1 #!/usr/bin/env perl 2 # 3 # ==================================================================== 4 # Written by Andy Polyakov <appro (at] fy.chalmers.se> for the OpenSSL 5 # project. The module is, however, dual licensed under OpenSSL and 6 # CRYPTOGAMS licenses depending on where you obtain it. For further 7 # details see http://www.openssl.org/~appro/cryptogams/. 8 # ==================================================================== 9 # 10 # Wrapper around 'rep montmul', VIA-specific instruction accessing 11 # PadLock Montgomery Multiplier. The wrapper is designed as drop-in 12 # replacement for OpenSSL bn_mul_mont [first implemented in 0.9.9]. 13 # 14 # Below are interleaved outputs from 'openssl speed rsa dsa' for 4 15 # different software configurations on 1.5GHz VIA Esther processor. 16 # Lines marked with "software integer" denote performance of hand- 17 # coded integer-only assembler found in OpenSSL 0.9.7. "Software SSE2" 18 # refers to hand-coded SSE2 Montgomery multiplication procedure found 19 # OpenSSL 0.9.9. "Hardware VIA SDK" refers to padlock_pmm routine from 20 # Padlock SDK 2.0.1 available for download from VIA, which naturally 21 # utilizes the magic 'repz montmul' instruction. And finally "hardware 22 # this" refers to *this* implementation which also uses 'repz montmul' 23 # 24 # sign verify sign/s verify/s 25 # rsa 512 bits 0.001720s 0.000140s 581.4 7149.7 software integer 26 # rsa 512 bits 0.000690s 0.000086s 1450.3 11606.0 software SSE2 27 # rsa 512 bits 0.006136s 0.000201s 163.0 4974.5 hardware VIA SDK 28 # rsa 512 bits 0.000712s 0.000050s 1404.9 19858.5 hardware this 29 # 30 # rsa 1024 bits 0.008518s 0.000413s 117.4 2420.8 software integer 31 # rsa 1024 bits 0.004275s 0.000277s 233.9 3609.7 software SSE2 32 # rsa 1024 bits 0.012136s 0.000260s 82.4 3844.5 hardware VIA SDK 33 # rsa 1024 bits 0.002522s 0.000116s 396.5 8650.9 hardware this 34 # 35 # rsa 2048 bits 0.050101s 0.001371s 20.0 729.6 software integer 36 # rsa 2048 bits 0.030273s 0.001008s 33.0 991.9 software SSE2 37 # rsa 2048 bits 0.030833s 0.000976s 32.4 1025.1 hardware VIA SDK 38 # rsa 2048 bits 0.011879s 0.000342s 84.2 2921.7 hardware this 39 # 40 # rsa 4096 bits 0.327097s 0.004859s 3.1 205.8 software integer 41 # rsa 4096 bits 0.229318s 0.003859s 4.4 259.2 software SSE2 42 # rsa 4096 bits 0.233953s 0.003274s 4.3 305.4 hardware VIA SDK 43 # rsa 4096 bits 0.070493s 0.001166s 14.2 857.6 hardware this 44 # 45 # dsa 512 bits 0.001342s 0.001651s 745.2 605.7 software integer 46 # dsa 512 bits 0.000844s 0.000987s 1185.3 1013.1 software SSE2 47 # dsa 512 bits 0.001902s 0.002247s 525.6 444.9 hardware VIA SDK 48 # dsa 512 bits 0.000458s 0.000524s 2182.2 1909.1 hardware this 49 # 50 # dsa 1024 bits 0.003964s 0.004926s 252.3 203.0 software integer 51 # dsa 1024 bits 0.002686s 0.003166s 372.3 315.8 software SSE2 52 # dsa 1024 bits 0.002397s 0.002823s 417.1 354.3 hardware VIA SDK 53 # dsa 1024 bits 0.000978s 0.001170s 1022.2 855.0 hardware this 54 # 55 # dsa 2048 bits 0.013280s 0.016518s 75.3 60.5 software integer 56 # dsa 2048 bits 0.009911s 0.011522s 100.9 86.8 software SSE2 57 # dsa 2048 bits 0.009542s 0.011763s 104.8 85.0 hardware VIA SDK 58 # dsa 2048 bits 0.002884s 0.003352s 346.8 298.3 hardware this 59 # 60 # To give you some other reference point here is output for 2.4GHz P4 61 # running hand-coded SSE2 bn_mul_mont found in 0.9.9, i.e. "software 62 # SSE2" in above terms. 63 # 64 # rsa 512 bits 0.000407s 0.000047s 2454.2 21137.0 65 # rsa 1024 bits 0.002426s 0.000141s 412.1 7100.0 66 # rsa 2048 bits 0.015046s 0.000491s 66.5 2034.9 67 # rsa 4096 bits 0.109770s 0.002379s 9.1 420.3 68 # dsa 512 bits 0.000438s 0.000525s 2281.1 1904.1 69 # dsa 1024 bits 0.001346s 0.001595s 742.7 627.0 70 # dsa 2048 bits 0.004745s 0.005582s 210.7 179.1 71 # 72 # Conclusions: 73 # - VIA SDK leaves a *lot* of room for improvement (which this 74 # implementation successfully fills:-); 75 # - 'rep montmul' gives up to >3x performance improvement depending on 76 # key length; 77 # - in terms of absolute performance it delivers approximately as much 78 # as modern out-of-order 32-bit cores [again, for longer keys]. 79 80 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; 81 push(@INC,"${dir}","${dir}../../perlasm"); 82 require "x86asm.pl"; 83 84 &asm_init($ARGV[0],"via-mont.pl"); 85 86 # int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0, int num); 87 $func="bn_mul_mont_padlock"; 88 89 $pad=16*1; # amount of reserved bytes on top of every vector 90 91 # stack layout 92 $mZeroPrime=&DWP(0,"esp"); # these are specified by VIA 93 $A=&DWP(4,"esp"); 94 $B=&DWP(8,"esp"); 95 $T=&DWP(12,"esp"); 96 $M=&DWP(16,"esp"); 97 $scratch=&DWP(20,"esp"); 98 $rp=&DWP(24,"esp"); # these are mine 99 $sp=&DWP(28,"esp"); 100 # &DWP(32,"esp") # 32 byte scratch area 101 # &DWP(64+(4*$num+$pad)*0,"esp") # padded tp[num] 102 # &DWP(64+(4*$num+$pad)*1,"esp") # padded copy of ap[num] 103 # &DWP(64+(4*$num+$pad)*2,"esp") # padded copy of bp[num] 104 # &DWP(64+(4*$num+$pad)*3,"esp") # padded copy of np[num] 105 # Note that SDK suggests to unconditionally allocate 2K per vector. This 106 # has quite an impact on performance. It naturally depends on key length, 107 # but to give an example 1024 bit private RSA key operations suffer >30% 108 # penalty. I allocate only as much as actually required... 109 110 &function_begin($func); 111 &xor ("eax","eax"); 112 &mov ("ecx",&wparam(5)); # num 113 # meet VIA's limitations for num [note that the specification 114 # expresses them in bits, while we work with amount of 32-bit words] 115 &test ("ecx",3); 116 &jnz (&label("leave")); # num % 4 != 0 117 &cmp ("ecx",8); 118 &jb (&label("leave")); # num < 8 119 &cmp ("ecx",1024); 120 &ja (&label("leave")); # num > 1024 121 122 &pushf (); 123 &cld (); 124 125 &mov ("edi",&wparam(0)); # rp 126 &mov ("eax",&wparam(1)); # ap 127 &mov ("ebx",&wparam(2)); # bp 128 &mov ("edx",&wparam(3)); # np 129 &mov ("esi",&wparam(4)); # n0 130 &mov ("esi",&DWP(0,"esi")); # *n0 131 132 &lea ("ecx",&DWP($pad,"","ecx",4)); # ecx becomes vector size in bytes 133 &lea ("ebp",&DWP(64,"","ecx",4)); # allocate 4 vectors + 64 bytes 134 &neg ("ebp"); 135 &add ("ebp","esp"); 136 &and ("ebp",-64); # align to cache-line 137 &xchg ("ebp","esp"); # alloca 138 139 &mov ($rp,"edi"); # save rp 140 &mov ($sp,"ebp"); # save esp 141 142 &mov ($mZeroPrime,"esi"); 143 &lea ("esi",&DWP(64,"esp")); # tp 144 &mov ($T,"esi"); 145 &lea ("edi",&DWP(32,"esp")); # scratch area 146 &mov ($scratch,"edi"); 147 &mov ("esi","eax"); 148 149 &lea ("ebp",&DWP(-$pad,"ecx")); 150 &shr ("ebp",2); # restore original num value in ebp 151 152 &xor ("eax","eax"); 153 154 &mov ("ecx","ebp"); 155 &lea ("ecx",&DWP((32+$pad)/4,"ecx"));# padded tp + scratch 156 &data_byte(0xf3,0xab); # rep stosl, bzero 157 158 &mov ("ecx","ebp"); 159 &lea ("edi",&DWP(64+$pad,"esp","ecx",4));# pointer to ap copy 160 &mov ($A,"edi"); 161 &data_byte(0xf3,0xa5); # rep movsl, memcpy 162 &mov ("ecx",$pad/4); 163 &data_byte(0xf3,0xab); # rep stosl, bzero pad 164 # edi points at the end of padded ap copy... 165 166 &mov ("ecx","ebp"); 167 &mov ("esi","ebx"); 168 &mov ($B,"edi"); 169 &data_byte(0xf3,0xa5); # rep movsl, memcpy 170 &mov ("ecx",$pad/4); 171 &data_byte(0xf3,0xab); # rep stosl, bzero pad 172 # edi points at the end of padded bp copy... 173 174 &mov ("ecx","ebp"); 175 &mov ("esi","edx"); 176 &mov ($M,"edi"); 177 &data_byte(0xf3,0xa5); # rep movsl, memcpy 178 &mov ("ecx",$pad/4); 179 &data_byte(0xf3,0xab); # rep stosl, bzero pad 180 # edi points at the end of padded np copy... 181 182 # let magic happen... 183 &mov ("ecx","ebp"); 184 &mov ("esi","esp"); 185 &shl ("ecx",5); # convert word counter to bit counter 186 &align (4); 187 &data_byte(0xf3,0x0f,0xa6,0xc0);# rep montmul 188 189 &mov ("ecx","ebp"); 190 &lea ("esi",&DWP(64,"esp")); # tp 191 # edi still points at the end of padded np copy... 192 &neg ("ebp"); 193 &lea ("ebp",&DWP(-$pad,"edi","ebp",4)); # so just "rewind" 194 &mov ("edi",$rp); # restore rp 195 &xor ("edx","edx"); # i=0 and clear CF 196 197 &set_label("sub",8); 198 &mov ("eax",&DWP(0,"esi","edx",4)); 199 &sbb ("eax",&DWP(0,"ebp","edx",4)); 200 &mov (&DWP(0,"edi","edx",4),"eax"); # rp[i]=tp[i]-np[i] 201 &lea ("edx",&DWP(1,"edx")); # i++ 202 &loop (&label("sub")); # doesn't affect CF! 203 204 &mov ("eax",&DWP(0,"esi","edx",4)); # upmost overflow bit 205 &sbb ("eax",0); 206 &and ("esi","eax"); 207 ¬ ("eax"); 208 &mov ("ebp","edi"); 209 &and ("ebp","eax"); 210 &or ("esi","ebp"); # tp=carry?tp:rp 211 212 &mov ("ecx","edx"); # num 213 &xor ("edx","edx"); # i=0 214 215 &set_label("copy",8); 216 &mov ("eax",&DWP(0,"esi","edx",4)); 217 &mov (&DWP(64,"esp","edx",4),"ecx"); # zap tp 218 &mov (&DWP(0,"edi","edx",4),"eax"); 219 &lea ("edx",&DWP(1,"edx")); # i++ 220 &loop (&label("copy")); 221 222 &mov ("ebp",$sp); 223 &xor ("eax","eax"); 224 225 &mov ("ecx",64/4); 226 &mov ("edi","esp"); # zap frame including scratch area 227 &data_byte(0xf3,0xab); # rep stosl, bzero 228 229 # zap copies of ap, bp and np 230 &lea ("edi",&DWP(64+$pad,"esp","edx",4));# pointer to ap 231 &lea ("ecx",&DWP(3*$pad/4,"edx","edx",2)); 232 &data_byte(0xf3,0xab); # rep stosl, bzero 233 234 &mov ("esp","ebp"); 235 &inc ("eax"); # signal "done" 236 &popf (); 237 &set_label("leave"); 238 &function_end($func); 239 240 &asciz("Padlock Montgomery Multiplication, CRYPTOGAMS by <appro\@openssl.org>"); 241 242 &asm_finish(); 243