Home | History | Annotate | Download | only in gobject
      1 <?xml version='1.0' encoding="ISO-8859-1"?>
      2 <partintro>
      3   <para>
      4     This chapter tries to answer the real-life questions of users and presents
      5     the most common scenario use cases I could come up with.
      6     The use cases are presented from most likely to less likely.
      7   </para>
      8 </partintro>
      9 
     10 <chapter id="howto-gobject">
     11   <title>How to define and implement a new GObject</title>
     12   
     13   <para>
     14     Clearly, this is one of the most common questions people ask: they just
     15     want to crank code and implement a subclass of a GObject. Sometimes because
     16     they want to create their own class hierarchy, sometimes because they want
     17     to subclass one of GTK+'s widget. This chapter will focus on the 
     18     implementation of a subtype of GObject.
     19   </para>
     20 
     21   <sect1 id="howto-gobject-header">
     22     <title>Boilerplate header code</title>
     23     
     24     <para>
     25       The first step before writing the code for your GObject is to write the
     26       type's header which contains the needed type, function and macro
     27       definitions. Each of these elements is nothing but a convention which
     28       is followed not only by GTK+'s code but also by most users of GObject.
     29       If you feel the need not to obey the rules stated below, think about it
     30       twice:
     31       <itemizedlist>
     32         <listitem><para>If your users are a bit accustomed to GTK+ code or any
     33         GLib code, they will be a bit surprised and getting used to the
     34         conventions you decided upon will take time (money) and will make them
     35         grumpy (not a good thing)</para></listitem>
     36         <listitem><para>You must assess the fact that these conventions might
     37         have been designed by both smart and experienced people: maybe they
     38         were at least partly right. Try  to put your ego aside.</para></listitem>
     39       </itemizedlist>
     40     </para>
     41 
     42     <para>
     43       Pick a name convention for your headers and source code and stick to it:
     44       <itemizedlist>
     45         <listitem><para>use a dash to separate the prefix from the typename:
     46         <filename>maman-bar.h</filename> and <filename>maman-bar.c</filename>
     47         (this is the convention used by Nautilus and most GNOME libraries).</para></listitem>
     48         <listitem><para>use an underscore to separate the prefix from the
     49         typename: <filename>maman_bar.h</filename> and
     50         <filename>maman_bar.c</filename>.</para></listitem>
     51         <listitem><para>Do not separate the prefix from the typename:
     52         <filename>mamanbar.h</filename> and <filename>mamanbar.c</filename>.
     53         (this is the convention used by GTK+)</para></listitem>
     54       </itemizedlist>
     55       I personally like the first solution better: it makes reading file names
     56       easier for those with poor eyesight like me.
     57     </para>
     58 
     59     <para>
     60       When you need some private (internal) declarations in several
     61       (sub)classes, you can define them in a private header file which
     62       is often named by appending the <emphasis>private</emphasis> keyword
     63       to the public header name. For example, one could use
     64       <filename>maman-bar-private.h</filename>,
     65       <filename>maman_bar_private.h</filename> or
     66       <filename>mamanbarprivate.h</filename>. Typically, such private header
     67       files are not installed.
     68     </para>
     69 
     70     <para>
     71       The basic conventions for any header which exposes a GType are described
     72       in <xref linkend="gtype-conventions"/>. Most GObject-based code also
     73       obeys one of of the following conventions: pick one and stick to it.
     74       <itemizedlist>
     75         <listitem><para>
     76             If you want to declare a type named bar with prefix maman, name the type instance
     77             <function>MamanBar</function> and its class <function>MamanBarClass</function>
     78             (name is case-sensitive). It is customary to declare them with code similar to the 
     79             following:
     80 <programlisting>
     81 /*
     82  * Copyright/Licensing information.
     83  */
     84 
     85 /* inclusion guard */
     86 #ifndef __MAMAN_BAR_H__
     87 #define __MAMAN_BAR_H__
     88 
     89 #include &lt;glib-object.h&gt;
     90 /*
     91  * Potentially, include other headers on which this header depends.
     92  */
     93 
     94 /*
     95  * Type macros.
     96  */
     97 #define MAMAN_TYPE_BAR                  (maman_bar_get_type ())
     98 #define MAMAN_BAR(obj)                  (G_TYPE_CHECK_INSTANCE_CAST ((obj), MAMAN_TYPE_BAR, MamanBar))
     99 #define MAMAN_IS_BAR(obj)               (G_TYPE_CHECK_INSTANCE_TYPE ((obj), MAMAN_TYPE_BAR))
    100 #define MAMAN_BAR_CLASS(klass)          (G_TYPE_CHECK_CLASS_CAST ((klass), MAMAN_TYPE_BAR, MamanBarClass))
    101 #define MAMAN_IS_BAR_CLASS(klass)       (G_TYPE_CHECK_CLASS_TYPE ((klass), MAMAN_TYPE_BAR))
    102 #define MAMAN_BAR_GET_CLASS(obj)        (G_TYPE_INSTANCE_GET_CLASS ((obj), MAMAN_TYPE_BAR, MamanBarClass))
    103 
    104 typedef struct _MamanBar        MamanBar;
    105 typedef struct _MamanBarClass   MamanBarClass;
    106 
    107 struct _MamanBar
    108 {
    109   GObject parent_instance;
    110 
    111   /* instance members */
    112 };
    113 
    114 struct _MamanBarClass
    115 {
    116   GObjectClass parent_class;
    117 
    118   /* class members */
    119 };
    120 
    121 /* used by MAMAN_TYPE_BAR */
    122 GType maman_bar_get_type (void);
    123 
    124 /*
    125  * Method definitions.
    126  */
    127 
    128 #endif /* __MAMAN_BAR_H__ */
    129 </programlisting>
    130           </para></listitem>
    131         <listitem><para>
    132             Most GTK+ types declare their private fields in the public header
    133             with a /* private */ comment, relying on their user's intelligence
    134             not to try to play with these fields. Fields not marked private
    135             are considered public by default. The /* protected */ comment
    136             (same semantics as those of C++) is also used, mainly in the GType
    137             library, in code written by Tim Janik.
    138 <programlisting>
    139 struct _MamanBar
    140 {
    141   GObject parent_instance;
    142 
    143   /*&lt; private &gt;*/
    144   int hsize;
    145 };
    146 </programlisting>
    147           </para></listitem>
    148         <listitem><para>
    149             All of Nautilus code and a lot of GNOME libraries use private
    150             indirection members, as described by Herb Sutter in his Pimpl
    151             articles(see <ulink url="http://www.gotw.ca/gotw/024.htm">Compilation Firewalls</ulink>
    152             and <ulink url="http://www.gotw.ca/gotw/028.htm">The Fast Pimpl Idiom</ulink>:
    153             he summarizes the different issues better than I will).
    154 <programlisting>
    155 typedef struct _MamanBarPrivate MamanBarPrivate;
    156 
    157 struct _MamanBar
    158 {
    159   GObject parent_instance;
    160     
    161   /*&lt; private &gt;*/
    162   MamanBarPrivate *priv;
    163 };
    164 </programlisting>
    165             <note><simpara>Do not call this <varname>private</varname>, as
    166             that is a registered c++ keyword.</simpara></note>
    167 
    168             The private structure is then defined in the .c file, using the
    169             g_type_class_add_private() function to notify the presence of
    170             a private memory area for each instance and it can either
    171             be retrieved using <function>G_TYPE_INSTANCE_GET_PRIVATE()</function>
    172             each time is needed, or assigned to the <literal>priv</literal>
    173             member of the instance structure inside the object's
    174             <function>init</function> function.
    175 <programlisting>
    176 #define MAMAN_BAR_GET_PRIVATE(obj) (G_TYPE_INSTANCE_GET_PRIVATE ((obj), MAMAN_TYPE_BAR, MamanBarPrivate))
    177 
    178 struct _MamanBarPrivate
    179 {
    180   int hsize;
    181 }
    182 
    183 static void
    184 maman_bar_class_init (MamanBarClass *klass)
    185 {
    186   g_type_class_add_private (klass, sizeof (MamanBarPrivate));
    187 }
    188 
    189 static void
    190 maman_bar_init (MamanBar *self)
    191 {
    192   MamanBarPrivate *priv;
    193 
    194   self->priv = priv = MAMAN_BAR_GET_PRIVATE (self);
    195 
    196   priv->hsize = 42;
    197 }
    198 </programlisting>
    199           </para></listitem>
    200 
    201           <listitem><para>
    202             You don't need to free or allocate the private structure, only the
    203             objects or pointers that it may contain. Another advantage of this
    204             to the previous version is that is lessens memory fragmentation,
    205             as the public and private parts of the instance memory are
    206             allocated at once.
    207           </para></listitem>
    208       </itemizedlist>
    209     </para>
    210 
    211     <para>
    212       Finally, there are different header include conventions. Again, pick one
    213       and stick to it. I personally use indifferently any of the two, depending
    214       on the codebase I work on: the rule, as always, is consistency.
    215       <itemizedlist>
    216         <listitem><para>
    217             Some people add at the top of their headers a number of #include
    218             directives to pull in all the headers needed to compile client
    219             code. This allows client code to simply #include "maman-bar.h".
    220           </para></listitem>
    221         <listitem><para>
    222             Other do not #include anything and expect the client to #include
    223             themselves the headers they need before including your header. This
    224             speeds up compilation because it minimizes the amount of
    225             pre-processor work. This can be used in conjunction with the
    226             re-declaration of certain unused types in the client code to
    227             minimize compile-time dependencies and thus speed up compilation.
    228           </para></listitem>
    229       </itemizedlist>
    230     </para>
    231       
    232   </sect1>
    233 
    234   <sect1 id="howto-gobject-code">
    235     <title>Boilerplate code</title>
    236 
    237     <para>
    238       In your code, the first step is to #include the needed headers: depending
    239       on your header include strategy, this can be as simple as
    240       <literal>#include "maman-bar.h"</literal> or as complicated as tens
    241       of #include lines ending with <literal>#include "maman-bar.h"</literal>:
    242 <programlisting>
    243 /*
    244  * Copyright information
    245  */
    246 
    247 #include "maman-bar.h"
    248 
    249 /* If you use Pimpls, include the private structure 
    250  * definition here. Some people create a maman-bar-private.h header
    251  * which is included by the maman-bar.c file and which contains the
    252  * definition for this private structure.
    253  */
    254 struct _MamanBarPrivate {
    255   int member_1;
    256   /* stuff */
    257 };
    258 
    259 /* 
    260  * forward definitions
    261  */
    262 </programlisting>
    263     </para>
    264 
    265     <para>
    266       Call the <function>G_DEFINE_TYPE</function> macro using the name
    267       of the type, the prefix of the functions and the parent GType to
    268       reduce the amount of boilerplate needed. This macro will:
    269 
    270       <itemizedlist>
    271         <listitem><simpara>implement the <function>maman_bar_get_type</function>
    272         function</simpara></listitem>
    273         <listitem><simpara>define a parent class pointer accessible from
    274         the whole .c file</simpara></listitem>
    275       </itemizedlist>
    276 
    277 <programlisting>
    278 G_DEFINE_TYPE (MamanBar, maman_bar, G_TYPE_OBJECT);
    279 </programlisting>
    280     </para>
    281 
    282     <para>
    283       It is also possible to use the
    284       <function>G_DEFINE_TYPE_WITH_CODE</function> macro to control the
    285       get_type function implementation - for instance, to add a call to
    286       <function>G_IMPLEMENT_INTERFACE</function> macro which will
    287       call the <function>g_type_implement_interface</function> function.
    288     </para>
    289   </sect1>
    290 
    291   <sect1 id="howto-gobject-construction">
    292     <title>Object Construction</title>
    293 
    294     <para>
    295       People often get confused when trying to construct their GObjects because of the
    296       sheer number of different ways to hook into the objects's construction process: it is
    297       difficult to figure which is the <emphasis>correct</emphasis>, recommended way.
    298     </para>
    299 
    300     <para>
    301       <xref linkend="gobject-construction-table"/> shows what user-provided functions
    302       are invoked during object instantiation and in which order they are invoked.
    303       A user looking for the equivalent of the simple C++ constructor function should use
    304       the instance_init method. It will be invoked after all the parent's instance_init
    305       functions have been invoked. It cannot take arbitrary construction parameters 
    306       (as in C++) but if your object needs arbitrary parameters to complete initialization,
    307       you can use construction properties.
    308     </para>
    309 
    310     <para>
    311       Construction properties will be set only after all instance_init functions have run.
    312       No object reference will be returned to the client of <function><link linkend="g-object-new">g_object_new</link></function>
    313       until all the construction properties have been set.
    314     </para>
    315 
    316     <para>
    317       As such, I would recommend writing the following code first:
    318 <programlisting>
    319 static void
    320 maman_bar_init (MamanBar *self)
    321 {
    322   self->priv = MAMAN_BAR_GET_PRIVATE (self); 
    323 
    324   /* initialize all public and private members to reasonable default values. */
    325 
    326   /* If you need specific construction properties to complete initialization,
    327    * delay initialization completion until the property is set. 
    328    */
    329 }
    330 </programlisting>
    331     </para>
    332 
    333     <para>
    334       Now, if you need special construction properties, install the properties in the class_init function,
    335       override the set and get methods and implement the get and set methods as described in 
    336       <xref linkend="gobject-properties"/>. Make sure that these properties use a construct only 
    337       <type><link linkend="GParamSpec">GParamSpec</link></type> by setting the param spec's flag field to G_PARAM_CONSTRUCT_ONLY: this helps
    338       GType ensure that these properties are not set again later by malicious user code.
    339 <programlisting>
    340 static void
    341 bar_class_init (MamanBarClass *klass)
    342 {
    343   GObjectClass *gobject_class = G_OBJECT_CLASS (klass);
    344   GParamSpec *maman_param_spec;
    345 
    346   gobject_class->set_property = bar_set_property;
    347   gobject_class->get_property = bar_get_property;
    348 
    349   maman_param_spec = g_param_spec_string ("maman",
    350                                           "Maman construct prop",
    351                                           "Set maman's name",
    352                                           "no-name-set" /* default value */,
    353                                           G_PARAM_CONSTRUCT_ONLY | G_PARAM_READWRITE);
    354   g_object_class_install_property (gobject_class,
    355                                    PROP_MAMAN,
    356                                    maman_param_spec);
    357 }
    358 </programlisting>
    359       If you need this, make sure you can build and run code similar to the code shown above. Make sure
    360       your construct properties can set correctly during construction, make sure you cannot set them 
    361       afterwards and make sure that if your users do not call <function><link linkend="g-object-new">g_object_new</link></function>
    362       with the required construction properties, these will be initialized with the default values.
    363     </para>
    364 
    365     <para>
    366       I consider good taste to halt program execution if a construction property is set its
    367       default value. This allows you to catch client code which does not give a reasonable
    368       value to the construction properties. Of course, you are free to disagree but you
    369       should have a good reason to do so.
    370     </para>
    371 
    372     <para>
    373       Some people sometimes need to construct their object but only after
    374       the construction properties have been set. This is possible through
    375       the use of the constructor class method as described in
    376       <xref linkend="gobject-instantiation"/> or, more simply, using
    377       the constructed class method available since GLib 2.12.
    378     </para>
    379   </sect1>
    380 
    381   <sect1 id="howto-gobject-destruction">
    382     <title>Object Destruction</title>
    383 
    384     <para>
    385       Again, it is often difficult to figure out which mechanism to use to
    386       hook into the object's destruction process: when the last
    387       <function><link linkend="g-object-unref">g_object_unref</link></function>
    388       function call is made, a lot of things happen as described in
    389       <xref linkend="gobject-destruction-table"/>.
    390     </para>
    391 
    392     <para>
    393       The destruction process of your object might be split in two different
    394       phases: dispose and the finalize.
    395 <programlisting>
    396 #define MAMAN_BAR_GET_PRIVATE(obj) (G_TYPE_INSTANCE_GET_PRIVATE ((obj), MAMAN_TYPE_BAR, MamanBarPrivate))
    397 
    398 struct _MamanBarPrivate
    399 {
    400   GObject *an_object;
    401 
    402   gchar *a_string;
    403 };
    404 
    405 G_DEFINE_TYPE (MamanBar, maman_bar, G_TYPE_OBJECT);
    406 
    407 static void
    408 maman_bar_dispose (GObject *gobject)
    409 {
    410   MamanBar *self = MAMAN_BAR (gobject);
    411 
    412   /* 
    413    * In dispose, you are supposed to free all types referenced from this
    414    * object which might themselves hold a reference to self. Generally,
    415    * the most simple solution is to unref all members on which you own a 
    416    * reference.
    417    */
    418 
    419   /* dispose might be called multiple times, so we must guard against
    420    * calling g_object_unref() on an invalid GObject.
    421    */
    422   if (self->priv->an_object)
    423     {
    424       g_object_unref (self->priv->an_object);
    425 
    426       self->priv->an_object = NULL;
    427     }
    428 
    429   /* Chain up to the parent class */
    430   G_OBJECT_CLASS (maman_bar_parent_class)->dispose (gobject);
    431 }
    432 
    433 static void
    434 maman_bar_finalize (GObject *gobject)
    435 {
    436   MamanBar *self = MAMAN_BAR (gobject);
    437 
    438   g_free (self->priv->a_string);
    439 
    440   /* Chain up to the parent class */
    441   G_OBJECT_CLASS (maman_bar_parent_class)->finalize (gobject);
    442 }
    443 
    444 static void
    445 maman_bar_class_init (MamanBarClass *klass)
    446 {
    447   GObjectClass *gobject_class = G_OBJECT_CLASS (klass);
    448 
    449   gobject_class->dispose = maman_bar_dispose;
    450   gobject_class->finalize = maman_bar_finalize;
    451 
    452   g_type_class_add_private (klass, sizeof (MamanBarPrivate));
    453 }
    454 
    455 static void
    456 maman_bar_init (MamanBar *self);
    457 {
    458   self->priv = MAMAN_BAR_GET_PRIVATE (self);
    459 
    460   self->priv->an_object = g_object_new (MAMAN_TYPE_BAZ, NULL);
    461   self->priv->a_string = g_strdup ("Maman");
    462 }
    463 </programlisting>
    464     </para>
    465 
    466     <para>
    467       Add similar code to your GObject, make sure the code still builds
    468       and runs: dispose and finalize must be called during the last unref.
    469     </para>
    470 
    471     <para>
    472       It is possible that object methods might be invoked after dispose is
    473       run and before finalize runs. GObject does not consider this to be a
    474       program error: you must gracefully detect this and neither crash nor
    475       warn the user.
    476     </para>
    477   </sect1>
    478 
    479   <sect1 id="howto-gobject-methods">
    480     <title>Object methods</title>
    481 
    482     <para>
    483       Just as with C++, there are many different ways to define object
    484       methods and extend them: the following list and sections draw on
    485       C++ vocabulary. (Readers are expected to know basic C++ buzzwords.
    486       Those who have not had to write C++ code recently can refer to e.g.
    487       <ulink url="http://www.cplusplus.com/doc/tutorial/"/> to refresh
    488       their memories.)
    489       <itemizedlist>
    490         <listitem><para>
    491             non-virtual public methods,
    492           </para></listitem>
    493         <listitem><para>
    494             virtual public methods and
    495           </para></listitem>
    496         <listitem><para>
    497             virtual private methods
    498           </para></listitem>
    499       </itemizedlist>
    500     </para>
    501 
    502     <sect2>
    503       <title>Non-virtual public methods</title>
    504 
    505       <para>
    506         These are the simplest: you want to provide a simple method which
    507         can act on your object. All you need to do is to provide a function
    508         prototype in the header and an implementation of that prototype
    509         in the source file.
    510 <programlisting>
    511 /* declaration in the header. */
    512 void maman_bar_do_action (MamanBar *self, /* parameters */);
    513 
    514 /* implementation in the source file */
    515 void
    516 maman_bar_do_action (MamanBar *self, /* parameters */)
    517 {
    518   g_return_if_fail (MAMAN_IS_BAR (self));
    519 
    520   /* do stuff here. */
    521 }
    522 </programlisting>
    523       </para>
    524 
    525       <para>There is really nothing scary about this.</para>
    526     </sect2>
    527 
    528     <sect2>
    529       <title>Virtual public methods</title>
    530 
    531       <para>
    532         This is the preferred way to create polymorphic GObjects. All you
    533         need to do is to define the common method and its class function in
    534         the public header, implement the common method in the source file
    535         and re-implement the class function in each object which inherits
    536         from you.
    537 <programlisting>
    538 /* declaration in maman-bar.h. */
    539 struct _MamanBarClass
    540 {
    541   GObjectClass parent_class;
    542 
    543   /* stuff */
    544   void (*do_action) (MamanBar *self, /* parameters */);
    545 };
    546 
    547 void maman_bar_do_action (MamanBar *self, /* parameters */);
    548 
    549 /* implementation in maman-bar.c */
    550 void
    551 maman_bar_do_action (MamanBar *self, /* parameters */)
    552 {
    553   g_return_if_fail (MAMAN_IS_BAR (self));
    554 
    555   MAMAN_BAR_GET_CLASS (self)->do_action (self, /* parameters */);
    556 }
    557 </programlisting>
    558         The code above simply redirects the do_action call to the relevant
    559         class function. Some users, concerned about performance, do not
    560         provide the <function>maman_bar_do_action</function> wrapper function
    561         and require users to dereference the class pointer themselves. This
    562         is not such a great idea in terms of encapsulation and makes it
    563         difficult to change the object's implementation afterwards, should
    564         this be needed.
    565       </para>
    566 
    567       <para>
    568         Other users, also concerned by performance issues, declare
    569         the <function>maman_bar_do_action</function> function inline in the
    570         header file. This, however, makes it difficult to change the
    571         object's implementation later (although easier than requiring users
    572         to directly dereference the class function) and is often difficult
    573         to write in a portable way (the <emphasis>inline</emphasis> keyword
    574         is part of the C99 standard but not every compiler supports it).
    575       </para>
    576 
    577       <para>
    578         In doubt, unless a user shows you hard numbers about the performance
    579         cost of the function call, just implement <function>maman_bar_do_action</function>
    580         in the source file.
    581       </para>
    582 
    583       <para>
    584         Please, note that it is possible for you to provide a default
    585         implementation for this class method in the object's
    586         <function>class_init</function> function: initialize the
    587         klass-&gt;do_action field to a pointer to the actual implementation.
    588         You can also make this class method pure virtual by initializing
    589         the klass-&gt;do_action field to NULL:
    590 <programlisting>
    591 static void
    592 maman_bar_real_do_action_two (MamanBar *self, /* parameters */)
    593 {
    594   /* Default implementation for the virtual method. */
    595 }
    596 
    597 static void
    598 maman_bar_class_init (BarClass *klass)
    599 {
    600   /* pure virtual method: mandates implementation in children. */
    601   klass->do_action_one = NULL;
    602 
    603   /* merely virtual method. */
    604   klass->do_action_two = maman_bar_real_do_action_two;
    605 }
    606 
    607 void
    608 maman_bar_do_action_one (MamanBar *self, /* parameters */)
    609 {
    610   g_return_if_fail (MAMAN_IS_BAR (self));
    611 
    612   MAMAN_BAR_GET_CLASS (self)->do_action_one (self, /* parameters */);
    613 }
    614 
    615 void
    616 maman_bar_do_action_two (MamanBar *self, /* parameters */)
    617 {
    618   g_return_if_fail (MAMAN_IS_BAR (self));
    619 
    620   MAMAN_BAR_GET_CLASS (self)->do_action_two (self, /* parameters */);
    621 }
    622 </programlisting>
    623       </para>
    624     </sect2>
    625 
    626     <sect2>
    627       <title>Virtual private Methods</title>
    628 
    629       <para>
    630         These are very similar to Virtual Public methods. They just don't
    631         have a public function to call the function directly. The header
    632         file contains only a declaration of the class function:
    633 <programlisting>
    634 /* declaration in maman-bar.h. */
    635 struct _MamanBarClass
    636 {
    637   GObjectClass parent;
    638 
    639   /* stuff */
    640   void (* helper_do_specific_action) (MamanBar *self, /* parameters */);
    641 };
    642 
    643 void maman_bar_do_any_action (MamanBar *self, /* parameters */);
    644 </programlisting>
    645         These class functions are often used to delegate part of the job
    646         to child classes:
    647 <programlisting>
    648 /* this accessor function is static: it is not exported outside of this file. */
    649 static void 
    650 maman_bar_do_specific_action (MamanBar *self, /* parameters */)
    651 {
    652   MAMAN_BAR_GET_CLASS (self)->do_specific_action (self, /* parameters */);
    653 }
    654 
    655 void
    656 maman_bar_do_any_action (MamanBar *self, /* parameters */)
    657 {
    658   /* random code here */
    659 
    660   /* 
    661    * Try to execute the requested action. Maybe the requested action
    662    * cannot be implemented here. So, we delegate its implementation
    663    * to the child class:
    664    */
    665   maman_bar_do_specific_action (self, /* parameters */);
    666 
    667   /* other random code here */
    668 }
    669 </programlisting>
    670       </para>
    671 
    672       <para>
    673         Again, it is possible to provide a default implementation for this
    674         private virtual class function:
    675 <programlisting>
    676 static void
    677 maman_bar_class_init (MamanBarClass *klass)
    678 {
    679   /* pure virtual method: mandates implementation in children. */
    680   klass->do_specific_action_one = NULL;
    681 
    682   /* merely virtual method. */
    683   klass->do_specific_action_two = maman_bar_real_do_specific_action_two;
    684 }
    685 </programlisting>
    686       </para>
    687 
    688       <para>
    689         Children can then implement the subclass with code such as:
    690 <programlisting>
    691 static void
    692 maman_bar_subtype_class_init (MamanBarSubTypeClass *klass)
    693 {
    694   MamanBarClass *bar_class = MAMAN_BAR_CLASS (klass);
    695 
    696   /* implement pure virtual class function. */
    697   bar_class->do_specific_action_one = maman_bar_subtype_do_specific_action_one;
    698 }
    699 </programlisting>
    700       </para>
    701     </sect2>
    702   </sect1>
    703 
    704   <sect1 id="howto-gobject-chainup">
    705     <title>Chaining up</title>
    706     
    707     <para>Chaining up is often loosely defined by the following set of
    708     conditions:
    709       <itemizedlist>
    710         <listitem><para>Parent class A defines a public virtual method named <function>foo</function> and 
    711         provides a default implementation.</para></listitem>
    712         <listitem><para>Child class B re-implements method <function>foo</function>.</para></listitem>
    713         <listitem><para>In the method B::foo, the child class B calls its parent class method A::foo.</para></listitem>
    714       </itemizedlist>
    715       There are many uses to this idiom:
    716       <itemizedlist>
    717         <listitem><para>You need to change the behaviour of a class without modifying its code. You create
    718           a subclass to inherit its implementation, re-implement a public virtual method to modify the behaviour
    719           slightly and chain up to ensure that the previous behaviour is not really modified, just extended.
    720           </para></listitem>
    721         <listitem><para>You are lazy, you have access to the source code of the parent class but you don't want 
    722           to modify it to add method calls to new specialized method calls: it is faster to hack the child class
    723           to chain up than to modify the parent to call down.</para></listitem>
    724         <listitem><para>You need to implement the Chain Of Responsibility pattern: each object of the inheritance
    725           tree chains up to its parent (typically, at the beginning or the end of the method) to ensure that
    726           they each handler is run in turn.</para></listitem>
    727       </itemizedlist>
    728       I am personally not really convinced any of the last two uses are really a good idea but since this
    729       programming idiom is often used, this section attempts to explain how to implement it.
    730     </para>
    731 
    732     <para>
    733       To explicitly chain up to the implementation of the virtual method in the parent class, 
    734       you first need a handle to the original parent class structure. This pointer can then be used to 
    735       access the original class function pointer and invoke it directly.
    736       <footnote>
    737         <para>
    738           The <emphasis>original</emphasis> adjective used in this sentence is not innocuous. To fully 
    739           understand its meaning, you need to recall how class structures are initialized: for each object type,
    740           the class structure associated to this object is created by first copying the class structure of its 
    741           parent type (a simple <function>memcpy</function>) and then by invoking the class_init callback on 
    742           the resulting class structure. Since the class_init callback is responsible for overwriting the class structure
    743           with the user re-implementations of the class methods, we cannot merely use the modified copy of the parent class
    744           structure stored in our derived instance. We want to get a copy of the class structure of an instance of the parent 
    745           class.
    746         </para>
    747       </footnote>
    748     </para>
    749     
    750     <para>The function <function><link linkend="g-type-class-peek-parent">g_type_class_peek_parent</link></function> is used to access the original parent 
    751     class structure. Its input is a pointer to the class of the derived object and it returns a pointer
    752     to the original parent class structure. The code below shows how you could use it:
    753 <programlisting>
    754 static void
    755 b_method_to_call (B *obj, int a)
    756 {
    757   BClass *klass;
    758   AClass *parent_class;
    759 
    760   klass = B_GET_CLASS (obj);
    761   parent_class = g_type_class_peek_parent (klass);
    762 
    763   /* do stuff before chain up */
    764 
    765   parent_class->method_to_call (obj, a);
    766 
    767   /* do stuff after chain up */
    768 }
    769 </programlisting>
    770   </para>
    771 
    772   </sect1>
    773 
    774 </chapter>
    775 <!-- End Howto GObject -->
    776 
    777 <chapter id="howto-interface">
    778   <title>How to define and implement interfaces</title>
    779 
    780   <sect1 id="howto-interface-define">
    781     <title>How to define interfaces</title>
    782   
    783   <para>
    784     The bulk of interface definition has already been shown in <xref linkend="gtype-non-instantiable-classed"/>
    785     but I feel it is needed to show exactly how to create an interface.
    786   </para>
    787 
    788   <para>
    789     As above, the first step is to get the header right:
    790 <programlisting>
    791 #ifndef __MAMAN_IBAZ_H__
    792 #define __MAMAN_IBAZ_H__
    793 
    794 #include &lt;glib-object.h&gt;
    795 
    796 #define MAMAN_TYPE_IBAZ                 (maman_ibaz_get_type ())
    797 #define MAMAN_IBAZ(obj)                 (G_TYPE_CHECK_INSTANCE_CAST ((obj), MAMAN_TYPE_IBAZ, MamanIbaz))
    798 #define MAMAN_IS_IBAZ(obj)              (G_TYPE_CHECK_INSTANCE_TYPE ((obj), MAMAN_TYPE_IBAZ))
    799 #define MAMAN_IBAZ_GET_INTERFACE(inst)  (G_TYPE_INSTANCE_GET_INTERFACE ((inst), MAMAN_TYPE_IBAZ, MamanIbazInterface))
    800 
    801 
    802 typedef struct _MamanIbaz               MamanIbaz; /* dummy object */
    803 typedef struct _MamanIbazInterface      MamanIbazInterface;
    804 
    805 struct _MamanIbazInterface
    806 {
    807   GTypeInterface parent_iface;
    808 
    809   void (*do_action) (MamanIbaz *self);
    810 };
    811 
    812 GType maman_ibaz_get_type (void);
    813 
    814 void maman_ibaz_do_action (MamanIbaz *self);
    815 
    816 #endif /* __MAMAN_IBAZ_H__ */
    817 </programlisting>
    818     This code is the same as the code for a normal <type><link linkend="GType">GType</link></type>
    819     which derives from a <type><link linkend="GObject">GObject</link></type> except for a few details:
    820     <itemizedlist>
    821       <listitem><para>
    822         The <function>_GET_CLASS</function> macro is called <function>_GET_INTERFACE</function>
    823                   and not implemented with <function><link linkend="G_TYPE_INSTANCE_GET_CLASS">G_TYPE_INSTANCE_GET_CLASS</link></function>
    824                   but with <function><link linkend="G_TYPE_INSTANCE_GET_INTERFACE">G_TYPE_INSTANCE_GET_INTERFACE</link></function>.
    825       </para></listitem>
    826       <listitem><para>
    827         The instance type, <type>MamanIbaz</type> is not fully defined: it is
    828         used merely as an abstract type which represents an instance of
    829         whatever object which implements the interface.
    830       </para></listitem>
    831       <listitem><para>
    832         The parent of the <type>MamanIbazInterface</type> is not
    833         <type>GObjectClass</type> but <type>GTypeInterface</type>.
    834       </para></listitem>
    835     </itemizedlist>
    836   </para>
    837 
    838   <para>
    839     The implementation of the <type>MamanIbaz</type> type itself is trivial:
    840     <itemizedlist>
    841       <listitem><para><function>maman_ibaz_get_type</function> registers the
    842        type in the type system.
    843        </para></listitem>
    844       <listitem><para><function>maman_ibaz_base_init</function> is expected 
    845       to register the interface's signals if there are any (we will see a bit
    846       (later how to use them). Make sure to use a static local boolean variable
    847       to make sure not to run the initialization code twice (as described in
    848       <xref linkend="gtype-non-instantiable-classed-init"/>, 
    849       <function>base_init</function> is run once for each interface implementation 
    850       instantiation)</para></listitem>
    851       <listitem><para><function>maman_ibaz_do_action</function> dereferences
    852       the class structure to access its associated class function and calls it.
    853       </para></listitem>
    854     </itemizedlist>
    855 <programlisting>
    856 static void
    857 maman_ibaz_base_init (gpointer g_class)
    858 {
    859   static gboolean is_initialized = FALSE;
    860 
    861   if (!is_initialized)
    862     {
    863       /* add properties and signals to the interface here */
    864 
    865       is_initialized = TRUE;
    866     }
    867 }
    868 
    869 GType
    870 maman_ibaz_get_type (void)
    871 {
    872   static GType iface_type = 0;
    873   if (iface_type == 0)
    874     {
    875       static const GTypeInfo info = {
    876         sizeof (MamanIbazInterface),
    877         maman_ibaz_base_init,   /* base_init */
    878         NULL,   /* base_finalize */
    879       };
    880 
    881       iface_type = g_type_register_static (G_TYPE_INTERFACE, "MamanIbaz",
    882                                            &amp;info, 0);
    883     }
    884 
    885   return iface_type;
    886 }
    887 
    888 void
    889 maman_ibaz_do_action (MamanIbaz *self)
    890 {
    891   g_return_if_fail (MAMAN_IS_IBAZ (self));
    892 
    893   MAMAN_IBAZ_GET_INTERFACE (self)->do_action (self);
    894 }
    895 </programlisting>
    896     </para>
    897   </sect1>
    898   
    899   <sect1 id="howto-interface-implement">
    900     <title>How To define implement an Interface?</title>
    901   
    902     <para>
    903       Once the interface is defined, implementing it is rather trivial.
    904     </para>
    905   
    906     <para>
    907       The first step is to define a normal GObject class, like:
    908 <programlisting>
    909 #ifndef __MAMAN_BAZ_H__
    910 #define __MAMAN_BAZ_H__
    911 
    912 #include &lt;glib-object.h&gt;
    913 
    914 #define MAMAN_TYPE_BAZ             (maman_baz_get_type ())
    915 #define MAMAN_BAZ(obj)             (G_TYPE_CHECK_INSTANCE_CAST ((obj), MAMAN_TYPE_BAZ, Mamanbaz))
    916 #define MAMAN_IS_BAZ(obj)          (G_TYPE_CHECK_INSTANCE_TYPE ((obj), MAMAN_TYPE_BAZ))
    917 #define MAMAN_BAZ_CLASS(klass)     (G_TYPE_CHECK_CLASS_CAST ((klass), MAMAN_TYPE_BAZ, MamanbazClass))
    918 #define MAMAN_IS_BAZ_CLASS(klass)  (G_TYPE_CHECK_CLASS_TYPE ((klass), MAMAN_TYPE_BAZ))
    919 #define MAMAN_BAZ_GET_CLASS(obj)   (G_TYPE_INSTANCE_GET_CLASS ((obj), MAMAN_TYPE_BAZ, MamanbazClass))
    920 
    921 
    922 typedef struct _MamanBaz        MamanBaz;
    923 typedef struct _MamanBazClass   MamanBazClass;
    924 
    925 struct _MamanBaz
    926 {
    927   GObject parent_instance;
    928 
    929   int instance_member;
    930 };
    931 
    932 struct _MamanBazClass
    933 {
    934   GObjectClass parent_class;
    935 };
    936 
    937 GType maman_baz_get_type (void);
    938 
    939 #endif /* __MAMAN_BAZ_H__ */
    940 </programlisting>
    941       There is clearly nothing specifically weird or scary about this header:
    942       it does not define any weird API or derives from a weird type.
    943     </para>
    944   
    945     <para>
    946       The second step is to implement <type>MamanBaz</type> by defining
    947       its GType. Instead of using <function>G_DEFINE_TYPE</function> we
    948       use <function>G_DEFINE_TYPE_WITH_CODE</function> and the
    949       <function>G_IMPLEMENT_INTERFACE</function> macros.
    950 <programlisting>
    951 static void maman_ibaz_interface_init (MamanIbazInterface *iface);
    952 
    953 G_DEFINE_TYPE_WITH_CODE (MamanBar, maman_bar, G_TYPE_OBJECT,
    954                          G_IMPLEMENT_INTERFACE (MAMAN_TYPE_IBAZ,
    955                                                 maman_ibaz_interface_init));
    956 </programlisting>
    957       This definition is very much like all the similar functions we looked
    958       at previously. The only interface-specific code present here is the call
    959       to <function>G_IMPLEMENT_INTERFACE</function>. 
    960     </para>
    961 
    962     <note><para>Classes can implement multiple interfaces by using multiple
    963     calls to <function>G_IMPLEMENT_INTERFACE</function> inside the call
    964     to <function>G_DEFINE_TYPE_WITH_CODE</function>.</para></note>
    965   
    966     <para>
    967       <function>maman_baz_interface_init</function>, the interface
    968       initialization function: inside it every virtual method of the interface
    969       must be assigned to its implementation:
    970 <programlisting>
    971 static void
    972 maman_baz_do_action (MamanBaz *self)
    973 {
    974   g_print ("Baz implementation of IBaz interface Action: 0x%x.\n",
    975            self->instance_member);
    976 }
    977 
    978 static void
    979 maman_ibaz_interface_init (MamanIbazInterface *iface)
    980 {
    981   iface->do_action = baz_do_action;
    982 }
    983 
    984 static void
    985 maman_baz_init (MamanBaz *self)
    986 {
    987   MamanBaz *self = MAMAN_BAZ (instance);
    988   self->instance_member = 0xdeadbeaf;
    989 }
    990 </programlisting>
    991     </para>
    992   
    993   </sect1>
    994   
    995   <sect1>
    996     <title>Interface definition prerequisites</title>
    997   
    998     <para>
    999       To specify that an interface requires the presence of other interfaces
   1000       when implemented, GObject introduces the concept of
   1001       <emphasis>prerequisites</emphasis>: it is possible to associate
   1002       a list of prerequisite interfaces to an interface. For example, if
   1003       object A wishes to implement interface I1, and if interface I1 has a
   1004       prerequisite on interface I2, A has to implement both I1 and I2.
   1005     </para>
   1006   
   1007     <para>
   1008       The mechanism described above is, in practice, very similar to
   1009       Java's interface I1 extends interface I2. The example below shows
   1010       the GObject equivalent:
   1011 <programlisting>
   1012   /* inside the GType function of the MamanIbar interface */
   1013   type = g_type_register_static (G_TYPE_INTERFACE, "MamanIbar", &amp;info, 0);
   1014 
   1015   /* Make the MamanIbar interface require MamanIbaz interface. */
   1016   g_type_interface_add_prerequisite (type, MAMAN_TYPE_IBAZ);
   1017 </programlisting>
   1018       The code shown above adds the MamanIbaz interface to the list of
   1019       prerequisites of MamanIbar while the code below shows how an
   1020       implementation can implement both interfaces and register their
   1021       implementations:
   1022 <programlisting>
   1023 static void
   1024 maman_ibar_do_another_action (MamanIbar *ibar)
   1025 {
   1026   MamanBar *self = MAMAN_BAR (ibar);
   1027 
   1028   g_print ("Bar implementation of IBar interface Another Action: 0x%x.\n",
   1029            self->instance_member);
   1030 }
   1031 
   1032 static void
   1033 maman_ibar_interface_init (MamanIbarInterface *iface)
   1034 {
   1035   iface->do_another_action = maman_ibar_do_another_action;
   1036 }
   1037 
   1038 static void
   1039 maman_ibaz_do_action (MamanIbaz *ibaz)
   1040 {
   1041   MamanBar *self = MAMAN_BAR (ibaz);
   1042 
   1043   g_print ("Bar implementation of IBaz interface Action: 0x%x.\n",
   1044            self->instance_member);
   1045 }
   1046 
   1047 static void
   1048 maman_ibaz_interface_init (MamanIbazInterface *iface)
   1049 {
   1050   iface->do_action = maman_ibaz_do_action;
   1051 }
   1052 
   1053 static void
   1054 maman_bar_class_init (MamanBarClass *klass)
   1055 {
   1056 
   1057 }
   1058 
   1059 static void
   1060 maman_bar_init (MamanBar *self)
   1061 {
   1062   self->instance_member = 0x666;
   1063 }
   1064 
   1065 G_DEFINE_TYPE_WITH_CODE (MamanBar, maman_bar, G_TYPE_OBJECT,
   1066                          G_IMPLEMENT_INTERFACE (MAMAN_TYPE_IBAZ,
   1067                                                 maman_ibaz_interface_init)
   1068                          G_IMPLEMENT_INTERFACE (MAMAN_TYPE_IBAR,
   1069                                                 maman_ibar_interface_init));
   1070 </programlisting>
   1071       It is very important to notice that the order in which interface
   1072       implementations are added to the main object is not random:
   1073       <function><link linkend="g-type-add-interface-static">g_type_add_interface_static</link></function>,
   1074       which is called by <function>G_IMPLEMENT_INTERFACE</function>, must be
   1075       invoked first on the interfaces which have no prerequisites and then on
   1076       the others.
   1077     </para>
   1078   </sect1>
   1079   
   1080   <sect1 id="howto-interface-properties">
   1081     <title>Interface Properties</title>
   1082   
   1083     <para>
   1084       Starting from version 2.4 of GLib, GObject interfaces can also have
   1085       properties. Declaration of the interface properties is similar to
   1086       declaring the properties of ordinary GObject types as explained in
   1087       <xref linkend="gobject-properties"/>, 
   1088       except that <function><link linkend="g-object-interface-install-property">g_object_interface_install_property</link></function> is used to 
   1089       declare the properties instead of <function><link linkend="g-object-class-install-property">g_object_class_install_property</link></function>.
   1090     </para>
   1091   
   1092     <para>
   1093       To include a property named 'name' of type <type>string</type> in the 
   1094       <type>maman_ibaz</type> interface example code above, we only need to
   1095       add one 
   1096       <footnote>
   1097         <para>
   1098           That really is one line extended to six for the sake of clarity
   1099         </para>
   1100       </footnote>  
   1101       line in the <function>maman_ibaz_base_init</function>
   1102       <footnote>
   1103         <para>
   1104           The <function><link linkend="g-object-interface-install-property">g_object_interface_install_property</link></function>
   1105           can also be called from <function>class_init</function> but it must
   1106           not be called after that point.
   1107         </para>
   1108       </footnote>
   1109       as shown below:
   1110 <programlisting>
   1111 static void
   1112 maman_ibaz_base_init (gpointer g_iface)
   1113 {
   1114   static gboolean is_initialized = FALSE;
   1115 
   1116   if (!is_initialized)
   1117     {
   1118       g_object_interface_install_property (g_iface,
   1119                                            g_param_spec_string ("name",
   1120                                                                 "Name",
   1121                                                                 "Name of the MamanIbaz",
   1122                                                                 "maman",
   1123                                                                 G_PARAM_READWRITE));
   1124       is_initialized = TRUE;
   1125     }
   1126 }
   1127 </programlisting>
   1128     </para>
   1129   
   1130     <para>
   1131       One point worth noting is that the declared property wasn't assigned an 
   1132       integer ID. The reason being that integer IDs of properties are used
   1133       only inside the get and set methods and since interfaces do not
   1134       implement properties, there is no need to assign integer IDs to
   1135       interface properties.
   1136     </para>
   1137     
   1138     <para>
   1139       An implementation shall declare and define it's properties in the usual
   1140       way as explained in <xref linkend="gobject-properties"/>, except for one
   1141       small change: it must declare the properties of the interface it
   1142       implements using <function><link linkend="g-object-class-override-property">g_object_class_override_property</link></function>
   1143       instead of <function><link linkend="g-object-class-install-property">g_object_class_install_property</link></function>.
   1144       The following code snippet shows the modifications needed in the
   1145       <type>MamanBaz</type> declaration and implementation above:
   1146 <programlisting>
   1147 
   1148 struct _MamanBaz
   1149 {
   1150   GObject parent_instance;
   1151 
   1152   gint instance_member;
   1153   gchar *name;
   1154 };
   1155 
   1156 enum
   1157 {
   1158   PROP_0,
   1159 
   1160   PROP_NAME
   1161 };
   1162 
   1163 static void
   1164 maman_baz_set_property (GObject      *object,
   1165                         guint         property_id,
   1166                         const GValue *value,
   1167                         GParamSpec   *pspec)
   1168 {
   1169   MamanBaz *baz = MAMAN_BAZ (object);
   1170   GObject *obj;
   1171 
   1172   switch (prop_id)
   1173     {
   1174     case ARG_NAME:
   1175       g_free (baz->name);
   1176       baz->name = g_value_dup_string (value);
   1177       break;
   1178 
   1179     default:
   1180       G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
   1181       break;
   1182     }
   1183 }
   1184 
   1185 static void
   1186 maman_baz_get_property (GObject    *object,
   1187                         guint       prop_id,
   1188                         GValue     *value,
   1189                         GParamSpec *pspec)
   1190 {
   1191   MamanBaz *baz = MAMAN_BAZ (object);
   1192 
   1193   switch (prop_id)
   1194     {
   1195     case ARG_NAME:
   1196       g_value_set_string (value, baz->name);
   1197       break;
   1198 
   1199     default:
   1200       G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
   1201       break;
   1202     }
   1203 }
   1204 
   1205 static void
   1206 maman_baz_class_init (MamanBazClass *klass)
   1207 {
   1208   GObjectClass *gobject_class = G_OBJECT_CLASS (klass);
   1209 
   1210   gobject_class->set_property = maman_baz_set_property;
   1211   gobject_class->get_property = maman_baz_get_property;
   1212 
   1213   g_object_class_override_property (gobject_class, PROP_NAME, "name");
   1214 }
   1215 
   1216 </programlisting>
   1217     </para>
   1218   
   1219   </sect1>
   1220 </chapter>
   1221 <!-- End Howto Interfaces -->
   1222 
   1223 <chapter id="howto-signals">
   1224   <title>How to create and use signals</title>
   1225 
   1226   <para>
   1227     The signal system which was built in GType is pretty complex and
   1228     flexible: it is possible for its users to connect at runtime any
   1229     number of callbacks (implemented in any language for which a binding
   1230     exists)
   1231     <footnote>
   1232       <para>A Python callback can be connected to any signal on any
   1233       C-based GObject.
   1234       </para>
   1235     </footnote>
   1236     to any signal and to stop the emission of any signal at any 
   1237     state of the signal emission process. This flexibility makes it
   1238     possible to use GSignal for much more than just emit signals which
   1239     can be received by numerous clients. 
   1240   </para>
   1241 
   1242   <sect1 id="howto-simple-signals">
   1243     <title>Simple use of signals</title>
   1244 
   1245     <para>
   1246       The most basic use of signals is to implement simple event
   1247       notification: for example, if we have a MamanFile object, and
   1248       if this object has a write method, we might wish to be notified
   1249       whenever someone has changed something via our MamanFile instance.
   1250       The code below shows how the user can connect a callback to the
   1251       "changed" signal.
   1252 <programlisting>
   1253 file = g_object_new (MAMAN_FILE_TYPE, NULL);
   1254 
   1255 g_signal_connect (file, "changed", G_CALLBACK (changed_event), NULL);
   1256 
   1257 maman_file_write (file, buffer, strlen (buffer));
   1258 </programlisting>
   1259     </para>
   1260     
   1261     <para>
   1262       The <type>MamanFile</type> signal is registered in the class_init
   1263       function:
   1264 <programlisting>
   1265 file_signals[CHANGED] = 
   1266   g_signal_newv ("changed",
   1267                  G_TYPE_FROM_CLASS (gobject_class),
   1268                  G_SIGNAL_RUN_LAST | G_SIGNAL_NO_RECURSE | G_SIGNAL_NO_HOOKS,
   1269                  NULL /* closure */,
   1270                  NULL /* accumulator */,
   1271                  NULL /* accumulator data */,
   1272                  g_cclosure_marshal_VOID__VOID,
   1273                  G_TYPE_NONE /* return_type */,
   1274                  0     /* n_params */,
   1275                  NULL  /* param_types */);
   1276 </programlisting>
   1277       and the signal is emitted in <function>maman_file_write</function>:
   1278 <programlisting>
   1279 void
   1280 maman_file_write (MamanFile    *self,
   1281                   const guchar *buffer,
   1282                   gssize        size)
   1283 {
   1284   /* First write data. */
   1285 
   1286   /* Then, notify user of data written. */
   1287   g_signal_emit (self, file_signals[CHANGED], 0 /* details */);
   1288 }
   1289 </programlisting>
   1290       As shown above, you can safely set the details parameter to zero if
   1291       you do not know what it can be used for. For a discussion of what you
   1292       could used it for, see <xref linkend="signal-detail"/>
   1293     </para>
   1294 
   1295     <para>
   1296       The signature of the signal handler in the above example is defined as
   1297       <function>g_cclosure_marshal_VOID__VOID</function>. Its name follows
   1298       a simple convention which encodes the function parameter and return value
   1299       types in the function name. Specifically, the value in front of the
   1300       double underscore is the type of the return value, while the value(s)
   1301       after the double underscore denote the parameter types.
   1302     </para>
   1303 
   1304     <para>
   1305       The header <filename>gobject/gmarshal.h</filename> defines a set of
   1306       commonly needed closures that one can use. If you want to have complex
   1307       marshallers for your signals you should probably use glib-genmarshal
   1308       to autogenerate them from a file containing their return and
   1309       parameter types.
   1310     </para>
   1311   </sect1>
   1312 
   1313 <!-- 
   1314   this is utterly wrong and should be completely removed - or rewritten
   1315   with a better example than writing a buffer using synchronous signals.
   1316 
   1317   <sect1>
   1318     <title>How to provide more flexibility to users?</title>
   1319 
   1320     <para>
   1321       The previous implementation does the job but the signal facility of
   1322       GObject can be used to provide even more flexibility to this file
   1323       change notification mechanism. One of the key ideas is to make the
   1324       process of writing data to the file part of the signal emission
   1325       process to allow users to be notified either before or after the
   1326       data is written to the file.
   1327     </para>
   1328     
   1329     <para>
   1330       To integrate the process of writing the data to the file into the
   1331       signal emission mechanism, we can register a default class closure
   1332       for this signal which will be invoked during the signal emission,
   1333       just like any other user-connected signal handler. 
   1334     </para>
   1335     
   1336     <para>
   1337       The first step to implement this idea is to change the signature of
   1338       the signal: we need to pass around the buffer to write and its size.
   1339       To do this, we use our own marshaller which will be generated
   1340       through GLib's glib-genmarshal tool. We thus create a file named <filename>marshall.list</filename> which contains
   1341       the following single line:
   1342 <programlisting>
   1343 VOID:POINTER,UINT
   1344 </programlisting>
   1345       and use the Makefile provided in <filename>sample/signal/Makefile</filename> to generate the file named
   1346       <filename>maman-file-complex-marshall.c</filename>. This C file is finally included in 
   1347       <filename>maman-file-complex.c</filename>.
   1348     </para>
   1349 
   1350     <para>
   1351       Once the marshaller is present, we register the signal and its marshaller in the class_init function 
   1352       of the object <type>MamanFileComplex</type> (full source for this object is included in 
   1353       <filename>sample/signal/maman-file-complex.{h|c}</filename>):
   1354 <programlisting>
   1355 GClosure *default_closure;
   1356 GType param_types[2];
   1357 
   1358 default_closure = g_cclosure_new (G_CALLBACK (default_write_signal_handler),
   1359                                   (gpointer)0xdeadbeaf /* user_data */, 
   1360                                   NULL /* destroy_data */);
   1361 
   1362 param_types[0] = G_TYPE_POINTER;
   1363 param_types[1] = G_TYPE_UINT;
   1364 klass->write_signal_id = 
   1365   g_signal_newv ("write",
   1366                  G_TYPE_FROM_CLASS (g_class),
   1367                  G_SIGNAL_RUN_LAST | G_SIGNAL_NO_RECURSE | G_SIGNAL_NO_HOOKS,
   1368                  default_closure /* class closure */,
   1369                  NULL /* accumulator */,
   1370                  NULL /* accu_data */,
   1371                  maman_file_complex_VOID__POINTER_UINT,
   1372                  G_TYPE_NONE /* return_type */,
   1373                  2     /* n_params */,
   1374                  param_types /* param_types */);
   1375 </programlisting>
   1376       The code shown above first creates the closure which contains the code to complete the file write. This
   1377       closure is registered as the default class_closure of the newly created signal.
   1378     </para>
   1379 
   1380     <para>
   1381       Of course, you need to implement completely the code for the default closure since I just provided
   1382       a skeleton:
   1383 <programlisting>
   1384 static void
   1385 default_write_signal_handler (GObject *obj, guint8 *buffer, guint size, gpointer user_data)
   1386 {
   1387   g_assert (user_data == (gpointer)0xdeadbeaf);
   1388   /* Here, we trigger the real file write. */
   1389   g_print ("default signal handler: 0x%x %u\n", buffer, size);
   1390 }
   1391 </programlisting>
   1392     </para>
   1393 
   1394     <para>
   1395       Finally, the client code must invoke the <function>maman_file_complex_write</function> function which 
   1396       triggers the signal emission:
   1397 <programlisting>
   1398 void maman_file_complex_write (MamanFileComplex *self, guint8 *buffer, guint size)
   1399 {
   1400   /* trigger event */
   1401   g_signal_emit (self,
   1402                  MAMAN_FILE_COMPLEX_GET_CLASS (self)->write_signal_id,
   1403                  0, /* details */
   1404                  buffer, size);
   1405 }
   1406 </programlisting>
   1407     </para>
   1408     
   1409     <para>
   1410       The client code (as shown in <filename>sample/signal/test.c</filename> and below) can now connect signal handlers before 
   1411       and after the file write is completed: since the default signal handler which does the write itself runs during the 
   1412       RUN_LAST phase of the signal emission, it will run after all handlers connected with <function><link linkend="g-signal-connect">g_signal_connect</link></function>
   1413       and before all handlers connected with <function><link linkend="g-signal-connect-after">g_signal_connect_after</link></function>. If you intent to write a GObject
   1414       which emits signals, I would thus urge you to create all your signals with the G_SIGNAL_RUN_LAST such that your users
   1415       have a maximum of flexibility as to when to get the event. Here, we combined it with G_SIGNAL_NO_RECURSE and 
   1416       G_SIGNAL_NO_HOOKS to ensure our users will not try to do really weird things with our GObject. I strongly advise you
   1417       to do the same unless you really know why (in which case you really know the inner workings of GSignal by heart and
   1418       you are not reading this).
   1419     </para>
   1420     
   1421     <para>
   1422 <programlisting>
   1423 static void complex_write_event_before (GObject *file, guint8 *buffer, guint size, gpointer user_data)
   1424 {
   1425   g_assert (user_data == NULL);
   1426   g_print ("Complex Write event before: 0x%x, %u\n", buffer, size);
   1427 }
   1428 
   1429 static void complex_write_event_after (GObject *file, guint8 *buffer, guint size, gpointer user_data)
   1430 {
   1431   g_assert (user_data == NULL);
   1432   g_print ("Complex Write event after: 0x%x, %u\n", buffer, size);
   1433 }
   1434 
   1435 static void test_file_complex (void)
   1436 {
   1437   guint8 buffer[100];
   1438   GObject *file;
   1439 
   1440   file = g_object_new (MAMAN_FILE_COMPLEX_TYPE, NULL);
   1441 
   1442   g_signal_connect (G_OBJECT (file), "write",
   1443                     (GCallback)complex_write_event_before,
   1444                     NULL);
   1445 
   1446   g_signal_connect_after (G_OBJECT (file), "write",
   1447                           (GCallback)complex_write_event_after,
   1448                           NULL);
   1449 
   1450   maman_file_complex_write (MAMAN_FILE_COMPLEX (file), buffer, 50);
   1451 
   1452   g_object_unref (G_OBJECT (file));
   1453 }
   1454 </programlisting>
   1455       The code above generates the following output on my machine:
   1456 <programlisting>
   1457 Complex Write event before: 0xbfffe280, 50
   1458 default signal handler: 0xbfffe280 50
   1459 Complex Write event after: 0xbfffe280, 50
   1460 </programlisting>
   1461     </para>
   1462 
   1463 -->
   1464 
   1465 <!--
   1466   this is also utterly wrong on so many levels that I don't even want
   1467   to enumerate them. it's also full of completely irrelevant footnotes
   1468   about personal preferences demonstrating a severe lack of whatsoever
   1469   clue. the whole idea of storing the signal ids inside the Class
   1470   structure is so fundamentally flawed that I'll require a frontal
   1471   lobotomy just to forget I've ever seen it.
   1472 
   1473     <sect2>
   1474     <title>How most people do the same thing with less code</title>
   1475     
   1476       <para>For many historic reasons related to how the ancestor of GObject used to work in GTK+ 1.x versions,
   1477         there is a much <emphasis>simpler</emphasis> 
   1478         <footnote>
   1479           <para>I personally think that this method is horribly mind-twisting: it adds a new indirection
   1480           which unnecessarily complicates the overall code path. However, because this method is widely used
   1481           by all of GTK+ and GObject code, readers need to understand it. The reason why this is done that way
   1482           in most of GTK+ is related to the fact that the ancestor of GObject did not provide any other way to
   1483           create a signal with a default handler than this one. Some people have tried to justify that it is done
   1484           that way because it is better, faster (I am extremely doubtful about the faster bit. As a matter of fact,
   1485           the better bit also mystifies me ;-). I have the feeling no one really knows and everyone does it
   1486           because they copy/pasted code from code which did the same. It is probably better to leave this 
   1487           specific trivia to hacker legends domain...
   1488           </para>
   1489         </footnote>
   1490         way to create a signal with a default handler than to create 
   1491         a closure by hand and to use the <function><link linkend="g-signal-newv">g_signal_newv</link></function>.
   1492       </para>
   1493     
   1494       <para>For example, <function><link linkend="g-signal-new">g_signal_new</link></function> can be used to create a signal which uses a default 
   1495         handler which is stored in the class structure of the object. More specifically, the class structure 
   1496         contains a function pointer which is accessed during signal emission to invoke the default handler and
   1497         the user is expected to provide to <function><link linkend="g-signal-new">g_signal_new</link></function> the offset from the start of the
   1498         class structure to the function pointer.
   1499           <footnote>
   1500             <para>I would like to point out here that the reason why the default handler of a signal is named everywhere
   1501              a class_closure is probably related to the fact that it used to be really a function pointer stored in
   1502              the class structure.
   1503             </para>
   1504           </footnote>
   1505       </para>
   1506     
   1507       <para>The following code shows the declaration of the <type>MamanFileSimple</type> class structure which contains
   1508         the <function>write</function> function pointer.
   1509 <programlisting>
   1510 struct _MamanFileSimpleClass {
   1511   GObjectClass parent;
   1512         
   1513   guint write_signal_id;
   1514 
   1515   /* signal default handlers */
   1516   void (*write) (MamanFileSimple *self, guint8 *buffer, guint size);
   1517 };
   1518 </programlisting>
   1519         The <function>write</function> function pointer is initialized in the class_init function of the object
   1520         to <function>default_write_signal_handler</function>:
   1521 <programlisting>
   1522 static void
   1523 maman_file_simple_class_init (gpointer g_class,
   1524                                gpointer g_class_data)
   1525 {
   1526   GObjectClass *gobject_class = G_OBJECT_CLASS (g_class);
   1527   MamanFileSimpleClass *klass = MAMAN_FILE_SIMPLE_CLASS (g_class);
   1528 
   1529   klass->write = default_write_signal_handler;
   1530 </programlisting>
   1531         Finally, the signal is created with <function><link linkend="g-signal-new">g_signal_new</link></function> in the same class_init function:
   1532 <programlisting>
   1533 klass->write_signal_id = 
   1534  g_signal_new ("write",
   1535                G_TYPE_FROM_CLASS (g_class),
   1536                G_SIGNAL_RUN_LAST | G_SIGNAL_NO_RECURSE | G_SIGNAL_NO_HOOKS,
   1537                G_STRUCT_OFFSET (MamanFileSimpleClass, write),
   1538                NULL /* accumulator */,
   1539                NULL /* accu_data */,
   1540                maman_file_complex_VOID__POINTER_UINT,
   1541                G_TYPE_NONE /* return_type */,
   1542                2     /* n_params */,
   1543                G_TYPE_POINTER,
   1544                G_TYPE_UINT);
   1545 </programlisting>
   1546         Of note, here, is the 4th argument to the function: it is an integer calculated by the <function><link linkend="G-STRUCT-OFFSET">G_STRUCT_OFFSET</link></function>
   1547         macro which indicates the offset of the member <emphasis>write</emphasis> from the start of the 
   1548         <type>MamanFileSimpleClass</type> class structure.
   1549         <footnote>
   1550           <para>GSignal uses this offset to create a special wrapper closure 
   1551            which first retrieves the target function pointer before calling it.
   1552           </para>
   1553         </footnote>
   1554      </para>
   1555 
   1556      <para>
   1557        While the complete code for this type of default handler looks less cluttered as shown in 
   1558        <filename>sample/signal/maman-file-simple.{h|c}</filename>, it contains numerous subtleties.
   1559        The main subtle point which everyone must be aware of is that the signature of the default 
   1560        handler created that way does not have a user_data argument: 
   1561        <function>default_write_signal_handler</function> is different in 
   1562        <filename>sample/signal/maman-file-complex.c</filename> and in 
   1563        <filename>sample/signal/maman-file-simple.c</filename>.
   1564      </para>
   1565 
   1566      <para>If you have doubts about which method to use, I would advise you to use the second one which
   1567        involves <function><link linkend="g-signal-new">g_signal_new</link></function> rather than <function><link linkend="g-signal-newv">g_signal_newv</link></function>: 
   1568        it is better to write code which looks like the vast majority of other GTK+/GObject code than to
   1569        do it your own way. However, now, you know why.
   1570      </para>
   1571 
   1572    </sect2>
   1573 
   1574   </sect1>
   1575 -->
   1576 
   1577 <!--
   1578   yet another pointless section. if we are scared of possible abuses
   1579   from the users then we should not be mentioning it inside a tutorial
   1580   for beginners. but, obviously, there's nothing to be afraid of - it's
   1581   just that this section must be completely reworded.
   1582 
   1583   <sect1>
   1584     <title>How users can abuse signals (and why some think it is good)</title>
   1585 
   1586     <para>Now that you know how to create signals to which the users can connect easily and at any point in
   1587       the signal emission process thanks to <function><link linkend="g-signal-connect">g_signal_connect</link></function>, 
   1588       <function><link linkend="g-signal-connect-after">g_signal_connect_after</link></function> and G_SIGNAL_RUN_LAST, it is time to look into how your
   1589       users can and will screw you. This is also interesting to know how you too, can screw other people.
   1590       This will make you feel good and eleet.
   1591     </para>
   1592     
   1593     <para>
   1594       The users can:
   1595       <itemizedlist>
   1596          <listitem><para>stop the emission of the signal at anytime</para></listitem>
   1597          <listitem><para>override the default handler of the signal if it is stored as a function
   1598            pointer in the class structure (which is the preferred way to create a default signal handler,
   1599            as discussed in the previous section).</para></listitem>
   1600        </itemizedlist> 
   1601     </para>
   1602     
   1603     <para>
   1604       In both cases, the original programmer should be as careful as possible to write code which is
   1605       resistant to the fact that the default handler of the signal might not able to run. This is obviously
   1606       not the case in the example used in the previous sections since the write to the file depends on whether
   1607       or not the default handler runs (however, this might be your goal: to allow the user to prevent the file 
   1608       write if he wishes to).
   1609     </para>
   1610     
   1611     <para>
   1612       If all you want to do is to stop the signal emission from one of the callbacks you connected yourself,
   1613       you can call <function><link linkend="g-signal-stop-by-name">g_signal_stop_by_name</link></function>. Its use is very simple which is why I won't detail 
   1614       it further.
   1615     </para>
   1616     
   1617     <para>
   1618       If the signal's default handler is just a class function pointer, it is also possible to override 
   1619       it yourself from the class_init function of a type which derives from the parent. That way, when the signal
   1620       is emitted, the parent class will use the function provided by the child as a signal default handler.
   1621       Of course, it is also possible (and recommended) to chain up from the child to the parent's default signal 
   1622       handler to ensure the integrity of the parent object.
   1623     </para>
   1624     
   1625     <para>
   1626       Overriding a class method and chaining up was demonstrated in <xref linkend="howto-gobject-methods"/> 
   1627       which is why I won't bother to show exactly how to do it here again.
   1628     </para>
   1629 
   1630   </sect1>
   1631 
   1632 -->
   1633 
   1634 </chapter>
   1635 
   1636 <!--
   1637   <sect2>
   1638     <title>Warning on signal creation and default closure</title>
   1639 
   1640     <para>
   1641       Most of the existing code I have seen up to now (in both GTK+, GNOME libraries and
   1642       many GTK+ and GNOME applications) using signals uses a small
   1643       variation of the default handler pattern I have shown in the previous section.
   1644     </para>
   1645 
   1646     <para>
   1647       Usually, the <function><link linkend="g-signal-new">g_signal_new</link></function> function is preferred over
   1648       <function><link linkend="g-signal-newv">g_signal_newv</link></function>. When <function><link linkend="g-signal-new">g_signal_new</link></function>
   1649       is used, the default closure is exported as a class function. For example,
   1650       <filename>gobject.h</filename> contains the declaration of <type><link linkend="GObjectClass">GObjectClass</link></type>
   1651       whose notify class function is the default handler for the <emphasis>notify</emphasis>
   1652       signal:
   1653 <programlisting>
   1654 struct  _GObjectClass
   1655 {
   1656   GTypeClass   g_type_class;
   1657 
   1658   /* class methods and other stuff. */
   1659 
   1660   /* signals */
   1661   void (*notify) (GObject     *object,
   1662                   GParamSpec  *pspec);
   1663 };
   1664 </programlisting>
   1665      </para>
   1666 
   1667      <para>
   1668        <filename>gobject.c</filename>'s <function><link linkend="g-object-do-class-init">g_object_do_class_init</link></function> function
   1669        registers the <emphasis>notify</emphasis> signal and initializes this class function
   1670        to NULL:
   1671 <programlisting>
   1672 static void
   1673 g_object_do_class_init (GObjectClass *class)
   1674 {
   1675 
   1676   /* Stuff */
   1677 
   1678   class->notify = NULL;
   1679 
   1680   gobject_signals[NOTIFY] =
   1681     g_signal_new ("notify",
   1682                   G_TYPE_FROM_CLASS (class),
   1683                   G_SIGNAL_RUN_FIRST | G_SIGNAL_NO_RECURSE | G_SIGNAL_DETAILED | G_SIGNAL_NO_HOOKS,
   1684                   G_STRUCT_OFFSET (GObjectClass, notify),
   1685                   NULL, NULL,
   1686                   g_cclosure_marshal_VOID__PARAM,
   1687                   G_TYPE_NONE,
   1688                   1, G_TYPE_PARAM);
   1689 }
   1690 </programlisting>
   1691        <function><link linkend="g-signal-new">g_signal_new</link></function> creates a <type><link linkend="GClosure">GClosure</link></type> which dereferences the
   1692        type's class structure to access the class function pointer and invoke it if it not NULL. The
   1693        class function is ignored it is set to NULL.
   1694      </para>
   1695 
   1696      <para>
   1697        To understand the reason for such a complex scheme to access the signal's default handler, 
   1698        you must remember the whole reason for the use of these signals. The goal here is to delegate
   1699        a part of the process to the user without requiring the user to subclass the object to override
   1700        one of the class functions. The alternative to subclassing, that is, the use of signals
   1701        to delegate processing to the user, is, however, a bit less optimal in terms of speed: rather
   1702        than just dereferencing a function pointer in a class structure, you must start the whole
   1703        process of signal emission which is a bit heavyweight.
   1704      </para>
   1705 
   1706      <para>
   1707        This is why some people decided to use class functions for some signal's default handlers:
   1708        rather than having users connect a handler to the signal and stop the signal emission
   1709        from within that handler, you just need to override the default class function which is
   1710        supposedly more efficient.
   1711      </para>
   1712 
   1713     </sect2>
   1714 -->
   1715 
   1716