOp2Vstr = 0xED8, // Used for Vstrs and Vstrd 2289 kMemOp2Vldr = 0xED9, // Used for Vldrs and Vldrd 2290 kMemOp2Vstr2 = 0xEDC, // Used for Vstrs and Vstrd 2291 kMemOp2Vldr2 = 0xEDD, // Used for Vstrs and Vstrd 2292 kMemOp2StrbRRR = 0xF80, /* str rt,[rn,rm,LSL #imm] [111110000000] 2293 rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */ 2294 kMemOp2LdrbRRR = 0xF81, /* ldrb rt,[rn,rm,LSL #imm] [111110000001] 2295 rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */ 2296 kMemOp2StrhRRR = 0xF82, /* str rt,[rn,rm,LSL #imm] [111110000010] 2297 rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */ 2298 kMemOp2LdrhRRR = 0xF83, /* ldrh rt,[rn,rm,LSL #imm] [111110000011] 2299 rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */ 2300 kMemOp2StrRRR = 0xF84, /* str rt,[rn,rm,LSL #imm] [111110000100] 2301 rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */ 2302 kMemOp2LdrRRR = 0xF85, /* ldr rt,[rn,rm,LSL #imm] [111110000101] 2303 rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */ 2304 kMemOp2StrbRRI12 = 0xF88, /* strb rt,[rn,#imm12] [111110001000] 2305 rt[15..12] rn[19..16] imm12[11..0] */ 2306 kMemOp2LdrbRRI12 = 0xF89, /* ldrb rt,[rn,#imm12] [111110001001] 2307 rt[15..12] rn[19..16] imm12[11..0] */ 2308 kMemOp2StrhRRI12 = 0xF8A, /* strh rt,[rn,#imm12] [111110001010] 2309 rt[15..12] rn[19..16] imm12[11..0] */ 2310 kMemOp2LdrhRRI12 = 0xF8B, /* ldrh rt,[rn,#imm12] [111110001011] 2311 rt[15..12] rn[19..16] imm12[11..0] */ 2312 kMemOp2StrRRI12 = 0xF8C, /* str(Imm,T3) rd,[rn,#imm12] [111110001100] 2313 rn[19..16] rt[15..12] imm12[11..0] */ 2314 kMemOp2LdrRRI12 = 0xF8D, /* ldr(Imm,T3) rd,[rn,#imm12] [111110001101] 2315 rn[19..16] rt[15..12] imm12[11..0] */ 2316 kMemOp2LdrsbRRR = 0xF91, /* ldrsb rt,[rn,rm,LSL #imm] [111110010001] 2317 rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */ 2318 kMemOp2LdrshRRR = 0xF93, /* ldrsh rt,[rn,rm,LSL #imm] [111110010011] 2319 rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */ 2320 kMemOp2LdrsbRRI12 = 0xF99, /* ldrsb rt,[rn,#imm12] [111110011001] 2321 rt[15..12] rn[19..16] imm12[11..0] */ 2322 kMemOp2LdrshRRI12 = 0xF9B, /* ldrsh rt,[rn,#imm12] [111110011011] 2323 rt[15..12] rn[19..16] imm12[11..0] */ 2324 kMemOp2 = 0xE000, // top 3 bits set indicates Thumb2 2325 }; 2326 2327 int addr, offset, data; 2328 long long double_data; 2329 int size = kSVWord; 2330 bool store = false; 2331 unsigned int *lr_masked = (unsigned int *) (lr & 0xFFFFFFFE); 2332 unsigned int insn = *lr_masked; 2333 2334 int old_lr; 2335 old_lr = selfVerificationMemRegLoad(sp, 13); 2336 2337 if ((insn & kMemOp2) == kMemOp2) { 2338 insn = (insn << 16) | (insn >> 16); 2339 //LOGD("*** THUMB2 - Addr: 0x%x Insn: 0x%x", lr, insn); 2340 2341 int opcode12 = (insn >> 20) & 0xFFF; 2342 int opcode4 = (insn >> 8) & 0xF; 2343 int imm2 = (insn >> 4) & 0x3; 2344 int imm8 = insn & 0xFF; 2345 int imm12 = insn & 0xFFF; 2346 int rd = (insn >> 12) & 0xF; 2347 int rm = insn & 0xF; 2348 int rn = (insn >> 16) & 0xF; 2349 int rt = (insn >> 12) & 0xF; 2350 bool wBack = true; 2351 2352 // Update the link register 2353 selfVerificationMemRegStore(sp, old_lr+4, 13); 2354 2355 // Determine whether the mem op is a store or load 2356 switch (opcode12) { 2357 case kMemOp2Stmia: 2358 case kMemOp2Stmia2: 2359 case kMemOp2Vstr: 2360 case kMemOp2Vstr2: 2361 case kMemOp2StrbRRR: 2362 case kMemOp2StrhRRR: 2363 case kMemOp2StrRRR: 2364 case kMemOp2StrbRRI12: 2365 case kMemOp2StrhRRI12: 2366 case kMemOp2StrRRI12: 2367 store = true; 2368 } 2369 2370 // Determine the size of the mem access 2371 switch (opcode12) { 2372 case kMemOp2StrbRRR: 2373 case kMemOp2LdrbRRR: 2374 case kMemOp2StrbRRI12: 2375 case kMemOp2LdrbRRI12: 2376 size = kSVByte; 2377 break; 2378 case kMemOp2LdrsbRRR: 2379 case kMemOp2LdrsbRRI12: 2380 size = kSVSignedByte; 2381 break; 2382 case kMemOp2StrhRRR: 2383 case kMemOp2LdrhRRR: 2384 case kMemOp2StrhRRI12: 2385 case kMemOp2LdrhRRI12: 2386 size = kSVHalfword; 2387 break; 2388 case kMemOp2LdrshRRR: 2389 case kMemOp2LdrshRRI12: 2390 size = kSVSignedHalfword; 2391 break; 2392 case kMemOp2Vstr: 2393 case kMemOp2Vstr2: 2394 case kMemOp2Vldr: 2395 case kMemOp2Vldr2: 2396 if (opcode4 == kMemOp2Double) size = kSVDoubleword; 2397 break; 2398 case kMemOp2Stmia: 2399 case kMemOp2Ldmia: 2400 case kMemOp2Stmia2: 2401 case kMemOp2Ldmia2: 2402 size = kSVVariable; 2403 break; 2404 } 2405 2406 // Load the value of the address 2407 addr = selfVerificationMemRegLoad(sp, rn); 2408 2409 // Figure out the offset 2410 switch (opcode12) { 2411 case kMemOp2Vstr: 2412 case kMemOp2Vstr2: 2413 case kMemOp2Vldr: 2414 case kMemOp2Vldr2: 2415 offset = imm8 << 2; 2416 if (opcode4 == kMemOp2Single) { 2417 rt = rd << 1; 2418 if (insn & 0x400000) rt |= 0x1; 2419 } else if (opcode4 == kMemOp2Double) { 2420 if (insn & 0x400000) rt |= 0x10; 2421 rt = rt << 1; 2422 } else { 2423 LOGE("*** ERROR: UNRECOGNIZED VECTOR MEM OP: %x", opcode4); 2424 dvmAbort(); 2425 } 2426 rt += 14; 2427 break; 2428 case kMemOp2StrbRRR: 2429 case kMemOp2LdrbRRR: 2430 case kMemOp2StrhRRR: 2431 case kMemOp2LdrhRRR: 2432 case kMemOp2StrRRR: 2433 case kMemOp2LdrRRR: 2434 case kMemOp2LdrsbRRR: 2435 case kMemOp2LdrshRRR: 2436 offset = selfVerificationMemRegLoad(sp, rm) << imm2; 2437 break; 2438 case kMemOp2StrbRRI12: 2439 case kMemOp2LdrbRRI12: 2440 case kMemOp2StrhRRI12: 2441 case kMemOp2LdrhRRI12: 2442 case kMemOp2StrRRI12: 2443 case kMemOp2LdrRRI12: 2444 case kMemOp2LdrsbRRI12: 2445 case kMemOp2LdrshRRI12: 2446 offset = imm12; 2447 break; 2448 case kMemOp2Stmia: 2449 case kMemOp2Ldmia: 2450 wBack = false; 2451 case kMemOp2Stmia2: 2452 case kMemOp2Ldmia2: 2453 offset = 0; 2454 break; 2455 default: 2456 LOGE("*** ERROR: UNRECOGNIZED THUMB2 MEM OP: %x", opcode12); 2457 offset = 0; 2458 dvmAbort(); 2459 } 2460 2461 // Handle the decoded mem op accordingly 2462 if (store) { 2463 if (size == kSVVariable) { 2464 LOGD("*** THUMB2 STMIA CURRENTLY UNUSED (AND UNTESTED)"); 2465 int i; 2466 int regList = insn & 0xFFFF; 2467 for (i = 0; i < 16; i++) { 2468 if (regList & 0x1) { 2469 data = selfVerificationMemRegLoad(sp, i); 2470 selfVerificationStore(addr, data, kSVWord); 2471 addr += 4; 2472 } 2473 regList = regList >> 1; 2474 } 2475 if (wBack) selfVerificationMemRegStore(sp, addr, rn); 2476 } else if (size == kSVDoubleword) { 2477 double_data = selfVerificationMemRegLoadDouble(sp, rt); 2478 selfVerificationStoreDoubleword(addr+offset, double_data); 2479 } else { 2480 data = selfVerificationMemRegLoad(sp, rt); 2481 selfVerificationStore(addr+offset, data, size); 2482 } 2483 } else { 2484 if (size == kSVVariable) { 2485 LOGD("*** THUMB2 LDMIA CURRENTLY UNUSED (AND UNTESTED)"); 2486 int i; 2487 int regList = insn & 0xFFFF; 2488 for (i = 0; i < 16; i++) { 2489 if (regList & 0x1) { 2490 data = selfVerificationLoad(addr, kSVWord); 2491 selfVerificationMemRegStore(sp, data, i); 2492 addr += 4; 2493 } 2494 regList = regList >> 1; 2495 } 2496 if (wBack) selfVerificationMemRegStore(sp, addr, rn); 2497 } else if (size == kSVDoubleword) { 2498 double_data = selfVerificationLoadDoubleword(addr+offset); 2499 selfVerificationMemRegStoreDouble(sp, double_data, rt); 2500 } else { 2501 data = selfVerificationLoad(addr+offset, size); 2502 selfVerificationMemRegStore(sp, data, rt); 2503 } 2504 } 2505 } else { 2506 //LOGD("*** THUMB - Addr: 0x%x Insn: 0x%x", lr, insn); 2507 2508 // Update the link register 2509 selfVerificationMemRegStore(sp, old_lr+2, 13); 2510 2511 int opcode5 = (insn >> 11) & 0x1F; 2512 int opcode7 = (insn >> 9) & 0x7F; 2513 int imm = (insn >> 6) & 0x1F; 2514 int rd = (insn >> 8) & 0x7; 2515 int rm = (insn >> 6) & 0x7; 2516 int rn = (insn >> 3) & 0x7; 2517 int rt = insn & 0x7; 2518 2519 // Determine whether the mem op is a store or load 2520 switch (opcode5) { 2521 case kMemOpRRR: 2522 switch (opcode7) { 2523 case kMemOpStrRRR: 2524 case kMemOpStrhRRR: 2525 case kMemOpStrbRRR: 2526 store = true; 2527 } 2528 break; 2529 case kMemOpStrRRI5: 2530 case kMemOpStrbRRI5: 2531 case kMemOpStrhRRI5: 2532 case kMemOpStmia: 2533 store = true; 2534 } 2535 2536 // Determine the size of the mem access 2537 switch (opcode5) { 2538 case kMemOpRRR: 2539 case kMemOpRRR2: 2540 switch (opcode7) { 2541 case kMemOpStrbRRR: 2542 case kMemOpLdrbRRR: 2543 size = kSVByte; 2544 break; 2545 case kMemOpLdrsbRRR: 2546 size = kSVSignedByte; 2547 break; 2548 case kMemOpStrhRRR: 2549 case kMemOpLdrhRRR: 2550 size = kSVHalfword; 2551 break; 2552 case kMemOpLdrshRRR: 2553 size = kSVSignedHalfword; 2554 break; 2555 } 2556 break; 2557 case kMemOpStrbRRI5: 2558 case kMemOpLdrbRRI5: 2559 size = kSVByte; 2560 break; 2561 case kMemOpStrhRRI5: 2562 case kMemOpLdrhRRI5: 2563 size = kSVHalfword; 2564 break; 2565 case kMemOpStmia: 2566 case kMemOpLdmia: 2567 size = kSVVariable; 2568 break; 2569 } 2570 2571 // Load the value of the address 2572 if (opcode5 == kMemOpLdrPcRel) 2573 addr = selfVerificationMemRegLoad(sp, 4); 2574 else if (opcode5 == kMemOpStmia || opcode5 == kMemOpLdmia) 2575 addr = selfVerificationMemRegLoad(sp, rd); 2576 else 2577 addr = selfVerificationMemRegLoad(sp, rn); 2578 2579 // Figure out the offset 2580 switch (opcode5) { 2581 case kMemOpLdrPcRel: 2582 offset = (insn & 0xFF) << 2; 2583 rt = rd; 2584 break; 2585 case kMemOpRRR: 2586 case kMemOpRRR2: 2587 offset = selfVerificationMemRegLoad(sp, rm); 2588 break; 2589 case kMemOpStrRRI5: 2590 case kMemOpLdrRRI5: 2591 offset = imm << 2; 2592 break; 2593 case kMemOpStrhRRI5: 2594 case kMemOpLdrhRRI5: 2595 offset = imm << 1; 2596 break; 2597 case kMemOpStrbRRI5: 2598 case kMemOpLdrbRRI5: 2599 offset = imm; 2600 break; 2601 case kMemOpStmia: 2602 case kMemOpLdmia: 2603 offset = 0; 2604 break; 2605 default: 2606 LOGE("*** ERROR: UNRECOGNIZED THUMB MEM OP: %x", opcode5); 2607 offset = 0; 2608 dvmAbort(); 2609 } 2610 2611 // Handle the decoded mem op accordingly 2612 if (store) { 2613 if (size == kSVVariable) { 2614 int i; 2615 int regList = insn & 0xFF; 2616 for (i = 0; i < 8; i++) { 2617 if (regList & 0x1) { 2618 data = selfVerificationMemRegLoad(sp, i); 2619 selfVerificationStore(addr, data, kSVWord); 2620 addr += 4; 2621 } 2622 regList = regList >> 1; 2623 } 2624 selfVerificationMemRegStore(sp, addr, rd); 2625 } else { 2626 data = selfVerificationMemRegLoad(sp, rt); 2627 selfVerificationStore(addr+offset, data, size); 2628 } 2629 } else { 2630 if (size == kSVVariable) { 2631 bool wBack = true; 2632 int i; 2633 int regList = insn & 0xFF; 2634 for (i = 0; i < 8; i++) { 2635 if (regList & 0x1) { 2636 if (i == rd) wBack = false; 2637 data = selfVerificationLoad(addr, kSVWord); 2638 selfVerificationMemRegStore(sp, data, i); 2639 addr += 4; 2640 } 2641 regList = regList >> 1; 2642 } 2643 if (wBack) selfVerificationMemRegStore(sp, addr, rd); 2644 } else { 2645 data = selfVerificationLoad(addr+offset, size); 2646 selfVerificationMemRegStore(sp, data, rt); 2647 } 2648 } 2649 } 2650 } 2651 #endif 2652