Home | History | Annotate | Download | only in fdlibm
      1 
      2 /* @(#)e_exp.c 1.6 04/04/22 */
      3 /*
      4  * ====================================================
      5  * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
      6  *
      7  * Permission to use, copy, modify, and distribute this
      8  * software is freely granted, provided that this notice
      9  * is preserved.
     10  * ====================================================
     11  */
     12 
     13 /* __ieee754_exp(x)
     14  * Returns the exponential of x.
     15  *
     16  * Method
     17  *   1. Argument reduction:
     18  *      Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
     19  *	Given x, find r and integer k such that
     20  *
     21  *               x = k*ln2 + r,  |r| <= 0.5*ln2.
     22  *
     23  *      Here r will be represented as r = hi-lo for better
     24  *	accuracy.
     25  *
     26  *   2. Approximation of ieee_exp(r) by a special rational function on
     27  *	the interval [0,0.34658]:
     28  *	Write
     29  *	    R(r**2) = r*(ieee_exp(r)+1)/(ieee_exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
     30  *      We use a special Remes algorithm on [0,0.34658] to generate
     31  * 	a polynomial of degree 5 to approximate R. The maximum error
     32  *	of this polynomial approximation is bounded by 2**-59. In
     33  *	other words,
     34  *	    R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
     35  *  	(where z=r*r, and the values of P1 to P5 are listed below)
     36  *	and
     37  *	    |                  5          |     -59
     38  *	    | 2.0+P1*z+...+P5*z   -  R(z) | <= 2
     39  *	    |                             |
     40  *	The computation of ieee_exp(r) thus becomes
     41  *                             2*r
     42  *		exp(r) = 1 + -------
     43  *		              R - r
     44  *                                 r*R1(r)
     45  *		       = 1 + r + ----------- (for better accuracy)
     46  *		                  2 - R1(r)
     47  *	where
     48  *			         2       4             10
     49  *		R1(r) = r - (P1*r  + P2*r  + ... + P5*r   ).
     50  *
     51  *   3. Scale back to obtain ieee_exp(x):
     52  *	From step 1, we have
     53  *	   ieee_exp(x) = 2^k * ieee_exp(r)
     54  *
     55  * Special cases:
     56  *	exp(INF) is INF, ieee_exp(NaN) is NaN;
     57  *	exp(-INF) is 0, and
     58  *	for finite argument, only ieee_exp(0)=1 is exact.
     59  *
     60  * Accuracy:
     61  *	according to an error analysis, the error is always less than
     62  *	1 ulp (unit in the last place).
     63  *
     64  * Misc. info.
     65  *	For IEEE double
     66  *	    if x >  7.09782712893383973096e+02 then ieee_exp(x) overflow
     67  *	    if x < -7.45133219101941108420e+02 then ieee_exp(x) underflow
     68  *
     69  * Constants:
     70  * The hexadecimal values are the intended ones for the following
     71  * constants. The decimal values may be used, provided that the
     72  * compiler will convert from decimal to binary accurately enough
     73  * to produce the hexadecimal values shown.
     74  */
     75 
     76 #include "fdlibm.h"
     77 
     78 #ifdef __STDC__
     79 static const double
     80 #else
     81 static double
     82 #endif
     83 one	= 1.0,
     84 halF[2]	= {0.5,-0.5,},
     85 huge	= 1.0e+300,
     86 twom1000= 9.33263618503218878990e-302,     /* 2**-1000=0x01700000,0*/
     87 o_threshold=  7.09782712893383973096e+02,  /* 0x40862E42, 0xFEFA39EF */
     88 u_threshold= -7.45133219101941108420e+02,  /* 0xc0874910, 0xD52D3051 */
     89 ln2HI[2]   ={ 6.93147180369123816490e-01,  /* 0x3fe62e42, 0xfee00000 */
     90 	     -6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */
     91 ln2LO[2]   ={ 1.90821492927058770002e-10,  /* 0x3dea39ef, 0x35793c76 */
     92 	     -1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */
     93 invln2 =  1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
     94 P1   =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
     95 P2   = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
     96 P3   =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
     97 P4   = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
     98 P5   =  4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
     99 
    100 
    101 #ifdef __STDC__
    102 	double __ieee754_exp(double x)	/* default IEEE double exp */
    103 #else
    104 	double __ieee754_exp(x)	/* default IEEE double exp */
    105 	double x;
    106 #endif
    107 {
    108 	double y,hi,lo,c,t;
    109 	int k,xsb;
    110 	unsigned hx;
    111 
    112 	hx  = __HI(x);	/* high word of x */
    113 	xsb = (hx>>31)&1;		/* sign bit of x */
    114 	hx &= 0x7fffffff;		/* high word of |x| */
    115 
    116     /* filter out non-finite argument */
    117 	if(hx >= 0x40862E42) {			/* if |x|>=709.78... */
    118             if(hx>=0x7ff00000) {
    119 		if(((hx&0xfffff)|__LO(x))!=0)
    120 		     return x+x; 		/* NaN */
    121 		else return (xsb==0)? x:0.0;	/* ieee_exp(+-inf)={inf,0} */
    122 	    }
    123 	    if(x > o_threshold) return huge*huge; /* overflow */
    124 	    if(x < u_threshold) return twom1000*twom1000; /* underflow */
    125 	}
    126 
    127     /* argument reduction */
    128 	if(hx > 0x3fd62e42) {		/* if  |x| > 0.5 ln2 */
    129 	    if(hx < 0x3FF0A2B2) {	/* and |x| < 1.5 ln2 */
    130 		hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
    131 	    } else {
    132 		k  = (int)(invln2*x+halF[xsb]);
    133 		t  = k;
    134 		hi = x - t*ln2HI[0];	/* t*ln2HI is exact here */
    135 		lo = t*ln2LO[0];
    136 	    }
    137 	    x  = hi - lo;
    138 	}
    139 	else if(hx < 0x3e300000)  {	/* when |x|<2**-28 */
    140 	    if(huge+x>one) return one+x;/* trigger inexact */
    141 	}
    142 	else k = 0;
    143 
    144     /* x is now in primary range */
    145 	t  = x*x;
    146 	c  = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
    147 	if(k==0) 	return one-((x*c)/(c-2.0)-x);
    148 	else 		y = one-((lo-(x*c)/(2.0-c))-hi);
    149 	if(k >= -1021) {
    150 	    __HI(y) += (k<<20);	/* add k to y's exponent */
    151 	    return y;
    152 	} else {
    153 	    __HI(y) += ((k+1000)<<20);/* add k to y's exponent */
    154 	    return y*twom1000;
    155 	}
    156 }
    157