Home | History | Annotate | Download | only in common
      1 
      2 //
      3 //  file:  rbbiscan.cpp
      4 //
      5 //  Copyright (C) 2002-2008, International Business Machines Corporation and others.
      6 //  All Rights Reserved.
      7 //
      8 //  This file contains the Rule Based Break Iterator Rule Builder functions for
      9 //   scanning the rules and assembling a parse tree.  This is the first phase
     10 //   of compiling the rules.
     11 //
     12 //  The overall of the rules is managed by class RBBIRuleBuilder, which will
     13 //  create and use an instance of this class as part of the process.
     14 //
     15 
     16 #include "unicode/utypes.h"
     17 
     18 #if !UCONFIG_NO_BREAK_ITERATION
     19 
     20 #include "unicode/unistr.h"
     21 #include "unicode/uniset.h"
     22 #include "unicode/uchar.h"
     23 #include "unicode/uchriter.h"
     24 #include "unicode/parsepos.h"
     25 #include "unicode/parseerr.h"
     26 #include "util.h"
     27 #include "cmemory.h"
     28 #include "cstring.h"
     29 
     30 #include "rbbirpt.h"   // Contains state table for the rbbi rules parser.
     31                        //   generated by a Perl script.
     32 #include "rbbirb.h"
     33 #include "rbbinode.h"
     34 #include "rbbiscan.h"
     35 #include "rbbitblb.h"
     36 
     37 #include "uassert.h"
     38 
     39 
     40 //------------------------------------------------------------------------------
     41 //
     42 // Unicode Set init strings for each of the character classes needed for parsing a rule file.
     43 //               (Initialized with hex values for portability to EBCDIC based machines.
     44 //                Really ugly, but there's no good way to avoid it.)
     45 //
     46 //              The sets are referred to by name in the rbbirpt.txt, which is the
     47 //              source form of the state transition table for the RBBI rule parser.
     48 //
     49 //------------------------------------------------------------------------------
     50 static const UChar gRuleSet_rule_char_pattern[]       = {
     51  //   [    ^      [    \     p     {      Z     }     \     u    0      0    2      0
     52     0x5b, 0x5e, 0x5b, 0x5c, 0x70, 0x7b, 0x5a, 0x7d, 0x5c, 0x75, 0x30, 0x30, 0x32, 0x30,
     53  //   -    \      u    0     0     7      f     ]     -     [    \      p
     54     0x2d, 0x5c, 0x75, 0x30, 0x30, 0x37, 0x66, 0x5d, 0x2d, 0x5b, 0x5c, 0x70,
     55  //   {     L     }    ]     -     [      \     p     {     N    }      ]     ]
     56     0x7b, 0x4c, 0x7d, 0x5d, 0x2d, 0x5b, 0x5c, 0x70, 0x7b, 0x4e, 0x7d, 0x5d, 0x5d, 0};
     57 
     58 static const UChar gRuleSet_name_char_pattern[]       = {
     59 //    [    _      \    p     {     L      }     \     p     {    N      }     ]
     60     0x5b, 0x5f, 0x5c, 0x70, 0x7b, 0x4c, 0x7d, 0x5c, 0x70, 0x7b, 0x4e, 0x7d, 0x5d, 0};
     61 
     62 static const UChar gRuleSet_digit_char_pattern[] = {
     63 //    [    0      -    9     ]
     64     0x5b, 0x30, 0x2d, 0x39, 0x5d, 0};
     65 
     66 static const UChar gRuleSet_name_start_char_pattern[] = {
     67 //    [    _      \    p     {     L      }     ]
     68     0x5b, 0x5f, 0x5c, 0x70, 0x7b, 0x4c, 0x7d, 0x5d, 0 };
     69 
     70 static const UChar kAny[] = {0x61, 0x6e, 0x79, 0x00};  // "any"
     71 
     72 
     73 U_CDECL_BEGIN
     74 static void U_CALLCONV RBBISetTable_deleter(void *p) {
     75     U_NAMESPACE_QUALIFIER RBBISetTableEl *px = (U_NAMESPACE_QUALIFIER RBBISetTableEl *)p;
     76     delete px->key;
     77     // Note:  px->val is owned by the linked list "fSetsListHead" in scanner.
     78     //        Don't delete the value nodes here.
     79     uprv_free(px);
     80 }
     81 U_CDECL_END
     82 
     83 U_NAMESPACE_BEGIN
     84 
     85 //------------------------------------------------------------------------------
     86 //
     87 //  Constructor.
     88 //
     89 //------------------------------------------------------------------------------
     90 RBBIRuleScanner::RBBIRuleScanner(RBBIRuleBuilder *rb)
     91 {
     92     fRB                 = rb;
     93     fStackPtr           = 0;
     94     fStack[fStackPtr]   = 0;
     95     fNodeStackPtr       = 0;
     96     fRuleNum            = 0;
     97     fNodeStack[0]       = NULL;
     98 
     99     fSymbolTable                            = NULL;
    100     fSetTable                               = NULL;
    101 
    102     fScanIndex = 0;
    103     fNextIndex = 0;
    104 
    105     fReverseRule        = FALSE;
    106     fLookAheadRule      = FALSE;
    107 
    108     fLineNum    = 1;
    109     fCharNum    = 0;
    110     fQuoteMode  = FALSE;
    111 
    112     // Do not check status until after all critical fields are sufficiently initialized
    113     //   that the destructor can run cleanly.
    114     if (U_FAILURE(*rb->fStatus)) {
    115         return;
    116     }
    117 
    118     //
    119     //  Set up the constant Unicode Sets.
    120     //     Note:  These could be made static, lazily initialized, and shared among
    121     //            all instances of RBBIRuleScanners.  BUT this is quite a bit simpler,
    122     //            and the time to build these few sets should be small compared to a
    123     //            full break iterator build.
    124     fRuleSets[kRuleSet_rule_char-128]       = UnicodeSet(gRuleSet_rule_char_pattern,       *rb->fStatus);
    125     UnicodeSet *whitespaceSet = uprv_openRuleWhiteSpaceSet(rb->fStatus);
    126     if (U_FAILURE(*rb->fStatus)) {
    127         return;
    128     }
    129     fRuleSets[kRuleSet_white_space-128]     = *whitespaceSet;
    130     delete whitespaceSet;
    131     fRuleSets[kRuleSet_name_char-128]       = UnicodeSet(gRuleSet_name_char_pattern,       *rb->fStatus);
    132     fRuleSets[kRuleSet_name_start_char-128] = UnicodeSet(gRuleSet_name_start_char_pattern, *rb->fStatus);
    133     fRuleSets[kRuleSet_digit_char-128]      = UnicodeSet(gRuleSet_digit_char_pattern,      *rb->fStatus);
    134     if (*rb->fStatus == U_ILLEGAL_ARGUMENT_ERROR) {
    135         // This case happens if ICU's data is missing.  UnicodeSet tries to look up property
    136         //   names from the init string, can't find them, and claims an illegal arguement.
    137         //   Change the error so that the actual problem will be clearer to users.
    138         *rb->fStatus = U_BRK_INIT_ERROR;
    139     }
    140     if (U_FAILURE(*rb->fStatus)) {
    141         return;
    142     }
    143 
    144     fSymbolTable = new RBBISymbolTable(this, rb->fRules, *rb->fStatus);
    145     if (fSymbolTable == NULL) {
    146         *rb->fStatus = U_MEMORY_ALLOCATION_ERROR;
    147         return;
    148     }
    149     fSetTable    = uhash_open(uhash_hashUnicodeString, uhash_compareUnicodeString, NULL, rb->fStatus);
    150     if (U_FAILURE(*rb->fStatus)) {
    151         return;
    152     }
    153     uhash_setValueDeleter(fSetTable, RBBISetTable_deleter);
    154 }
    155 
    156 
    157 
    158 //------------------------------------------------------------------------------
    159 //
    160 //  Destructor
    161 //
    162 //------------------------------------------------------------------------------
    163 RBBIRuleScanner::~RBBIRuleScanner() {
    164     delete fSymbolTable;
    165     if (fSetTable != NULL) {
    166          uhash_close(fSetTable);
    167          fSetTable = NULL;
    168 
    169     }
    170 
    171 
    172     // Node Stack.
    173     //   Normally has one entry, which is the entire parse tree for the rules.
    174     //   If errors occured, there may be additional subtrees left on the stack.
    175     while (fNodeStackPtr > 0) {
    176         delete fNodeStack[fNodeStackPtr];
    177         fNodeStackPtr--;
    178     }
    179 
    180 }
    181 
    182 //------------------------------------------------------------------------------
    183 //
    184 //  doParseAction        Do some action during rule parsing.
    185 //                       Called by the parse state machine.
    186 //                       Actions build the parse tree and Unicode Sets,
    187 //                       and maintain the parse stack for nested expressions.
    188 //
    189 //                       TODO:  unify EParseAction and RBBI_RuleParseAction enum types.
    190 //                              They represent exactly the same thing.  They're separate
    191 //                              only to work around enum forward declaration restrictions
    192 //                              in some compilers, while at the same time avoiding multiple
    193 //                              definitions problems.  I'm sure that there's a better way.
    194 //
    195 //------------------------------------------------------------------------------
    196 UBool RBBIRuleScanner::doParseActions(int32_t action)
    197 {
    198     RBBINode *n       = NULL;
    199 
    200     UBool   returnVal = TRUE;
    201 
    202     switch (action) {
    203 
    204     case doExprStart:
    205         pushNewNode(RBBINode::opStart);
    206         fRuleNum++;
    207         break;
    208 
    209 
    210     case doExprOrOperator:
    211         {
    212             fixOpStack(RBBINode::precOpCat);
    213             RBBINode  *operandNode = fNodeStack[fNodeStackPtr--];
    214             RBBINode  *orNode      = pushNewNode(RBBINode::opOr);
    215             orNode->fLeftChild     = operandNode;
    216             operandNode->fParent   = orNode;
    217         }
    218         break;
    219 
    220     case doExprCatOperator:
    221         // concatenation operator.
    222         // For the implicit concatenation of adjacent terms in an expression that are
    223         //   not separated by any other operator.  Action is invoked between the
    224         //   actions for the two terms.
    225         {
    226             fixOpStack(RBBINode::precOpCat);
    227             RBBINode  *operandNode = fNodeStack[fNodeStackPtr--];
    228             RBBINode  *catNode     = pushNewNode(RBBINode::opCat);
    229             catNode->fLeftChild    = operandNode;
    230             operandNode->fParent   = catNode;
    231         }
    232         break;
    233 
    234     case doLParen:
    235         // Open Paren.
    236         //   The openParen node is a dummy operation type with a low precedence,
    237         //     which has the affect of ensuring that any real binary op that
    238         //     follows within the parens binds more tightly to the operands than
    239         //     stuff outside of the parens.
    240         pushNewNode(RBBINode::opLParen);
    241         break;
    242 
    243     case doExprRParen:
    244         fixOpStack(RBBINode::precLParen);
    245         break;
    246 
    247     case doNOP:
    248         break;
    249 
    250     case doStartAssign:
    251         // We've just scanned "$variable = "
    252         // The top of the node stack has the $variable ref node.
    253 
    254         // Save the start position of the RHS text in the StartExpression node
    255         //   that precedes the $variableReference node on the stack.
    256         //   This will eventually be used when saving the full $variable replacement
    257         //   text as a string.
    258         n = fNodeStack[fNodeStackPtr-1];
    259         n->fFirstPos = fNextIndex;              // move past the '='
    260 
    261         // Push a new start-of-expression node; needed to keep parse of the
    262         //   RHS expression happy.
    263         pushNewNode(RBBINode::opStart);
    264         break;
    265 
    266 
    267 
    268 
    269     case doEndAssign:
    270         {
    271             // We have reached the end of an assignement statement.
    272             //   Current scan char is the ';' that terminates the assignment.
    273 
    274             // Terminate expression, leaves expression parse tree rooted in TOS node.
    275             fixOpStack(RBBINode::precStart);
    276 
    277             RBBINode *startExprNode  = fNodeStack[fNodeStackPtr-2];
    278             RBBINode *varRefNode     = fNodeStack[fNodeStackPtr-1];
    279             RBBINode *RHSExprNode    = fNodeStack[fNodeStackPtr];
    280 
    281             // Save original text of right side of assignment, excluding the terminating ';'
    282             //  in the root of the node for the right-hand-side expression.
    283             RHSExprNode->fFirstPos = startExprNode->fFirstPos;
    284             RHSExprNode->fLastPos  = fScanIndex;
    285             fRB->fRules.extractBetween(RHSExprNode->fFirstPos, RHSExprNode->fLastPos, RHSExprNode->fText);
    286 
    287             // Expression parse tree becomes l. child of the $variable reference node.
    288             varRefNode->fLeftChild = RHSExprNode;
    289             RHSExprNode->fParent   = varRefNode;
    290 
    291             // Make a symbol table entry for the $variableRef node.
    292             fSymbolTable->addEntry(varRefNode->fText, varRefNode, *fRB->fStatus);
    293             if (U_FAILURE(*fRB->fStatus)) {
    294                 // This is a round-about way to get the parse position set
    295                 //  so that duplicate symbols error messages include a line number.
    296                 UErrorCode t = *fRB->fStatus;
    297                 *fRB->fStatus = U_ZERO_ERROR;
    298                 error(t);
    299             }
    300 
    301             // Clean up the stack.
    302             delete startExprNode;
    303             fNodeStackPtr-=3;
    304             break;
    305         }
    306 
    307     case doEndOfRule:
    308         {
    309         fixOpStack(RBBINode::precStart);      // Terminate expression, leaves expression
    310         if (U_FAILURE(*fRB->fStatus)) {       //   parse tree rooted in TOS node.
    311             break;
    312         }
    313 #ifdef RBBI_DEBUG
    314         if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "rtree")) {printNodeStack("end of rule");}
    315 #endif
    316         U_ASSERT(fNodeStackPtr == 1);
    317 
    318         // If this rule includes a look-ahead '/', add a endMark node to the
    319         //   expression tree.
    320         if (fLookAheadRule) {
    321             RBBINode  *thisRule       = fNodeStack[fNodeStackPtr];
    322             RBBINode  *endNode        = pushNewNode(RBBINode::endMark);
    323             RBBINode  *catNode        = pushNewNode(RBBINode::opCat);
    324             fNodeStackPtr -= 2;
    325             catNode->fLeftChild       = thisRule;
    326             catNode->fRightChild      = endNode;
    327             fNodeStack[fNodeStackPtr] = catNode;
    328             endNode->fVal             = fRuleNum;
    329             endNode->fLookAheadEnd    = TRUE;
    330         }
    331 
    332         // All rule expressions are ORed together.
    333         // The ';' that terminates an expression really just functions as a '|' with
    334         //   a low operator prededence.
    335         //
    336         // Each of the four sets of rules are collected separately.
    337         //  (forward, reverse, safe_forward, safe_reverse)
    338         //  OR this rule into the appropriate group of them.
    339         //
    340         RBBINode **destRules = (fReverseRule? &fRB->fReverseTree : fRB->fDefaultTree);
    341 
    342         if (*destRules != NULL) {
    343             // This is not the first rule encounted.
    344             // OR previous stuff  (from *destRules)
    345             // with the current rule expression (on the Node Stack)
    346             //  with the resulting OR expression going to *destRules
    347             //
    348             RBBINode  *thisRule    = fNodeStack[fNodeStackPtr];
    349             RBBINode  *prevRules   = *destRules;
    350             RBBINode  *orNode      = pushNewNode(RBBINode::opOr);
    351             orNode->fLeftChild     = prevRules;
    352             prevRules->fParent     = orNode;
    353             orNode->fRightChild    = thisRule;
    354             thisRule->fParent      = orNode;
    355             *destRules             = orNode;
    356         }
    357         else
    358         {
    359             // This is the first rule encountered (for this direction).
    360             // Just move its parse tree from the stack to *destRules.
    361             *destRules = fNodeStack[fNodeStackPtr];
    362         }
    363         fReverseRule   = FALSE;   // in preparation for the next rule.
    364         fLookAheadRule = FALSE;
    365         fNodeStackPtr  = 0;
    366         }
    367         break;
    368 
    369 
    370     case doRuleError:
    371         error(U_BRK_RULE_SYNTAX);
    372         returnVal = FALSE;
    373         break;
    374 
    375 
    376     case doVariableNameExpectedErr:
    377         error(U_BRK_RULE_SYNTAX);
    378         break;
    379 
    380 
    381     //
    382     //  Unary operands  + ? *
    383     //    These all appear after the operand to which they apply.
    384     //    When we hit one, the operand (may be a whole sub expression)
    385     //    will be on the top of the stack.
    386     //    Unary Operator becomes TOS, with the old TOS as its one child.
    387     case doUnaryOpPlus:
    388         {
    389             RBBINode  *operandNode = fNodeStack[fNodeStackPtr--];
    390             RBBINode  *plusNode    = pushNewNode(RBBINode::opPlus);
    391             plusNode->fLeftChild   = operandNode;
    392             operandNode->fParent   = plusNode;
    393         }
    394         break;
    395 
    396     case doUnaryOpQuestion:
    397         {
    398             RBBINode  *operandNode = fNodeStack[fNodeStackPtr--];
    399             RBBINode  *qNode       = pushNewNode(RBBINode::opQuestion);
    400             qNode->fLeftChild      = operandNode;
    401             operandNode->fParent   = qNode;
    402         }
    403         break;
    404 
    405     case doUnaryOpStar:
    406         {
    407             RBBINode  *operandNode = fNodeStack[fNodeStackPtr--];
    408             RBBINode  *starNode    = pushNewNode(RBBINode::opStar);
    409             starNode->fLeftChild   = operandNode;
    410             operandNode->fParent   = starNode;
    411         }
    412         break;
    413 
    414     case doRuleChar:
    415         // A "Rule Character" is any single character that is a literal part
    416         // of the regular expression.  Like a, b and c in the expression "(abc*) | [:L:]"
    417         // These are pretty uncommon in break rules; the terms are more commonly
    418         //  sets.  To keep things uniform, treat these characters like as
    419         // sets that just happen to contain only one character.
    420         {
    421             n = pushNewNode(RBBINode::setRef);
    422             findSetFor(fC.fChar, n);
    423             n->fFirstPos = fScanIndex;
    424             n->fLastPos  = fNextIndex;
    425             fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText);
    426             break;
    427         }
    428 
    429     case doDotAny:
    430         // scanned a ".", meaning match any single character.
    431         {
    432             n = pushNewNode(RBBINode::setRef);
    433             findSetFor(kAny, n);
    434             n->fFirstPos = fScanIndex;
    435             n->fLastPos  = fNextIndex;
    436             fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText);
    437             break;
    438         }
    439 
    440     case doSlash:
    441         // Scanned a '/', which identifies a look-ahead break position in a rule.
    442         n = pushNewNode(RBBINode::lookAhead);
    443         n->fVal      = fRuleNum;
    444         n->fFirstPos = fScanIndex;
    445         n->fLastPos  = fNextIndex;
    446         fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText);
    447         fLookAheadRule = TRUE;
    448         break;
    449 
    450 
    451     case doStartTagValue:
    452         // Scanned a '{', the opening delimiter for a tag value within a rule.
    453         n = pushNewNode(RBBINode::tag);
    454         n->fVal      = 0;
    455         n->fFirstPos = fScanIndex;
    456         n->fLastPos  = fNextIndex;
    457         break;
    458 
    459     case doTagDigit:
    460         // Just scanned a decimal digit that's part of a tag value
    461         {
    462             n = fNodeStack[fNodeStackPtr];
    463             uint32_t v = u_charDigitValue(fC.fChar);
    464             U_ASSERT(v < 10);
    465             n->fVal = n->fVal*10 + v;
    466             break;
    467         }
    468 
    469     case doTagValue:
    470         n = fNodeStack[fNodeStackPtr];
    471         n->fLastPos = fNextIndex;
    472         fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText);
    473         break;
    474 
    475     case doTagExpectedError:
    476         error(U_BRK_MALFORMED_RULE_TAG);
    477         returnVal = FALSE;
    478         break;
    479 
    480     case doOptionStart:
    481         // Scanning a !!option.   At the start of string.
    482         fOptionStart = fScanIndex;
    483         break;
    484 
    485     case doOptionEnd:
    486         {
    487             UnicodeString opt(fRB->fRules, fOptionStart, fScanIndex-fOptionStart);
    488             if (opt == UNICODE_STRING("chain", 5)) {
    489                 fRB->fChainRules = TRUE;
    490             } else if (opt == UNICODE_STRING("LBCMNoChain", 11)) {
    491                 fRB->fLBCMNoChain = TRUE;
    492             } else if (opt == UNICODE_STRING("forward", 7)) {
    493                 fRB->fDefaultTree   = &fRB->fForwardTree;
    494             } else if (opt == UNICODE_STRING("reverse", 7)) {
    495                 fRB->fDefaultTree   = &fRB->fReverseTree;
    496             } else if (opt == UNICODE_STRING("safe_forward", 12)) {
    497                 fRB->fDefaultTree   = &fRB->fSafeFwdTree;
    498             } else if (opt == UNICODE_STRING("safe_reverse", 12)) {
    499                 fRB->fDefaultTree   = &fRB->fSafeRevTree;
    500             } else if (opt == UNICODE_STRING("lookAheadHardBreak", 18)) {
    501                 fRB->fLookAheadHardBreak = TRUE;
    502             } else {
    503                 error(U_BRK_UNRECOGNIZED_OPTION);
    504             }
    505         }
    506         break;
    507 
    508     case doReverseDir:
    509         fReverseRule = TRUE;
    510         break;
    511 
    512     case doStartVariableName:
    513         n = pushNewNode(RBBINode::varRef);
    514         if (U_FAILURE(*fRB->fStatus)) {
    515             break;
    516         }
    517         n->fFirstPos = fScanIndex;
    518         break;
    519 
    520     case doEndVariableName:
    521         n = fNodeStack[fNodeStackPtr];
    522         if (n==NULL || n->fType != RBBINode::varRef) {
    523             error(U_BRK_INTERNAL_ERROR);
    524             break;
    525         }
    526         n->fLastPos = fScanIndex;
    527         fRB->fRules.extractBetween(n->fFirstPos+1, n->fLastPos, n->fText);
    528         // Look the newly scanned name up in the symbol table
    529         //   If there's an entry, set the l. child of the var ref to the replacement expression.
    530         //   (We also pass through here when scanning assignments, but no harm is done, other
    531         //    than a slight wasted effort that seems hard to avoid.  Lookup will be null)
    532         n->fLeftChild = fSymbolTable->lookupNode(n->fText);
    533         break;
    534 
    535     case doCheckVarDef:
    536         n = fNodeStack[fNodeStackPtr];
    537         if (n->fLeftChild == NULL) {
    538             error(U_BRK_UNDEFINED_VARIABLE);
    539             returnVal = FALSE;
    540         }
    541         break;
    542 
    543     case doExprFinished:
    544         break;
    545 
    546     case doRuleErrorAssignExpr:
    547         error(U_BRK_ASSIGN_ERROR);
    548         returnVal = FALSE;
    549         break;
    550 
    551     case doExit:
    552         returnVal = FALSE;
    553         break;
    554 
    555     case doScanUnicodeSet:
    556         scanSet();
    557         break;
    558 
    559     default:
    560         error(U_BRK_INTERNAL_ERROR);
    561         returnVal = FALSE;
    562         break;
    563     }
    564     return returnVal;
    565 }
    566 
    567 
    568 
    569 
    570 //------------------------------------------------------------------------------
    571 //
    572 //  Error         Report a rule parse error.
    573 //                Only report it if no previous error has been recorded.
    574 //
    575 //------------------------------------------------------------------------------
    576 void RBBIRuleScanner::error(UErrorCode e) {
    577     if (U_SUCCESS(*fRB->fStatus)) {
    578         *fRB->fStatus = e;
    579         if (fRB->fParseError) {
    580             fRB->fParseError->line  = fLineNum;
    581             fRB->fParseError->offset = fCharNum;
    582             fRB->fParseError->preContext[0] = 0;
    583             fRB->fParseError->preContext[0] = 0;
    584         }
    585     }
    586 }
    587 
    588 
    589 
    590 
    591 //------------------------------------------------------------------------------
    592 //
    593 //  fixOpStack   The parse stack holds partially assembled chunks of the parse tree.
    594 //               An entry on the stack may be as small as a single setRef node,
    595 //               or as large as the parse tree
    596 //               for an entire expression (this will be the one item left on the stack
    597 //               when the parsing of an RBBI rule completes.
    598 //
    599 //               This function is called when a binary operator is encountered.
    600 //               It looks back up the stack for operators that are not yet associated
    601 //               with a right operand, and if the precedence of the stacked operator >=
    602 //               the precedence of the current operator, binds the operand left,
    603 //               to the previously encountered operator.
    604 //
    605 //------------------------------------------------------------------------------
    606 void RBBIRuleScanner::fixOpStack(RBBINode::OpPrecedence p) {
    607     RBBINode *n;
    608     // printNodeStack("entering fixOpStack()");
    609     for (;;) {
    610         n = fNodeStack[fNodeStackPtr-1];   // an operator node
    611         if (n->fPrecedence == 0) {
    612             RBBIDebugPuts("RBBIRuleScanner::fixOpStack, bad operator node");
    613             error(U_BRK_INTERNAL_ERROR);
    614             return;
    615         }
    616 
    617         if (n->fPrecedence < p || n->fPrecedence <= RBBINode::precLParen) {
    618             // The most recent operand goes with the current operator,
    619             //   not with the previously stacked one.
    620             break;
    621         }
    622             // Stack operator is a binary op  ( '|' or concatenation)
    623             //   TOS operand becomes right child of this operator.
    624             //   Resulting subexpression becomes the TOS operand.
    625             n->fRightChild = fNodeStack[fNodeStackPtr];
    626             fNodeStack[fNodeStackPtr]->fParent = n;
    627             fNodeStackPtr--;
    628         // printNodeStack("looping in fixOpStack()   ");
    629     }
    630 
    631     if (p <= RBBINode::precLParen) {
    632         // Scan is at a right paren or end of expression.
    633         //  The scanned item must match the stack, or else there was an error.
    634         //  Discard the left paren (or start expr) node from the stack,
    635             //  leaving the completed (sub)expression as TOS.
    636             if (n->fPrecedence != p) {
    637                 // Right paren encountered matched start of expression node, or
    638                 // end of expression matched with a left paren node.
    639                 error(U_BRK_MISMATCHED_PAREN);
    640             }
    641             fNodeStack[fNodeStackPtr-1] = fNodeStack[fNodeStackPtr];
    642             fNodeStackPtr--;
    643             // Delete the now-discarded LParen or Start node.
    644             delete n;
    645     }
    646     // printNodeStack("leaving fixOpStack()");
    647 }
    648 
    649 
    650 
    651 
    652 //------------------------------------------------------------------------------
    653 //
    654 //   findSetFor    given a UnicodeString,
    655 //                  - find the corresponding Unicode Set  (uset node)
    656 //                         (create one if necessary)
    657 //                  - Set fLeftChild of the caller's node (should be a setRef node)
    658 //                         to the uset node
    659 //                 Maintain a hash table of uset nodes, so the same one is always used
    660 //                    for the same string.
    661 //                 If a "to adopt" set is provided and we haven't seen this key before,
    662 //                    add the provided set to the hash table.
    663 //                 If the string is one (32 bit) char in length, the set contains
    664 //                    just one element which is the char in question.
    665 //                 If the string is "any", return a set containing all chars.
    666 //
    667 //------------------------------------------------------------------------------
    668 void RBBIRuleScanner::findSetFor(const UnicodeString &s, RBBINode *node, UnicodeSet *setToAdopt) {
    669 
    670     RBBISetTableEl   *el;
    671 
    672     // First check whether we've already cached a set for this string.
    673     // If so, just use the cached set in the new node.
    674     //   delete any set provided by the caller, since we own it.
    675     el = (RBBISetTableEl *)uhash_get(fSetTable, &s);
    676     if (el != NULL) {
    677         delete setToAdopt;
    678         node->fLeftChild = el->val;
    679         U_ASSERT(node->fLeftChild->fType == RBBINode::uset);
    680         return;
    681     }
    682 
    683     // Haven't seen this set before.
    684     // If the caller didn't provide us with a prebuilt set,
    685     //   create a new UnicodeSet now.
    686     if (setToAdopt == NULL) {
    687         if (s.compare(kAny, -1) == 0) {
    688             setToAdopt = new UnicodeSet(0x000000, 0x10ffff);
    689         } else {
    690             UChar32 c;
    691             c = s.char32At(0);
    692             setToAdopt = new UnicodeSet(c, c);
    693         }
    694     }
    695 
    696     //
    697     // Make a new uset node to refer to this UnicodeSet
    698     // This new uset node becomes the child of the caller's setReference node.
    699     //
    700     RBBINode *usetNode    = new RBBINode(RBBINode::uset);
    701     if (usetNode == NULL) {
    702         error(U_MEMORY_ALLOCATION_ERROR);
    703         return;
    704     }
    705     usetNode->fInputSet   = setToAdopt;
    706     usetNode->fParent     = node;
    707     node->fLeftChild      = usetNode;
    708     usetNode->fText = s;
    709 
    710 
    711     //
    712     // Add the new uset node to the list of all uset nodes.
    713     //
    714     fRB->fUSetNodes->addElement(usetNode, *fRB->fStatus);
    715 
    716 
    717     //
    718     // Add the new set to the set hash table.
    719     //
    720     el      = (RBBISetTableEl *)uprv_malloc(sizeof(RBBISetTableEl));
    721     UnicodeString *tkey = new UnicodeString(s);
    722     if (tkey == NULL || el == NULL || setToAdopt == NULL) {
    723         // Delete to avoid memory leak
    724         delete tkey;
    725         tkey = NULL;
    726         uprv_free(el);
    727         el = NULL;
    728         delete setToAdopt;
    729         setToAdopt = NULL;
    730 
    731         error(U_MEMORY_ALLOCATION_ERROR);
    732         return;
    733     }
    734     el->key = tkey;
    735     el->val = usetNode;
    736     uhash_put(fSetTable, el->key, el, fRB->fStatus);
    737 
    738     return;
    739 }
    740 
    741 
    742 
    743 //
    744 //  Assorted Unicode character constants.
    745 //     Numeric because there is no portable way to enter them as literals.
    746 //     (Think EBCDIC).
    747 //
    748 static const UChar      chCR        = 0x0d;      // New lines, for terminating comments.
    749 static const UChar      chLF        = 0x0a;
    750 static const UChar      chNEL       = 0x85;      //    NEL newline variant
    751 static const UChar      chLS        = 0x2028;    //    Unicode Line Separator
    752 static const UChar      chApos      = 0x27;      //  single quote, for quoted chars.
    753 static const UChar      chPound     = 0x23;      // '#', introduces a comment.
    754 static const UChar      chBackSlash = 0x5c;      // '\'  introduces a char escape
    755 static const UChar      chLParen    = 0x28;
    756 static const UChar      chRParen    = 0x29;
    757 
    758 
    759 //------------------------------------------------------------------------------
    760 //
    761 //  stripRules    Return a rules string without unnecessary
    762 //                characters.
    763 //
    764 //------------------------------------------------------------------------------
    765 UnicodeString RBBIRuleScanner::stripRules(const UnicodeString &rules) {
    766     UnicodeString strippedRules;
    767     int rulesLength = rules.length();
    768     for (int idx = 0; idx < rulesLength; ) {
    769         UChar ch = rules[idx++];
    770         if (ch == chPound) {
    771             while (idx < rulesLength
    772                 && ch != chCR && ch != chLF && ch != chNEL)
    773             {
    774                 ch = rules[idx++];
    775             }
    776         }
    777         if (!u_isISOControl(ch)) {
    778             strippedRules.append(ch);
    779         }
    780     }
    781     // strippedRules = strippedRules.unescape();
    782     return strippedRules;
    783 }
    784 
    785 
    786 //------------------------------------------------------------------------------
    787 //
    788 //  nextCharLL    Low Level Next Char from rule input source.
    789 //                Get a char from the input character iterator,
    790 //                keep track of input position for error reporting.
    791 //
    792 //------------------------------------------------------------------------------
    793 UChar32  RBBIRuleScanner::nextCharLL() {
    794     UChar32  ch;
    795 
    796     if (fNextIndex >= fRB->fRules.length()) {
    797         return (UChar32)-1;
    798     }
    799     ch         = fRB->fRules.char32At(fNextIndex);
    800     fNextIndex = fRB->fRules.moveIndex32(fNextIndex, 1);
    801 
    802     if (ch == chCR ||
    803         ch == chNEL ||
    804         ch == chLS   ||
    805         ch == chLF && fLastChar != chCR) {
    806         // Character is starting a new line.  Bump up the line number, and
    807         //  reset the column to 0.
    808         fLineNum++;
    809         fCharNum=0;
    810         if (fQuoteMode) {
    811             error(U_BRK_NEW_LINE_IN_QUOTED_STRING);
    812             fQuoteMode = FALSE;
    813         }
    814     }
    815     else {
    816         // Character is not starting a new line.  Except in the case of a
    817         //   LF following a CR, increment the column position.
    818         if (ch != chLF) {
    819             fCharNum++;
    820         }
    821     }
    822     fLastChar = ch;
    823     return ch;
    824 }
    825 
    826 
    827 //------------------------------------------------------------------------------
    828 //
    829 //   nextChar     for rules scanning.  At this level, we handle stripping
    830 //                out comments and processing backslash character escapes.
    831 //                The rest of the rules grammar is handled at the next level up.
    832 //
    833 //------------------------------------------------------------------------------
    834 void RBBIRuleScanner::nextChar(RBBIRuleChar &c) {
    835 
    836     // Unicode Character constants needed for the processing done by nextChar(),
    837     //   in hex because literals wont work on EBCDIC machines.
    838 
    839     fScanIndex = fNextIndex;
    840     c.fChar    = nextCharLL();
    841     c.fEscaped = FALSE;
    842 
    843     //
    844     //  check for '' sequence.
    845     //  These are recognized in all contexts, whether in quoted text or not.
    846     //
    847     if (c.fChar == chApos) {
    848         if (fRB->fRules.char32At(fNextIndex) == chApos) {
    849             c.fChar    = nextCharLL();        // get nextChar officially so character counts
    850             c.fEscaped = TRUE;                //   stay correct.
    851         }
    852         else
    853         {
    854             // Single quote, by itself.
    855             //   Toggle quoting mode.
    856             //   Return either '('  or ')', because quotes cause a grouping of the quoted text.
    857             fQuoteMode = !fQuoteMode;
    858             if (fQuoteMode == TRUE) {
    859                 c.fChar = chLParen;
    860             } else {
    861                 c.fChar = chRParen;
    862             }
    863             c.fEscaped = FALSE;      // The paren that we return is not escaped.
    864             return;
    865         }
    866     }
    867 
    868     if (fQuoteMode) {
    869         c.fEscaped = TRUE;
    870     }
    871     else
    872     {
    873         // We are not in a 'quoted region' of the source.
    874         //
    875         if (c.fChar == chPound) {
    876             // Start of a comment.  Consume the rest of it.
    877             //  The new-line char that terminates the comment is always returned.
    878             //  It will be treated as white-space, and serves to break up anything
    879             //    that might otherwise incorrectly clump together with a comment in
    880             //    the middle (a variable name, for example.)
    881             for (;;) {
    882                 c.fChar = nextCharLL();
    883                 if (c.fChar == (UChar32)-1 ||  // EOF
    884                     c.fChar == chCR     ||
    885                     c.fChar == chLF     ||
    886                     c.fChar == chNEL    ||
    887                     c.fChar == chLS)       {break;}
    888             }
    889         }
    890         if (c.fChar == (UChar32)-1) {
    891             return;
    892         }
    893 
    894         //
    895         //  check for backslash escaped characters.
    896         //  Use UnicodeString::unescapeAt() to handle them.
    897         //
    898         if (c.fChar == chBackSlash) {
    899             c.fEscaped = TRUE;
    900             int32_t startX = fNextIndex;
    901             c.fChar = fRB->fRules.unescapeAt(fNextIndex);
    902             if (fNextIndex == startX) {
    903                 error(U_BRK_HEX_DIGITS_EXPECTED);
    904             }
    905             fCharNum += fNextIndex-startX;
    906         }
    907     }
    908     // putc(c.fChar, stdout);
    909 }
    910 
    911 //------------------------------------------------------------------------------
    912 //
    913 //  Parse RBBI rules.   The state machine for rules parsing is here.
    914 //                      The state tables are hand-written in the file rbbirpt.txt,
    915 //                      and converted to the form used here by a perl
    916 //                      script rbbicst.pl
    917 //
    918 //------------------------------------------------------------------------------
    919 void RBBIRuleScanner::parse() {
    920     uint16_t                state;
    921     const RBBIRuleTableEl  *tableEl;
    922 
    923     if (U_FAILURE(*fRB->fStatus)) {
    924         return;
    925     }
    926 
    927     state = 1;
    928     nextChar(fC);
    929     //
    930     // Main loop for the rule parsing state machine.
    931     //   Runs once per state transition.
    932     //   Each time through optionally performs, depending on the state table,
    933     //      - an advance to the the next input char
    934     //      - an action to be performed.
    935     //      - pushing or popping a state to/from the local state return stack.
    936     //
    937     for (;;) {
    938         //  Bail out if anything has gone wrong.
    939         //  RBBI rule file parsing stops on the first error encountered.
    940         if (U_FAILURE(*fRB->fStatus)) {
    941             break;
    942         }
    943 
    944         // Quit if state == 0.  This is the normal way to exit the state machine.
    945         //
    946         if (state == 0) {
    947             break;
    948         }
    949 
    950         // Find the state table element that matches the input char from the rule, or the
    951         //    class of the input character.  Start with the first table row for this
    952         //    state, then linearly scan forward until we find a row that matches the
    953         //    character.  The last row for each state always matches all characters, so
    954         //    the search will stop there, if not before.
    955         //
    956         tableEl = &gRuleParseStateTable[state];
    957         #ifdef RBBI_DEBUG
    958             if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "scan")) {
    959                 RBBIDebugPrintf("char, line, col = (\'%c\', %d, %d)    state=%s ",
    960                     fC.fChar, fLineNum, fCharNum, RBBIRuleStateNames[state]);
    961             }
    962         #endif
    963 
    964         for (;;) {
    965             #ifdef RBBI_DEBUG
    966                 if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "scan")) { RBBIDebugPrintf(".");}
    967             #endif
    968             if (tableEl->fCharClass < 127 && fC.fEscaped == FALSE &&   tableEl->fCharClass == fC.fChar) {
    969                 // Table row specified an individual character, not a set, and
    970                 //   the input character is not escaped, and
    971                 //   the input character matched it.
    972                 break;
    973             }
    974             if (tableEl->fCharClass == 255) {
    975                 // Table row specified default, match anything character class.
    976                 break;
    977             }
    978             if (tableEl->fCharClass == 254 && fC.fEscaped)  {
    979                 // Table row specified "escaped" and the char was escaped.
    980                 break;
    981             }
    982             if (tableEl->fCharClass == 253 && fC.fEscaped &&
    983                 (fC.fChar == 0x50 || fC.fChar == 0x70 ))  {
    984                 // Table row specified "escaped P" and the char is either 'p' or 'P'.
    985                 break;
    986             }
    987             if (tableEl->fCharClass == 252 && fC.fChar == (UChar32)-1)  {
    988                 // Table row specified eof and we hit eof on the input.
    989                 break;
    990             }
    991 
    992             if (tableEl->fCharClass >= 128 && tableEl->fCharClass < 240 &&   // Table specs a char class &&
    993                 fC.fEscaped == FALSE &&                                      //   char is not escaped &&
    994                 fC.fChar != (UChar32)-1) {                                   //   char is not EOF
    995                 if (fRuleSets[tableEl->fCharClass-128].contains(fC.fChar)) {
    996                     // Table row specified a character class, or set of characters,
    997                     //   and the current char matches it.
    998                     break;
    999                 }
   1000             }
   1001 
   1002             // No match on this row, advance to the next  row for this state,
   1003             tableEl++;
   1004         }
   1005         if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "scan")) { RBBIDebugPuts("");}
   1006 
   1007         //
   1008         // We've found the row of the state table that matches the current input
   1009         //   character from the rules string.
   1010         // Perform any action specified  by this row in the state table.
   1011         if (doParseActions((int32_t)tableEl->fAction) == FALSE) {
   1012             // Break out of the state machine loop if the
   1013             //   the action signalled some kind of error, or
   1014             //   the action was to exit, occurs on normal end-of-rules-input.
   1015             break;
   1016         }
   1017 
   1018         if (tableEl->fPushState != 0) {
   1019             fStackPtr++;
   1020             if (fStackPtr >= kStackSize) {
   1021                 error(U_BRK_INTERNAL_ERROR);
   1022                 RBBIDebugPuts("RBBIRuleScanner::parse() - state stack overflow.");
   1023                 fStackPtr--;
   1024             }
   1025             fStack[fStackPtr] = tableEl->fPushState;
   1026         }
   1027 
   1028         if (tableEl->fNextChar) {
   1029             nextChar(fC);
   1030         }
   1031 
   1032         // Get the next state from the table entry, or from the
   1033         //   state stack if the next state was specified as "pop".
   1034         if (tableEl->fNextState != 255) {
   1035             state = tableEl->fNextState;
   1036         } else {
   1037             state = fStack[fStackPtr];
   1038             fStackPtr--;
   1039             if (fStackPtr < 0) {
   1040                 error(U_BRK_INTERNAL_ERROR);
   1041                 RBBIDebugPuts("RBBIRuleScanner::parse() - state stack underflow.");
   1042                 fStackPtr++;
   1043             }
   1044         }
   1045 
   1046     }
   1047 
   1048     //
   1049     // If there were NO user specified reverse rules, set up the equivalent of ".*;"
   1050     //
   1051     if (fRB->fReverseTree == NULL) {
   1052         fRB->fReverseTree  = pushNewNode(RBBINode::opStar);
   1053         RBBINode  *operand = pushNewNode(RBBINode::setRef);
   1054         findSetFor(kAny, operand);
   1055         fRB->fReverseTree->fLeftChild = operand;
   1056         operand->fParent              = fRB->fReverseTree;
   1057         fNodeStackPtr -= 2;
   1058     }
   1059 
   1060 
   1061     //
   1062     // Parsing of the input RBBI rules is complete.
   1063     // We now have a parse tree for the rule expressions
   1064     // and a list of all UnicodeSets that are referenced.
   1065     //
   1066 #ifdef RBBI_DEBUG
   1067     if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "symbols")) {fSymbolTable->rbbiSymtablePrint();}
   1068     if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "ptree"))
   1069     {
   1070         RBBIDebugPrintf("Completed Forward Rules Parse Tree...\n");
   1071         fRB->fForwardTree->printTree(TRUE);
   1072         RBBIDebugPrintf("\nCompleted Reverse Rules Parse Tree...\n");
   1073         fRB->fReverseTree->printTree(TRUE);
   1074         RBBIDebugPrintf("\nCompleted Safe Point Forward Rules Parse Tree...\n");
   1075         fRB->fSafeFwdTree->printTree(TRUE);
   1076         RBBIDebugPrintf("\nCompleted Safe Point Reverse Rules Parse Tree...\n");
   1077         fRB->fSafeRevTree->printTree(TRUE);
   1078     }
   1079 #endif
   1080 }
   1081 
   1082 
   1083 //------------------------------------------------------------------------------
   1084 //
   1085 //  printNodeStack     for debugging...
   1086 //
   1087 //------------------------------------------------------------------------------
   1088 #ifdef RBBI_DEBUG
   1089 void RBBIRuleScanner::printNodeStack(const char *title) {
   1090     int i;
   1091     RBBIDebugPrintf("%s.  Dumping node stack...\n", title);
   1092     for (i=fNodeStackPtr; i>0; i--) {fNodeStack[i]->printTree(TRUE);}
   1093 }
   1094 #endif
   1095 
   1096 
   1097 
   1098 
   1099 //------------------------------------------------------------------------------
   1100 //
   1101 //  pushNewNode   create a new RBBINode of the specified type and push it
   1102 //                onto the stack of nodes.
   1103 //
   1104 //------------------------------------------------------------------------------
   1105 RBBINode  *RBBIRuleScanner::pushNewNode(RBBINode::NodeType  t) {
   1106     fNodeStackPtr++;
   1107     if (fNodeStackPtr >= kStackSize) {
   1108         error(U_BRK_INTERNAL_ERROR);
   1109         RBBIDebugPuts("RBBIRuleScanner::pushNewNode - stack overflow.");
   1110         *fRB->fStatus = U_BRK_INTERNAL_ERROR;
   1111         return NULL;
   1112     }
   1113     fNodeStack[fNodeStackPtr] = new RBBINode(t);
   1114     if (fNodeStack[fNodeStackPtr] == NULL) {
   1115         *fRB->fStatus = U_MEMORY_ALLOCATION_ERROR;
   1116     }
   1117     return fNodeStack[fNodeStackPtr];
   1118 }
   1119 
   1120 
   1121 
   1122 //------------------------------------------------------------------------------
   1123 //
   1124 //  scanSet    Construct a UnicodeSet from the text at the current scan
   1125 //             position.  Advance the scan position to the first character
   1126 //             after the set.
   1127 //
   1128 //             A new RBBI setref node referring to the set is pushed onto the node
   1129 //             stack.
   1130 //
   1131 //             The scan position is normally under the control of the state machine
   1132 //             that controls rule parsing.  UnicodeSets, however, are parsed by
   1133 //             the UnicodeSet constructor, not by the RBBI rule parser.
   1134 //
   1135 //------------------------------------------------------------------------------
   1136 void RBBIRuleScanner::scanSet() {
   1137     UnicodeSet    *uset;
   1138     ParsePosition  pos;
   1139     int            startPos;
   1140     int            i;
   1141 
   1142     if (U_FAILURE(*fRB->fStatus)) {
   1143         return;
   1144     }
   1145 
   1146     pos.setIndex(fScanIndex);
   1147     startPos = fScanIndex;
   1148     UErrorCode localStatus = U_ZERO_ERROR;
   1149     uset = new UnicodeSet(fRB->fRules, pos, USET_IGNORE_SPACE,
   1150                          fSymbolTable,
   1151                          localStatus);
   1152     if (uset == NULL) {
   1153         localStatus = U_MEMORY_ALLOCATION_ERROR;
   1154     }
   1155     if (U_FAILURE(localStatus)) {
   1156         //  TODO:  Get more accurate position of the error from UnicodeSet's return info.
   1157         //         UnicodeSet appears to not be reporting correctly at this time.
   1158         #ifdef RBBI_DEBUG
   1159             RBBIDebugPrintf("UnicodeSet parse postion.ErrorIndex = %d\n", pos.getIndex());
   1160         #endif
   1161         error(localStatus);
   1162         delete uset;
   1163         return;
   1164     }
   1165 
   1166     // Verify that the set contains at least one code point.
   1167     //
   1168     if (uset->isEmpty()) {
   1169         // This set is empty.
   1170         //  Make it an error, because it almost certainly is not what the user wanted.
   1171         //  Also, avoids having to think about corner cases in the tree manipulation code
   1172         //   that occurs later on.
   1173         error(U_BRK_RULE_EMPTY_SET);
   1174         delete uset;
   1175         return;
   1176     }
   1177 
   1178 
   1179     // Advance the RBBI parse postion over the UnicodeSet pattern.
   1180     //   Don't just set fScanIndex because the line/char positions maintained
   1181     //   for error reporting would be thrown off.
   1182     i = pos.getIndex();
   1183     for (;;) {
   1184         if (fNextIndex >= i) {
   1185             break;
   1186         }
   1187         nextCharLL();
   1188     }
   1189 
   1190     if (U_SUCCESS(*fRB->fStatus)) {
   1191         RBBINode         *n;
   1192 
   1193         n = pushNewNode(RBBINode::setRef);
   1194         n->fFirstPos = startPos;
   1195         n->fLastPos  = fNextIndex;
   1196         fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText);
   1197         //  findSetFor() serves several purposes here:
   1198         //     - Adopts storage for the UnicodeSet, will be responsible for deleting.
   1199         //     - Mantains collection of all sets in use, needed later for establishing
   1200         //          character categories for run time engine.
   1201         //     - Eliminates mulitiple instances of the same set.
   1202         //     - Creates a new uset node if necessary (if this isn't a duplicate.)
   1203         findSetFor(n->fText, n, uset);
   1204     }
   1205 
   1206 }
   1207 
   1208 U_NAMESPACE_END
   1209 
   1210 #endif /* #if !UCONFIG_NO_BREAK_ITERATION */
   1211