Home | History | Annotate | Download | only in base
      1 // Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef BASE_MESSAGE_PUMP_WIN_H_
      6 #define BASE_MESSAGE_PUMP_WIN_H_
      7 
      8 #include <windows.h>
      9 
     10 #include <list>
     11 
     12 #include "base/lock.h"
     13 #include "base/message_pump.h"
     14 #include "base/observer_list.h"
     15 #include "base/scoped_handle.h"
     16 #include "base/time.h"
     17 
     18 namespace base {
     19 
     20 // MessagePumpWin serves as the base for specialized versions of the MessagePump
     21 // for Windows. It provides basic functionality like handling of observers and
     22 // controlling the lifetime of the message pump.
     23 class MessagePumpWin : public MessagePump {
     24  public:
     25   // An Observer is an object that receives global notifications from the
     26   // MessageLoop.
     27   //
     28   // NOTE: An Observer implementation should be extremely fast!
     29   //
     30   class Observer {
     31    public:
     32     virtual ~Observer() {}
     33 
     34     // This method is called before processing a message.
     35     // The message may be undefined in which case msg.message is 0
     36     virtual void WillProcessMessage(const MSG& msg) = 0;
     37 
     38     // This method is called when control returns from processing a UI message.
     39     // The message may be undefined in which case msg.message is 0
     40     virtual void DidProcessMessage(const MSG& msg) = 0;
     41   };
     42 
     43   // Dispatcher is used during a nested invocation of Run to dispatch events.
     44   // If Run is invoked with a non-NULL Dispatcher, MessageLoop does not
     45   // dispatch events (or invoke TranslateMessage), rather every message is
     46   // passed to Dispatcher's Dispatch method for dispatch. It is up to the
     47   // Dispatcher to dispatch, or not, the event.
     48   //
     49   // The nested loop is exited by either posting a quit, or returning false
     50   // from Dispatch.
     51   class Dispatcher {
     52    public:
     53     virtual ~Dispatcher() {}
     54     // Dispatches the event. If true is returned processing continues as
     55     // normal. If false is returned, the nested loop exits immediately.
     56     virtual bool Dispatch(const MSG& msg) = 0;
     57   };
     58 
     59   MessagePumpWin() : have_work_(0), state_(NULL) {}
     60   virtual ~MessagePumpWin() {}
     61 
     62   // Add an Observer, which will start receiving notifications immediately.
     63   void AddObserver(Observer* observer);
     64 
     65   // Remove an Observer.  It is safe to call this method while an Observer is
     66   // receiving a notification callback.
     67   void RemoveObserver(Observer* observer);
     68 
     69   // Give a chance to code processing additional messages to notify the
     70   // message loop observers that another message has been processed.
     71   void WillProcessMessage(const MSG& msg);
     72   void DidProcessMessage(const MSG& msg);
     73 
     74   // Like MessagePump::Run, but MSG objects are routed through dispatcher.
     75   void RunWithDispatcher(Delegate* delegate, Dispatcher* dispatcher);
     76 
     77   // MessagePump methods:
     78   virtual void Run(Delegate* delegate) { RunWithDispatcher(delegate, NULL); }
     79   virtual void Quit();
     80 
     81  protected:
     82   struct RunState {
     83     Delegate* delegate;
     84     Dispatcher* dispatcher;
     85 
     86     // Used to flag that the current Run() invocation should return ASAP.
     87     bool should_quit;
     88 
     89     // Used to count how many Run() invocations are on the stack.
     90     int run_depth;
     91   };
     92 
     93   virtual void DoRunLoop() = 0;
     94   int GetCurrentDelay() const;
     95 
     96   ObserverList<Observer> observers_;
     97 
     98   // The time at which delayed work should run.
     99   Time delayed_work_time_;
    100 
    101   // A boolean value used to indicate if there is a kMsgDoWork message pending
    102   // in the Windows Message queue.  There is at most one such message, and it
    103   // can drive execution of tasks when a native message pump is running.
    104   LONG have_work_;
    105 
    106   // State for the current invocation of Run.
    107   RunState* state_;
    108 };
    109 
    110 //-----------------------------------------------------------------------------
    111 // MessagePumpForUI extends MessagePumpWin with methods that are particular to a
    112 // MessageLoop instantiated with TYPE_UI.
    113 //
    114 // MessagePumpForUI implements a "traditional" Windows message pump. It contains
    115 // a nearly infinite loop that peeks out messages, and then dispatches them.
    116 // Intermixed with those peeks are callouts to DoWork for pending tasks, and
    117 // DoDelayedWork for pending timers. When there are no events to be serviced,
    118 // this pump goes into a wait state. In most cases, this message pump handles
    119 // all processing.
    120 //
    121 // However, when a task, or windows event, invokes on the stack a native dialog
    122 // box or such, that window typically provides a bare bones (native?) message
    123 // pump.  That bare-bones message pump generally supports little more than a
    124 // peek of the Windows message queue, followed by a dispatch of the peeked
    125 // message.  MessageLoop extends that bare-bones message pump to also service
    126 // Tasks, at the cost of some complexity.
    127 //
    128 // The basic structure of the extension (refered to as a sub-pump) is that a
    129 // special message, kMsgHaveWork, is repeatedly injected into the Windows
    130 // Message queue.  Each time the kMsgHaveWork message is peeked, checks are
    131 // made for an extended set of events, including the availability of Tasks to
    132 // run.
    133 //
    134 // After running a task, the special message kMsgHaveWork is again posted to
    135 // the Windows Message queue, ensuring a future time slice for processing a
    136 // future event.  To prevent flooding the Windows Message queue, care is taken
    137 // to be sure that at most one kMsgHaveWork message is EVER pending in the
    138 // Window's Message queue.
    139 //
    140 // There are a few additional complexities in this system where, when there are
    141 // no Tasks to run, this otherwise infinite stream of messages which drives the
    142 // sub-pump is halted.  The pump is automatically re-started when Tasks are
    143 // queued.
    144 //
    145 // A second complexity is that the presence of this stream of posted tasks may
    146 // prevent a bare-bones message pump from ever peeking a WM_PAINT or WM_TIMER.
    147 // Such paint and timer events always give priority to a posted message, such as
    148 // kMsgHaveWork messages.  As a result, care is taken to do some peeking in
    149 // between the posting of each kMsgHaveWork message (i.e., after kMsgHaveWork
    150 // is peeked, and before a replacement kMsgHaveWork is posted).
    151 //
    152 // NOTE: Although it may seem odd that messages are used to start and stop this
    153 // flow (as opposed to signaling objects, etc.), it should be understood that
    154 // the native message pump will *only* respond to messages.  As a result, it is
    155 // an excellent choice.  It is also helpful that the starter messages that are
    156 // placed in the queue when new task arrive also awakens DoRunLoop.
    157 //
    158 class MessagePumpForUI : public MessagePumpWin {
    159  public:
    160   // The application-defined code passed to the hook procedure.
    161   static const int kMessageFilterCode = 0x5001;
    162 
    163   MessagePumpForUI();
    164   virtual ~MessagePumpForUI();
    165 
    166   // MessagePump methods:
    167   virtual void ScheduleWork();
    168   virtual void ScheduleDelayedWork(const Time& delayed_work_time);
    169 
    170   // Applications can call this to encourage us to process all pending WM_PAINT
    171   // messages.  This method will process all paint messages the Windows Message
    172   // queue can provide, up to some fixed number (to avoid any infinite loops).
    173   void PumpOutPendingPaintMessages();
    174 
    175  private:
    176   static LRESULT CALLBACK WndProcThunk(
    177       HWND hwnd, UINT message, WPARAM wparam, LPARAM lparam);
    178   virtual void DoRunLoop();
    179   void InitMessageWnd();
    180   void WaitForWork();
    181   void HandleWorkMessage();
    182   void HandleTimerMessage();
    183   bool ProcessNextWindowsMessage();
    184   bool ProcessMessageHelper(const MSG& msg);
    185   bool ProcessPumpReplacementMessage();
    186 
    187   // A hidden message-only window.
    188   HWND message_hwnd_;
    189 };
    190 
    191 //-----------------------------------------------------------------------------
    192 // MessagePumpForIO extends MessagePumpWin with methods that are particular to a
    193 // MessageLoop instantiated with TYPE_IO. This version of MessagePump does not
    194 // deal with Windows mesagges, and instead has a Run loop based on Completion
    195 // Ports so it is better suited for IO operations.
    196 //
    197 class MessagePumpForIO : public MessagePumpWin {
    198  public:
    199   struct IOContext;
    200 
    201   // Clients interested in receiving OS notifications when asynchronous IO
    202   // operations complete should implement this interface and register themselves
    203   // with the message pump.
    204   //
    205   // Typical use #1:
    206   //   // Use only when there are no user's buffers involved on the actual IO,
    207   //   // so that all the cleanup can be done by the message pump.
    208   //   class MyFile : public IOHandler {
    209   //     MyFile() {
    210   //       ...
    211   //       context_ = new IOContext;
    212   //       context_->handler = this;
    213   //       message_pump->RegisterIOHandler(file_, this);
    214   //     }
    215   //     ~MyFile() {
    216   //       if (pending_) {
    217   //         // By setting the handler to NULL, we're asking for this context
    218   //         // to be deleted when received, without calling back to us.
    219   //         context_->handler = NULL;
    220   //       } else {
    221   //         delete context_;
    222   //      }
    223   //     }
    224   //     virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered,
    225   //                                DWORD error) {
    226   //         pending_ = false;
    227   //     }
    228   //     void DoSomeIo() {
    229   //       ...
    230   //       // The only buffer required for this operation is the overlapped
    231   //       // structure.
    232   //       ConnectNamedPipe(file_, &context_->overlapped);
    233   //       pending_ = true;
    234   //     }
    235   //     bool pending_;
    236   //     IOContext* context_;
    237   //     HANDLE file_;
    238   //   };
    239   //
    240   // Typical use #2:
    241   //   class MyFile : public IOHandler {
    242   //     MyFile() {
    243   //       ...
    244   //       message_pump->RegisterIOHandler(file_, this);
    245   //     }
    246   //     // Plus some code to make sure that this destructor is not called
    247   //     // while there are pending IO operations.
    248   //     ~MyFile() {
    249   //     }
    250   //     virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered,
    251   //                                DWORD error) {
    252   //       ...
    253   //       delete context;
    254   //     }
    255   //     void DoSomeIo() {
    256   //       ...
    257   //       IOContext* context = new IOContext;
    258   //       // This is not used for anything. It just prevents the context from
    259   //       // being considered "abandoned".
    260   //       context->handler = this;
    261   //       ReadFile(file_, buffer, num_bytes, &read, &context->overlapped);
    262   //     }
    263   //     HANDLE file_;
    264   //   };
    265   //
    266   // Typical use #3:
    267   // Same as the previous example, except that in order to deal with the
    268   // requirement stated for the destructor, the class calls WaitForIOCompletion
    269   // from the destructor to block until all IO finishes.
    270   //     ~MyFile() {
    271   //       while(pending_)
    272   //         message_pump->WaitForIOCompletion(INFINITE, this);
    273   //     }
    274   //
    275   class IOHandler {
    276    public:
    277     virtual ~IOHandler() {}
    278     // This will be called once the pending IO operation associated with
    279     // |context| completes. |error| is the Win32 error code of the IO operation
    280     // (ERROR_SUCCESS if there was no error). |bytes_transfered| will be zero
    281     // on error.
    282     virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered,
    283                                DWORD error) = 0;
    284   };
    285 
    286   // The extended context that should be used as the base structure on every
    287   // overlapped IO operation. |handler| must be set to the registered IOHandler
    288   // for the given file when the operation is started, and it can be set to NULL
    289   // before the operation completes to indicate that the handler should not be
    290   // called anymore, and instead, the IOContext should be deleted when the OS
    291   // notifies the completion of this operation. Please remember that any buffers
    292   // involved with an IO operation should be around until the callback is
    293   // received, so this technique can only be used for IO that do not involve
    294   // additional buffers (other than the overlapped structure itself).
    295   struct IOContext {
    296     OVERLAPPED overlapped;
    297     IOHandler* handler;
    298   };
    299 
    300   MessagePumpForIO();
    301   virtual ~MessagePumpForIO() {}
    302 
    303   // MessagePump methods:
    304   virtual void ScheduleWork();
    305   virtual void ScheduleDelayedWork(const Time& delayed_work_time);
    306 
    307   // Register the handler to be used when asynchronous IO for the given file
    308   // completes. The registration persists as long as |file_handle| is valid, so
    309   // |handler| must be valid as long as there is pending IO for the given file.
    310   void RegisterIOHandler(HANDLE file_handle, IOHandler* handler);
    311 
    312   // Waits for the next IO completion that should be processed by |filter|, for
    313   // up to |timeout| milliseconds. Return true if any IO operation completed,
    314   // regardless of the involved handler, and false if the timeout expired. If
    315   // the completion port received any message and the involved IO handler
    316   // matches |filter|, the callback is called before returning from this code;
    317   // if the handler is not the one that we are looking for, the callback will
    318   // be postponed for another time, so reentrancy problems can be avoided.
    319   // External use of this method should be reserved for the rare case when the
    320   // caller is willing to allow pausing regular task dispatching on this thread.
    321   bool WaitForIOCompletion(DWORD timeout, IOHandler* filter);
    322 
    323  private:
    324   struct IOItem {
    325     IOHandler* handler;
    326     IOContext* context;
    327     DWORD bytes_transfered;
    328     DWORD error;
    329   };
    330 
    331   virtual void DoRunLoop();
    332   void WaitForWork();
    333   bool MatchCompletedIOItem(IOHandler* filter, IOItem* item);
    334   bool GetIOItem(DWORD timeout, IOItem* item);
    335   bool ProcessInternalIOItem(const IOItem& item);
    336 
    337   // The completion port associated with this thread.
    338   ScopedHandle port_;
    339   // This list will be empty almost always. It stores IO completions that have
    340   // not been delivered yet because somebody was doing cleanup.
    341   std::list<IOItem> completed_io_;
    342 };
    343 
    344 }  // namespace base
    345 
    346 #endif  // BASE_MESSAGE_PUMP_WIN_H_
    347